# Load packages
# Core
library(tidyverse)
library(tidyquant)
Collect individual returns into a portfolio by assigning a weight to each stock
Choose your stocks.
from 2012-12-31 to 2017-12-31
symbols <- c("JPM", "MS", "DNB.OL", "NDA-FI.HE")
prices <- tq_get(x = symbols,
get = "stock.prices",
from = "2017-01-01",
to = "2023-12-31") %>%
filter(!is.na(close))
asset_returns_tbl <-prices %>%
group_by(symbol) %>%
tq_transmute(select = adjusted,
mutate_fun = periodReturn,
period = "quarterly",
type = "log") %>%
ungroup() %>%
set_names(c("asset", "date", "returns"))
asset_returns_tbl
## # A tibble: 112 × 3
## asset date returns
## <chr> <date> <dbl>
## 1 JPM 2017-03-31 0.0125
## 2 JPM 2017-06-30 0.0455
## 3 JPM 2017-09-29 0.0495
## 4 JPM 2017-12-29 0.119
## 5 JPM 2018-03-29 0.0331
## 6 JPM 2018-06-29 -0.0488
## 7 JPM 2018-09-28 0.0851
## 8 JPM 2018-12-31 -0.138
## 9 JPM 2019-03-29 0.0444
## 10 JPM 2019-06-28 0.107
## # ℹ 102 more rows
#symbols
symbols <- asset_returns_tbl %>% distinct(asset) %>% pull()
symbols
## [1] "JPM" "MS" "DNB.OL" "NDA-FI.HE"
#weights
weights <- c(0.25, 0.25, 0.25, 0.25)
weights
## [1] 0.25 0.25 0.25 0.25
w_tbl <- tibble(symbols, weights)
w_tbl
## # A tibble: 4 × 2
## symbols weights
## <chr> <dbl>
## 1 JPM 0.25
## 2 MS 0.25
## 3 DNB.OL 0.25
## 4 NDA-FI.HE 0.25
# ?tq_portfolio
portfolio_returns_tbl <- asset_returns_tbl %>%
tq_portfolio(assets_col = asset,
returns_col = returns,
weights = w_tbl,
rebalance_on = "months")
portfolio_returns_tbl
## # A tibble: 33 × 2
## date portfolio.returns
## <date> <dbl>
## 1 2017-03-31 0.0324
## 2 2017-06-30 0.0531
## 3 2017-09-29 0.0704
## 4 2017-12-29 0.00773
## 5 2018-03-28 0.0000821
## 6 2018-03-29 -0.00541
## 7 2018-06-29 -0.0306
## 8 2018-09-28 0.0706
## 9 2018-12-28 -0.119
## 10 2018-12-31 -0.0829
## # ℹ 23 more rows
portfolio_returns_tbl %>%
ggplot(mapping = aes(x = portfolio.returns)) +
geom_histogram(fill = "cornflowerblue", binwidth = 0.005) +
labs(x = "returns",
title = "Portfolio Returns Distribution")
portfolio_returns_tbl %>%
ggplot(mapping = aes(x = portfolio.returns)) +
geom_histogram(fill = "cornflowerblue", binwidth = 0.01) +
geom_density() +
# Formatting
scale_x_continuous(labels = scales::percent_format()) +
labs(x = "returns",
y = "distribution",
title = "Portfolio Histogram & Density")
Portfolio Histogram (Image 1):
The histogram shows a distribution of portfolio returns, and from this, you can observe that most returns are around 0% to 10%. There are some negative returns that reach around -40%, as well as some positive returns close to 20%, but these extremes occur less frequently, one quarter.
Portfolio Histogram & Density Plot (Image 2):
The density line over the histogram gives a clearer picture of where the majority of returns fall. The density peak occurs between 0% and 10% which suggests that most of the returns hover near 5%. The right tail of the density curve extends towards 20%, indicating that positive returns are also possible, though not as frequent as returns around 5%. Conclusion: In a typical quarter, you should expect returns near 0%, with some possibility of either positive or slightly negative returns. Extreme negative returns (e.g., -40%) or positive returns (e.g., 20%) are less likely based on the distribution observed.