Part I: Repeat code above for your assigned Biosample ID
(31280771)
library(xml2)
library(tidyverse)
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ dplyr 1.1.4 ✔ readr 2.1.5
## ✔ forcats 1.0.0 ✔ stringr 1.5.1
## ✔ ggplot2 3.5.1 ✔ tibble 3.2.1
## ✔ lubridate 1.9.3 ✔ tidyr 1.3.1
## ✔ purrr 1.0.2
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag() masks stats::lag()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
library(rvest)
##
## Attaching package: 'rvest'
##
## The following object is masked from 'package:readr':
##
## guess_encoding
namePage <- paste0("https://www.ncbi.nlm.nih.gov/biosample/?term=",31280771)
testPage <- read_html(namePage)
tableText <- testPage %>%
html_node("table") %>%
html_table()
names(tableText)<-c('Question','Response')
head(tableText)
## # A tibble: 6 × 2
## Question Response
## <chr> <chr>
## 1 dominant hand I am right handed
## 2 environmental medium feces
## 3 environmental package human-gut
## 4 host body habitat UBERON:feces
## 5 host body mass index 26.0
## 6 host body product UBERON:feces
Part II & III: Modify the script to download ALL the survey
results for samples 31280770-31280775 into a single list consisting of 5
data frames. Columns in the imported data frames are given meaningful
column names.
sample_ids <- c(31280770, 31280771, 31280772, 31280773, 31280775)
survey_list <- list()
for (id in sample_ids) {
name_pages <-
paste0("https://www.ncbi.nlm.nih.gov/biosample/?term=", id)
test_pages <- read_html(name_pages)
table_text2 <- test_pages %>%
html_node("table") %>%
html_table(fill = TRUE)
names(table_text2) <- c('Question', 'Response')
survey_list[[as.character(id)]] <- table_text2
}
head(survey_list)
## $`31280770`
## # A tibble: 230 × 2
## Question Response
## <chr> <chr>
## 1 dominant hand I am right handed
## 2 environmental medium feces
## 3 environmental package human-gut
## 4 host body habitat UBERON:feces
## 5 host body mass index 21.0
## 6 host body product UBERON:feces
## 7 host tissue sampled UBERON:feces
## 8 host height 162.0
## 9 life stage Adult
## 10 race Hispanic
## # ℹ 220 more rows
##
## $`31280771`
## # A tibble: 295 × 2
## Question Response
## <chr> <chr>
## 1 dominant hand I am right handed
## 2 environmental medium feces
## 3 environmental package human-gut
## 4 host body habitat UBERON:feces
## 5 host body mass index 26.0
## 6 host body product UBERON:feces
## 7 host tissue sampled UBERON:feces
## 8 host height 184.0
## 9 life stage Adult
## 10 race Hispanic
## # ℹ 285 more rows
##
## $`31280772`
## # A tibble: 293 × 2
## Question Response
## <chr> <chr>
## 1 dominant hand I am left handed
## 2 environmental medium feces
## 3 environmental package human-gut
## 4 host body habitat UBERON:feces
## 5 host body mass index 25.7
## 6 host body product UBERON:feces
## 7 host tissue sampled UBERON:feces
## 8 host height 159.0
## 9 life stage Adult
## 10 race Hispanic
## # ℹ 283 more rows
##
## $`31280773`
## # A tibble: 295 × 2
## Question Response
## <chr> <chr>
## 1 dominant hand I am left handed
## 2 environmental medium feces
## 3 environmental package human-gut
## 4 host body habitat UBERON:feces
## 5 host body mass index 25.4
## 6 host body product UBERON:feces
## 7 host tissue sampled UBERON:feces
## 8 host height 166.0
## 9 life stage Adult
## 10 race Hispanic
## # ℹ 285 more rows
##
## $`31280775`
## # A tibble: 293 × 2
## Question Response
## <chr> <chr>
## 1 dominant hand I am right handed
## 2 environmental medium feces
## 3 environmental package human-gut
## 4 host body habitat UBERON:feces
## 5 host body mass index 33.3
## 6 host body product UBERON:feces
## 7 host tissue sampled UBERON:feces
## 8 host height 154.0
## 9 life stage Adult
## 10 race Hispanic
## # ℹ 283 more rows
Part IV: Summarize the responses from a single question that is in
all 5 surveys with a pie chart.
library(ggplot2)
library(dplyr)
dfs <- bind_rows(survey_list, .id = "From")
life_stage <- dfs %>% filter(Question == "life stage")
life_stage <- life_stage %>%
group_by(Response) %>%
summarise(count = n())
pie = ggplot(life_stage, aes(x = "", y = count, fill = Response)) +
geom_bar(stat = "identity", width = 1) +
coord_polar("y", start = 0) +
geom_text(aes(label = paste0(round(count / sum(count) * 100), "%")),
position = position_stack(vjust = 0.5)) +
scale_fill_manual(values=c("#55DDE0", "#33658A", "#2F4858", "#F6AE2D", "#F26419")) +
labs(x = NULL, y = NULL, fill = NULL, title = "Survey Responses: Life Stage") +
theme_classic() +
theme(axis.line = element_blank(),
axis.text = element_blank(),
axis.ticks = element_blank(),
plot.title = element_text(hjust = 0.5, color = "#666666"))
print(pie)
