# Load packages
# Core
library(tidyverse)
library(tidyquant)
Collect individual returns into a portfolio by assigning a weight to each stock
Choose your stocks.
Stocks : “MSFT”, “AAPL”, “F”, “JPM”, “SBUX”
from 2012-12-31 to 2017-12-31
symbols <- c("MSFT", "AAPL", "F", "JPM", "SBUX")
prices <- tq_get(x = symbols,
from = "2012-12-31",
to = "2017-12-31")
asset_returns_tbl <- prices %>%
group_by(symbol) %>%
tq_transmute(select = adjusted,
mutate_fun = periodReturn,
period. = "quarters",
type = "log") %>%
slice(-1) %>%
ungroup() %>%
set_names(c("asset", "date", "returns"))
# symbols
symbols <- asset_returns_tbl %>% distinct(asset) %>% pull()
symbols
## [1] "AAPL" "F" "JPM" "MSFT" "SBUX"
# weights
weights <- c(0.3, 0.2, 0.2, 0.15, 0.15)
weights
## [1] 0.30 0.20 0.20 0.15 0.15
w_tbl <- tibble(symbols, weights)
portfolio_returns_tbl <- asset_returns_tbl %>%
tq_portfolio(assets_col = asset,
returns_col = returns,
weigts = w_tbl,
rebalance_on = "quarters")
portfolio_returns_tbl
## # A tibble: 60 × 2
## date portfolio.returns
## <date> <dbl>
## 1 2013-01-31 -0.000198
## 2 2013-02-28 -0.00101
## 3 2013-03-28 0.0157
## 4 2013-04-30 0.0584
## 5 2013-05-31 0.0743
## 6 2013-06-28 -0.0273
## 7 2013-07-31 0.0580
## 8 2013-08-30 -0.00318
## 9 2013-09-30 0.0245
## 10 2013-10-31 0.0460
## # ℹ 50 more rows
portfolio_returns_tbl %>%
ggplot(mapping = aes(x = date, y = portfolio.returns)) +
geom_point(color = "cornflowerblue") +
# Formatting
scale_x_date(date_breaks = "1 year",
date_labels = "%Y") +
# Labeling
labs(y = "quarter returns",
x = NULL,
title = "Portfolio Returns Scatter")
Histogram
portfolio_returns_tbl %>%
ggplot(mapping = aes(x = portfolio.returns)) +
geom_histogram(fill = "skyblue1", binwidth = 0.005,) +
labs(x = "returns",
title = "portfolio Returns Distribution")
Histogram & Density Plot
portfolio_returns_tbl %>%
ggplot(mapping = aes(x = portfolio.returns)) +
geom_histogram(fill = "skyblue1", binwidth = 0.01,) +
geom_density() +
# Formatting
scale_x_continuous(labels = scales::percent_format()) +
labs(x = "returns",
y = "distribution",
title = "Portfolio Histogram & Density")
What return should you expect from the portfolio in a typical quarter?
Based on the visuals, you can expect the portfolio to have a typical quarterly return that is slightly positive, probably somewhere between 1% and 5%. However, keep in mind that there’s some variability, so returns could dip below that range or even go higher. Most of the returns tend to cluster around 0% to 3%, so that’s where you’d likely see the most common performance.