Gen AI Report 2

Demographic information

Note: We set the following quotas:
- 50% women (50% men).
- 60% White (15% Black, 15% Asian, 7% Mixed, 3% Other).

I report summary statistics for:
- Age.
- Role.
- Self-Power.
- Company’s business.

Summary stats for likert dependent variables

Item in Qualtrics Item Text Merrick’s Shorthand
Q8 To what extent do you agree or disagree with the following statement: “Being responsible in using gen AI is important to gain business benefits ResponsibleBusiness
Q13_1 On a scale of 1 to 5, to what extent do you agree that the following are challenges to using AI responsibly? - Business pressures (e.g., speed to market) BusinessPressure
Q13_2 On a scale of 1 to 5, to what extent do you agree that the following are challenges to using AI responsibly? - Concerns about being labeled a “troublemaker” Concerns
Q13_3 On a scale of 1 to 5, to what extent do you agree that the following are challenges to using AI responsibly? - Discomfort raising issues around responsibility Discomfort
Q13_4 On a scale of 1 to 5, to what extent do you agree that the following are challenges to using AI responsibly? - Other Other
Q15_1 To what extent do you agree with the following‚ - I have suggestions for my supervisor about how to use gen AI more responsibly Suggestions for use
Q15_2 To what extent do you agree with the following, - I feel comfortable volunteering suggestions to my supervisor about how to use gen AI more responsibly Feel comfortable volunteering suggestions
Q15_3 To what extent do you agree with the following‚ - My supervisor asks and/or encourages me to think about and take actions to help the team be more responsible in using gen AI. Take actions

Summary statistics across dependent variables

Summary stats

Correlations

Age

Distribution

## 
## 18-24 YO 25-34 YO 35-44 YO 45-54 YO 55-64 YO   65+ YO 
##       25      118       90       47       17        5

Main effects

Post hoc

Q15_2 = Feel comfortable volunteering suggestions.

Role

Distribution

## 
##                     Product manager/Lead                Engineer/\nData scientist Product marketing/\nbusiness development                                    Other   Product designer/\nUX/content designer 
##                                      149                                       23                                       72                                       33                                       25

Main effects

Ladder

Distribution

## 
##   1. 1st Rung   2. 2nd Rung   3. 3rd Rung   4. 4th Rung   5. 5th Rung   6. 6th Rung   7. 7th Rung   8. 8th Rung   9. 9th Rung 10. 10th Rung 
##            30            13            43            43            36            47            40            31            11             8

Main effects

Company size

Distribution

## 
##        1. 1-49      2. 50-499    3. 499-1000   4. 1000-4999       5. 5000+ 99. Don't know 
##             91             92             40             28             46              2

Main effects

Post hoc

Q15_3 = “Take actions”.

Industry

Distribution

## 
##                 IT      Manufacturing         Healthcare     Transportation            Finance             Retail          Education              Other Telecommunications               Arts        Agriculture        Hospitality         Automotive       Construction                CRM 
##                 60                 48                 17                 14                 31                 37                 13                 26                  5                 20                  6                  9                  2                  8                  6

Main Effects

  • Got error “not enough observations”, which occurred because some industries had “0”.

Gender and Race Main Effects

Gender

Race

Formal training

genaiclean <- genaiclean %>% 
mutate(formaltrainingtext = case_when(
Q10 == 1 ~ "Yes",
Q10 == 2 ~ "No"))
means_sd_table(
condition_text = "formaltrainingtext",
condition_num = "Q10",
exp_variables = dvs,
exp_variables_labels = dvlabels,
data = genaiclean, means_comp = "t-test"
)
## `summarise()` has grouped output by 'variable'. You can override using the `.groups` argument.

Foundational Models

External Proprietary Models

External Open Source Gen AI models

Percentages

Q1: For what types of work tasks / purpose(s) do you use gen AI? Check all that apply.

Q3: What gen AI tools/models do you use? Check all that apply.

Q8: “Being responsible in using gen AI is important to gain business benefits”

Q9: Do you take any of the following actions when using gen AI tools? Check all that apply.

Q10: “Do you have any formal training in using gen AI responsibly?”

## 
##    Yes     No 
## 0.3201 0.6766

Q11: Does your organization have… (Check all that apply)

Q12: What types of challenges have you or your team faced in regards to using gen AI responsibly?

Q13: “On a scale of 1 to 5, to what extent do you agree that the following are challenges to using AI responsibly?”

Q15: To what extent do you agree with the following?

Output sheet is available here.

Results below are more clearly represented (and color-coded) in the hyperlinked spreadsheet.

https://docs.google.com/spreadsheets/d/109SUQaJhzkFDCEKAwN5ybne99zEu0WM7D0K00Ah9VcM/edit?usp=sharing

DVs: Q9: Do you take any of the following actions when using Gen AI tools? Check all that apply

Q11 Pred: Leadership that has expressed commitment to responsible AI

Take ethical / responsible AI trainings

## 
## Call:
## glm(formula = q9_takeethical ~ orghave_leadership, family = "binomial", 
##     data = genaiclean)
## 
## Coefficients:
##                       Estimate Std. Error z value    Pr(>|z|)    
## (Intercept)             -0.885      0.165   -5.37 0.000000079 ***
## orghave_leadershipYes    1.358      0.247    5.50 0.000000039 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 413.34  on 302  degrees of freedom
## Residual deviance: 381.54  on 301  degrees of freedom
## AIC: 385.5
## 
## Number of Fisher Scoring iterations: 4

Conduct audits of the gen AI tools

## 
## Call:
## glm(formula = q9_conductaudits ~ orghave_leadership, family = "binomial", 
##     data = genaiclean)
## 
## Coefficients:
##                       Estimate Std. Error z value             Pr(>|z|)    
## (Intercept)             -1.721      0.209   -8.24 < 0.0000000000000002 ***
## orghave_leadershipYes    1.316      0.277    4.74            0.0000021 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 343.49  on 302  degrees of freedom
## Residual deviance: 319.77  on 301  degrees of freedom
## AIC: 323.8
## 
## Number of Fisher Scoring iterations: 4

Conduct fairness / bias testing

## 
## Call:
## glm(formula = q9_conductfair ~ orghave_leadership, family = "binomial", 
##     data = genaiclean)
## 
## Coefficients:
##                       Estimate Std. Error z value        Pr(>|z|)    
## (Intercept)             -1.238      0.180   -6.90 0.0000000000053 ***
## orghave_leadershipYes    0.866      0.256    3.39          0.0007 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 370.35  on 302  degrees of freedom
## Residual deviance: 358.71  on 301  degrees of freedom
## AIC: 362.7
## 
## Number of Fisher Scoring iterations: 4

Consider data privacy implications and take actions to protect data privacy

## 
## Call:
## glm(formula = q9_considerdatapriv ~ orghave_leadership, family = "binomial", 
##     data = genaiclean)
## 
## Coefficients:
##                       Estimate Std. Error z value Pr(>|z|)   
## (Intercept)             -0.387      0.153   -2.53   0.0113 * 
## orghave_leadershipYes    0.628      0.236    2.66   0.0078 **
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 418.85  on 302  degrees of freedom
## Residual deviance: 411.71  on 301  degrees of freedom
## AIC: 415.7
## 
## Number of Fisher Scoring iterations: 4

Ask about the data or model to understand potential limitations or issues it has

## 
## Call:
## glm(formula = q9_askaboutdata ~ orghave_leadership, family = "binomial", 
##     data = genaiclean)
## 
## Coefficients:
##                       Estimate Std. Error z value    Pr(>|z|)    
## (Intercept)             -0.885      0.165   -5.37 0.000000079 ***
## orghave_leadershipYes    0.933      0.243    3.84     0.00013 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 403.25  on 302  degrees of freedom
## Residual deviance: 388.26  on 301  degrees of freedom
## AIC: 392.3
## 
## Number of Fisher Scoring iterations: 4

Conduct adversarial testing or red teaming (pretend to be a bad actor to test how a product we develop could be used for harm by bad actors)

## 
## Call:
## glm(formula = q9_adversarial ~ orghave_leadership, family = "binomial", 
##     data = genaiclean)
## 
## Coefficients:
##                       Estimate Std. Error z value            Pr(>|z|)    
## (Intercept)             -2.185      0.249   -8.79 <0.0000000000000002 ***
## orghave_leadershipYes    0.799      0.334    2.39               0.017 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 247.50  on 302  degrees of freedom
## Residual deviance: 241.71  on 301  degrees of freedom
## AIC: 245.7
## 
## Number of Fisher Scoring iterations: 4

Use explainability methods (e.g., to enable team members to better understand and probe the model)

## 
## Call:
## glm(formula = q9_explainability ~ orghave_leadership, family = "binomial", 
##     data = genaiclean)
## 
## Coefficients:
##                       Estimate Std. Error z value       Pr(>|z|)    
## (Intercept)             -1.206      0.178   -6.78 0.000000000012 ***
## orghave_leadershipYes    0.834      0.255    3.28         0.0011 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 372.03  on 302  degrees of freedom
## Residual deviance: 361.16  on 301  degrees of freedom
## AIC: 365.2
## 
## Number of Fisher Scoring iterations: 4

Build transparency approaches (e.g., use documentation that can make dataset and model decisions transparent to others)

## 
## Call:
## glm(formula = q9_buildtransparency ~ orghave_leadership, family = "binomial", 
##     data = genaiclean)
## 
## Coefficients:
##                       Estimate Std. Error z value         Pr(>|z|)    
## (Intercept)             -1.372      0.187   -7.35 0.00000000000019 ***
## orghave_leadershipYes    1.196      0.259    4.62 0.00000388250274 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 373.67  on 302  degrees of freedom
## Residual deviance: 351.56  on 301  degrees of freedom
## AIC: 355.6
## 
## Number of Fisher Scoring iterations: 4

No actions taken (to my knowledge)

## 
## Call:
## glm(formula = q9_noactions ~ orghave_leadership, family = "binomial", 
##     data = genaiclean)
## 
## Coefficients:
##                       Estimate Std. Error z value     Pr(>|z|)    
## (Intercept)             -0.996      0.169   -5.90 0.0000000037 ***
## orghave_leadershipYes   -1.246      0.347   -3.59      0.00033 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 301.57  on 302  degrees of freedom
## Residual deviance: 286.57  on 301  degrees of freedom
## AIC: 290.6
## 
## Number of Fisher Scoring iterations: 4

Q11 Pred: Responsible or ethical AI principles

Take ethical / responsible AI trainings

## 
## Call:
## glm(formula = q9_takeethical ~ orghave_responsible, family = "binomial", 
##     data = genaiclean)
## 
## Coefficients:
##                        Estimate Std. Error z value        Pr(>|z|)    
## (Intercept)              -1.145      0.177   -6.46 0.0000000001021 ***
## orghave_responsibleYes    1.873      0.258    7.25 0.0000000000004 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 413.34  on 302  degrees of freedom
## Residual deviance: 355.13  on 301  degrees of freedom
## AIC: 359.1
## 
## Number of Fisher Scoring iterations: 4

Conduct audits of the gen AI tools

## 
## Call:
## glm(formula = q9_conductaudits ~ orghave_responsible, family = "binomial", 
##     data = genaiclean)
## 
## Coefficients:
##                        Estimate Std. Error z value           Pr(>|z|)    
## (Intercept)              -1.569      0.201   -7.82 0.0000000000000055 ***
## orghave_responsibleYes    1.012      0.272    3.73            0.00019 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 343.49  on 302  degrees of freedom
## Residual deviance: 329.19  on 301  degrees of freedom
## AIC: 333.2
## 
## Number of Fisher Scoring iterations: 4

Conduct fairness / bias testing

## 
## Call:
## glm(formula = q9_conductfair ~ orghave_responsible, family = "binomial", 
##     data = genaiclean)
## 
## Coefficients:
##                        Estimate Std. Error z value          Pr(>|z|)    
## (Intercept)              -1.452      0.193   -7.51 0.000000000000059 ***
## orghave_responsibleYes    1.250      0.262    4.77 0.000001857187748 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 370.35  on 302  degrees of freedom
## Residual deviance: 346.55  on 301  degrees of freedom
## AIC: 350.6
## 
## Number of Fisher Scoring iterations: 4

Consider data privacy implications and take actions to protect data privacy

## 
## Call:
## glm(formula = q9_considerdatapriv ~ orghave_responsible, family = "binomial", 
##     data = genaiclean)
## 
## Coefficients:
##                        Estimate Std. Error z value Pr(>|z|)  
## (Intercept)              -0.348      0.154   -2.26    0.024 *
## orghave_responsibleYes    0.519      0.234    2.22    0.027 *
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 418.85  on 302  degrees of freedom
## Residual deviance: 413.91  on 301  degrees of freedom
## AIC: 417.9
## 
## Number of Fisher Scoring iterations: 4

Ask about the data or model to understand potential limitations or issues it has

## 
## Call:
## glm(formula = q9_askaboutdata ~ orghave_responsible, family = "binomial", 
##     data = genaiclean)
## 
## Coefficients:
##                        Estimate Std. Error z value   Pr(>|z|)    
## (Intercept)              -0.880      0.167   -5.29 0.00000013 ***
## orghave_responsibleYes    0.896      0.242    3.70    0.00022 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 403.25  on 302  degrees of freedom
## Residual deviance: 389.33  on 301  degrees of freedom
## AIC: 393.3
## 
## Number of Fisher Scoring iterations: 4

Conduct adversarial testing or red teaming (pretend to be a bad actor to test how a product we develop could be used for harm by bad actors)

## 
## Call:
## glm(formula = q9_adversarial ~ orghave_responsible, family = "binomial", 
##     data = genaiclean)
## 
## Coefficients:
##                        Estimate Std. Error z value             Pr(>|z|)    
## (Intercept)              -2.436      0.279   -8.74 < 0.0000000000000002 ***
## orghave_responsibleYes    1.198      0.350    3.43              0.00061 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 247.5  on 302  degrees of freedom
## Residual deviance: 234.9  on 301  degrees of freedom
## AIC: 238.9
## 
## Number of Fisher Scoring iterations: 5

Use explainability methods (e.g., to enable team members to better understand and probe the model)

## 
## Call:
## glm(formula = q9_explainability ~ orghave_responsible, family = "binomial", 
##     data = genaiclean)
## 
## Coefficients:
##                        Estimate Std. Error z value        Pr(>|z|)    
## (Intercept)              -1.275      0.183   -6.95 0.0000000000037 ***
## orghave_responsibleYes    0.947      0.256    3.70         0.00022 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 372.03  on 302  degrees of freedom
## Residual deviance: 358.05  on 301  degrees of freedom
## AIC: 362.1
## 
## Number of Fisher Scoring iterations: 4

Build transparency approaches (e.g., use documentation that can make dataset and model decisions transparent to others)

## 
## Call:
## glm(formula = q9_buildtransparency ~ orghave_responsible, family = "binomial", 
##     data = genaiclean)
## 
## Coefficients:
##                        Estimate Std. Error z value         Pr(>|z|)    
## (Intercept)              -1.415      0.191   -7.40 0.00000000000013 ***
## orghave_responsibleYes    1.244      0.260    4.78 0.00000176021321 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 373.67  on 302  degrees of freedom
## Residual deviance: 349.79  on 301  degrees of freedom
## AIC: 353.8
## 
## Number of Fisher Scoring iterations: 4

No actions taken (to my knowledge)

## 
## Call:
## glm(formula = q9_noactions ~ orghave_responsible, family = "binomial", 
##     data = genaiclean)
## 
## Coefficients:
##                        Estimate Std. Error z value   Pr(>|z|)    
## (Intercept)              -0.853      0.166   -5.15 0.00000026 ***
## orghave_responsibleYes   -1.864      0.401   -4.65 0.00000334 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 301.57  on 302  degrees of freedom
## Residual deviance: 272.22  on 301  degrees of freedom
## AIC: 276.2
## 
## Number of Fisher Scoring iterations: 5

Q11 Pred: A policy/policies that inform the use of gen AI

Take ethical / responsible AI trainings

## 
## Call:
## glm(formula = q9_takeethical ~ orghave_policy, family = "binomial", 
##     data = genaiclean)
## 
## Coefficients:
##                   Estimate Std. Error z value        Pr(>|z|)    
## (Intercept)         -0.995      0.164   -6.07 0.0000000012445 ***
## orghave_policyYes    1.769      0.260    6.81 0.0000000000098 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 413.34  on 302  degrees of freedom
## Residual deviance: 362.61  on 301  degrees of freedom
## AIC: 366.6
## 
## Number of Fisher Scoring iterations: 4

Conduct audits of the gen AI tools

## 
## Call:
## glm(formula = q9_conductaudits ~ orghave_policy, family = "binomial", 
##     data = genaiclean)
## 
## Coefficients:
##                   Estimate Std. Error z value           Pr(>|z|)    
## (Intercept)         -1.447      0.185   -7.81 0.0000000000000057 ***
## orghave_policyYes    0.870      0.269    3.23             0.0012 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 343.49  on 302  degrees of freedom
## Residual deviance: 332.99  on 301  degrees of freedom
## AIC: 337
## 
## Number of Fisher Scoring iterations: 4

Conduct fairness / bias testing

## 
## Call:
## glm(formula = q9_conductfair ~ orghave_policy, family = "binomial", 
##     data = genaiclean)
## 
## Coefficients:
##                   Estimate Std. Error z value        Pr(>|z|)    
## (Intercept)         -1.222      0.174   -7.05 0.0000000000019 ***
## orghave_policyYes    0.904      0.257    3.52         0.00044 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 370.35  on 302  degrees of freedom
## Residual deviance: 357.89  on 301  degrees of freedom
## AIC: 361.9
## 
## Number of Fisher Scoring iterations: 4

Consider data privacy implications and take actions to protect data privacy

## 
## Call:
## glm(formula = q9_considerdatapriv ~ orghave_policy, family = "binomial", 
##     data = genaiclean)
## 
## Coefficients:
##                   Estimate Std. Error z value Pr(>|z|)    
## (Intercept)         -0.486      0.150   -3.24   0.0012 ** 
## orghave_policyYes    0.950      0.244    3.90 0.000098 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 418.85  on 302  degrees of freedom
## Residual deviance: 403.25  on 301  degrees of freedom
## AIC: 407.2
## 
## Number of Fisher Scoring iterations: 4

Ask about the data or model to understand potential limitations or issues it has

## 
## Call:
## glm(formula = q9_askaboutdata ~ orghave_policy, family = "binomial", 
##     data = genaiclean)
## 
## Coefficients:
##                   Estimate Std. Error z value   Pr(>|z|)    
## (Intercept)         -0.815      0.158   -5.17 0.00000024 ***
## orghave_policyYes    0.850      0.245    3.47    0.00052 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 403.25  on 302  degrees of freedom
## Residual deviance: 391.07  on 301  degrees of freedom
## AIC: 395.1
## 
## Number of Fisher Scoring iterations: 4

Conduct adversarial testing or red teaming (pretend to be a bad actor to test how a product we develop could be used for harm by bad actors)

## 
## Call:
## glm(formula = q9_adversarial ~ orghave_policy, family = "binomial", 
##     data = genaiclean)
## 
## Coefficients:
##                   Estimate Std. Error z value             Pr(>|z|)    
## (Intercept)         -2.885      0.325   -8.88 < 0.0000000000000002 ***
## orghave_policyYes    1.987      0.385    5.16           0.00000025 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 247.50  on 302  degrees of freedom
## Residual deviance: 215.43  on 301  degrees of freedom
## AIC: 219.4
## 
## Number of Fisher Scoring iterations: 5

Use explainability methods (e.g., to enable team members to better understand and probe the model)

## 
## Call:
## glm(formula = q9_explainability ~ orghave_policy, family = "binomial", 
##     data = genaiclean)
## 
## Coefficients:
##                   Estimate Std. Error z value        Pr(>|z|)    
## (Intercept)         -1.163      0.171   -6.81 0.0000000000097 ***
## orghave_policyYes    0.809      0.256    3.16          0.0016 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 372.03  on 302  degrees of freedom
## Residual deviance: 361.99  on 301  degrees of freedom
## AIC: 366
## 
## Number of Fisher Scoring iterations: 4

Build transparency approaches (e.g., use documentation that can make dataset and model decisions transparent to others)

## 
## Call:
## glm(formula = q9_buildtransparency ~ orghave_policy, family = "binomial", 
##     data = genaiclean)
## 
## Coefficients:
##                   Estimate Std. Error z value         Pr(>|z|)    
## (Intercept)         -1.284      0.176   -7.27 0.00000000000035 ***
## orghave_policyYes    1.108      0.258    4.30 0.00001743394308 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 373.67  on 302  degrees of freedom
## Residual deviance: 354.85  on 301  degrees of freedom
## AIC: 358.9
## 
## Number of Fisher Scoring iterations: 4

No actions taken (to my knowledge)

## 
## Call:
## glm(formula = q9_noactions ~ orghave_policy, family = "binomial", 
##     data = genaiclean)
## 
## Coefficients:
##                   Estimate Std. Error z value    Pr(>|z|)    
## (Intercept)         -0.891      0.160   -5.56 0.000000027 ***
## orghave_policyYes   -2.191      0.485   -4.52 0.000006102 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 301.57  on 302  degrees of freedom
## Residual deviance: 269.00  on 301  degrees of freedom
## AIC: 273
## 
## Number of Fisher Scoring iterations: 5

Q11 Pred: Clear incentives

Take ethical / responsible AI trainings

## 
## Call:
## glm(formula = q9_takeethical ~ orghave_incentives, family = "binomial", 
##     data = genaiclean)
## 
## Coefficients:
##                       Estimate Std. Error z value Pr(>|z|)    
## (Intercept)             -0.485      0.132   -3.68  0.00024 ***
## orghave_incentivesYes    0.933      0.298    3.13  0.00173 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 413.34  on 302  degrees of freedom
## Residual deviance: 403.24  on 301  degrees of freedom
## AIC: 407.2
## 
## Number of Fisher Scoring iterations: 4

Conduct audits of the gen AI tools

## 
## Call:
## glm(formula = q9_conductaudits ~ orghave_incentives, family = "binomial", 
##     data = genaiclean)
## 
## Coefficients:
##                       Estimate Std. Error z value             Pr(>|z|)    
## (Intercept)             -1.407      0.161   -8.74 < 0.0000000000000002 ***
## orghave_incentivesYes    1.373      0.306    4.48            0.0000073 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 343.49  on 302  degrees of freedom
## Residual deviance: 323.74  on 301  degrees of freedom
## AIC: 327.7
## 
## Number of Fisher Scoring iterations: 4

Conduct fairness / bias testing

## 
## Call:
## glm(formula = q9_conductfair ~ orghave_incentives, family = "binomial", 
##     data = genaiclean)
## 
## Coefficients:
##                       Estimate Std. Error z value       Pr(>|z|)    
## (Intercept)             -0.971      0.143   -6.77 0.000000000013 ***
## orghave_incentivesYes    0.594      0.301    1.97          0.049 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 370.35  on 302  degrees of freedom
## Residual deviance: 366.56  on 301  degrees of freedom
## AIC: 370.6
## 
## Number of Fisher Scoring iterations: 4

Consider data privacy implications and take actions to protect data privacy

## 
## Call:
## glm(formula = q9_considerdatapriv ~ orghave_incentives, family = "binomial", 
##     data = genaiclean)
## 
## Coefficients:
##                       Estimate Std. Error z value Pr(>|z|)  
## (Intercept)             -0.214      0.129   -1.66    0.097 .
## orghave_incentivesYes    0.452      0.292    1.55    0.122  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 418.85  on 302  degrees of freedom
## Residual deviance: 416.44  on 301  degrees of freedom
## AIC: 420.4
## 
## Number of Fisher Scoring iterations: 3

Ask about the data or model to understand potential limitations or issues it has

## 
## Call:
## glm(formula = q9_askaboutdata ~ orghave_incentives, family = "binomial", 
##     data = genaiclean)
## 
## Coefficients:
##                       Estimate Std. Error z value   Pr(>|z|)    
## (Intercept)             -0.681      0.136   -5.02 0.00000051 ***
## orghave_incentivesYes    0.988      0.296    3.34    0.00085 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 403.25  on 302  degrees of freedom
## Residual deviance: 391.95  on 301  degrees of freedom
## AIC: 395.9
## 
## Number of Fisher Scoring iterations: 4

Conduct adversarial testing or red teaming (pretend to be a bad actor to test how a product we develop could be used for harm by bad actors)

## 
## Call:
## glm(formula = q9_adversarial ~ orghave_incentives, family = "binomial", 
##     data = genaiclean)
## 
## Coefficients:
##                       Estimate Std. Error z value            Pr(>|z|)    
## (Intercept)             -2.003      0.198  -10.13 <0.0000000000000002 ***
## orghave_incentivesYes    0.836      0.364    2.29               0.022 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 247.5  on 302  degrees of freedom
## Residual deviance: 242.6  on 301  degrees of freedom
## AIC: 246.6
## 
## Number of Fisher Scoring iterations: 4

Use explainability methods (e.g., to enable team members to better understand and probe the model)

## 
## Call:
## glm(formula = q9_explainability ~ orghave_incentives, family = "binomial", 
##     data = genaiclean)
## 
## Coefficients:
##                       Estimate Std. Error z value       Pr(>|z|)    
## (Intercept)             -0.951      0.143   -6.66 0.000000000027 ***
## orghave_incentivesYes    0.574      0.301    1.91          0.057 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 372.03  on 302  degrees of freedom
## Residual deviance: 368.48  on 301  degrees of freedom
## AIC: 372.5
## 
## Number of Fisher Scoring iterations: 4

Build transparency approaches (e.g., use documentation that can make dataset and model decisions transparent to others)

## 
## Call:
## glm(formula = q9_buildtransparency ~ orghave_incentives, family = "binomial", 
##     data = genaiclean)
## 
## Coefficients:
##                       Estimate Std. Error z value      Pr(>|z|)    
## (Intercept)             -0.911      0.142   -6.43 0.00000000012 ***
## orghave_incentivesYes    0.463      0.302    1.53          0.13    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 373.67  on 302  degrees of freedom
## Residual deviance: 371.38  on 301  degrees of freedom
## AIC: 375.4
## 
## Number of Fisher Scoring iterations: 4

No actions taken (to my knowledge)

## 
## Call:
## glm(formula = q9_noactions ~ orghave_incentives, family = "binomial", 
##     data = genaiclean)
## 
## Coefficients:
##                       Estimate Std. Error z value            Pr(>|z|)    
## (Intercept)             -1.234      0.153   -8.06 0.00000000000000078 ***
## orghave_incentivesYes   -1.145      0.492   -2.33                0.02 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 301.57  on 302  degrees of freedom
## Residual deviance: 294.68  on 301  degrees of freedom
## AIC: 298.7
## 
## Number of Fisher Scoring iterations: 5

Q11 Pred: None

Take ethical / responsible AI trainings

## 
## Call:
## glm(formula = q9_takeethical ~ orghave_neither, family = "binomial", 
##     data = genaiclean)
## 
## Coefficients:
##                    Estimate Std. Error z value    Pr(>|z|)    
## (Intercept)           0.121      0.132    0.92        0.36    
## orghave_neitherYes   -2.503      0.446   -5.61 0.000000021 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 413.34  on 302  degrees of freedom
## Residual deviance: 361.90  on 301  degrees of freedom
## AIC: 365.9
## 
## Number of Fisher Scoring iterations: 5

Conduct audits of the gen AI tools

## 
## Call:
## glm(formula = q9_conductaudits ~ orghave_neither, family = "binomial", 
##     data = genaiclean)
## 
## Coefficients:
##                    Estimate Std. Error z value     Pr(>|z|)    
## (Intercept)          -0.860      0.144   -5.99 0.0000000022 ***
## orghave_neitherYes   -1.204      0.402   -3.00       0.0027 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 343.49  on 302  degrees of freedom
## Residual deviance: 332.41  on 301  degrees of freedom
## AIC: 336.4
## 
## Number of Fisher Scoring iterations: 4

Conduct fairness / bias testing

## 
## Call:
## glm(formula = q9_conductfair ~ orghave_neither, family = "binomial", 
##     data = genaiclean)
## 
## Coefficients:
##                    Estimate Std. Error z value  Pr(>|z|)    
## (Intercept)          -0.661      0.139   -4.77 0.0000018 ***
## orghave_neitherYes   -0.932      0.346   -2.70     0.007 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 370.35  on 302  degrees of freedom
## Residual deviance: 362.11  on 301  degrees of freedom
## AIC: 366.1
## 
## Number of Fisher Scoring iterations: 4

Consider data privacy implications and take actions to protect data privacy

## 
## Call:
## glm(formula = q9_considerdatapriv ~ orghave_neither, family = "binomial", 
##     data = genaiclean)
## 
## Coefficients:
##                    Estimate Std. Error z value Pr(>|z|)
## (Intercept)         -0.0345     0.1313   -0.26     0.79
## orghave_neitherYes  -0.3945     0.2761   -1.43     0.15
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 418.85  on 302  degrees of freedom
## Residual deviance: 416.79  on 301  degrees of freedom
## AIC: 420.8
## 
## Number of Fisher Scoring iterations: 4

Ask about the data or model to understand potential limitations or issues it has

## 
## Call:
## glm(formula = q9_askaboutdata ~ orghave_neither, family = "binomial", 
##     data = genaiclean)
## 
## Coefficients:
##                    Estimate Std. Error z value Pr(>|z|)  
## (Intercept)          -0.313      0.133   -2.35    0.019 *
## orghave_neitherYes   -0.767      0.303   -2.53    0.011 *
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 403.25  on 302  degrees of freedom
## Residual deviance: 396.41  on 301  degrees of freedom
## AIC: 400.4
## 
## Number of Fisher Scoring iterations: 4

Conduct adversarial testing or red teaming (pretend to be a bad actor to test how a product we develop could be used for harm by bad actors)

## 
## Call:
## glm(formula = q9_adversarial ~ orghave_neither, family = "binomial", 
##     data = genaiclean)
## 
## Coefficients:
##                    Estimate Std. Error z value            Pr(>|z|)    
## (Intercept)          -1.569      0.174   -9.03 <0.0000000000000002 ***
## orghave_neitherYes   -1.552      0.615   -2.52               0.012 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 247.50  on 302  degrees of freedom
## Residual deviance: 238.15  on 301  degrees of freedom
## AIC: 242.2
## 
## Number of Fisher Scoring iterations: 5

Use explainability methods (e.g., to enable team members to better understand and probe the model)

## 
## Call:
## glm(formula = q9_explainability ~ orghave_neither, family = "binomial", 
##     data = genaiclean)
## 
## Coefficients:
##                    Estimate Std. Error z value Pr(>|z|)    
## (Intercept)          -0.585      0.137   -4.27 0.000019 ***
## orghave_neitherYes   -1.345      0.382   -3.52  0.00043 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 372.03  on 302  degrees of freedom
## Residual deviance: 356.57  on 301  degrees of freedom
## AIC: 360.6
## 
## Number of Fisher Scoring iterations: 4

Build transparency approaches (e.g., use documentation that can make dataset and model decisions transparent to others)

## 
## Call:
## glm(formula = q9_buildtransparency ~ orghave_neither, family = "binomial", 
##     data = genaiclean)
## 
## Coefficients:
##                    Estimate Std. Error z value Pr(>|z|)    
## (Intercept)          -0.548      0.136   -4.02 0.000058 ***
## orghave_neitherYes   -1.516      0.399   -3.80  0.00015 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 373.67  on 302  degrees of freedom
## Residual deviance: 354.84  on 301  degrees of freedom
## AIC: 358.8
## 
## Number of Fisher Scoring iterations: 4

No actions taken (to my knowledge)

## 
## Call:
## glm(formula = q9_noactions ~ orghave_neither, family = "binomial", 
##     data = genaiclean)
## 
## Coefficients:
##                    Estimate Std. Error z value             Pr(>|z|)    
## (Intercept)          -1.869      0.193   -9.69 < 0.0000000000000002 ***
## orghave_neitherYes    1.499      0.309    4.85            0.0000012 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 301.57  on 302  degrees of freedom
## Residual deviance: 278.48  on 301  degrees of freedom
## AIC: 282.5
## 
## Number of Fisher Scoring iterations: 4

Pred Q12 Challenges Clarity

Take ethical / responsible AI trainings

## 
## Call:
## glm(formula = q9_takeethical ~ challenges_clarity, family = "binomial", 
##     data = genaiclean)
## 
## Coefficients:
##                       Estimate Std. Error z value Pr(>|z|)
## (Intercept)             -0.255      0.239   -1.07     0.29
## challenges_clarityYes   -0.058      0.274   -0.21     0.83
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 413.34  on 302  degrees of freedom
## Residual deviance: 413.29  on 301  degrees of freedom
## AIC: 417.3
## 
## Number of Fisher Scoring iterations: 4

Conduct audits of the gen AI tools

## 
## Call:
## glm(formula = q9_conductaudits ~ challenges_clarity, family = "binomial", 
##     data = genaiclean)
## 
## Coefficients:
##                       Estimate Std. Error z value  Pr(>|z|)    
## (Intercept)             -1.317      0.291   -4.53 0.0000059 ***
## challenges_clarityYes    0.309      0.326    0.95      0.34    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 343.49  on 302  degrees of freedom
## Residual deviance: 342.57  on 301  degrees of freedom
## AIC: 346.6
## 
## Number of Fisher Scoring iterations: 4

Conduct fairness / bias testing

## 
## Call:
## glm(formula = q9_conductfair ~ challenges_clarity, family = "binomial", 
##     data = genaiclean)
## 
## Coefficients:
##                       Estimate Std. Error z value   Pr(>|z|)    
## (Intercept)             -1.696      0.328   -5.17 0.00000023 ***
## challenges_clarityYes    1.055      0.356    2.96      0.003 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 370.35  on 302  degrees of freedom
## Residual deviance: 360.13  on 301  degrees of freedom
## AIC: 364.1
## 
## Number of Fisher Scoring iterations: 4

Consider data privacy implications and take actions to protect data privacy

## 
## Call:
## glm(formula = q9_considerdatapriv ~ challenges_clarity, family = "binomial", 
##     data = genaiclean)
## 
## Coefficients:
##                       Estimate Std. Error z value Pr(>|z|)
## (Intercept)             -0.255      0.239   -1.07     0.29
## challenges_clarityYes    0.169      0.273    0.62     0.54
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 418.85  on 302  degrees of freedom
## Residual deviance: 418.47  on 301  degrees of freedom
## AIC: 422.5
## 
## Number of Fisher Scoring iterations: 3

Ask about the data or model to understand potential limitations or issues it has

## 
## Call:
## glm(formula = q9_askaboutdata ~ challenges_clarity, family = "binomial", 
##     data = genaiclean)
## 
## Coefficients:
##                       Estimate Std. Error z value Pr(>|z|)    
## (Intercept)             -0.936      0.264   -3.55  0.00039 ***
## challenges_clarityYes    0.588      0.296    1.99  0.04676 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 403.25  on 302  degrees of freedom
## Residual deviance: 399.11  on 301  degrees of freedom
## AIC: 403.1
## 
## Number of Fisher Scoring iterations: 4

Conduct adversarial testing or red teaming (pretend to be a bad actor to test how a product we develop could be used for harm by bad actors)

## 
## Call:
## glm(formula = q9_adversarial ~ challenges_clarity, family = "binomial", 
##     data = genaiclean)
## 
## Coefficients:
##                       Estimate Std. Error z value    Pr(>|z|)    
## (Intercept)             -2.064      0.375    -5.5 0.000000038 ***
## challenges_clarityYes    0.336      0.418     0.8        0.42    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 247.50  on 302  degrees of freedom
## Residual deviance: 246.82  on 301  degrees of freedom
## AIC: 250.8
## 
## Number of Fisher Scoring iterations: 4

Use explainability methods (e.g., to enable team members to better understand and probe the model)

## 
## Call:
## glm(formula = q9_explainability ~ challenges_clarity, family = "binomial", 
##     data = genaiclean)
## 
## Coefficients:
##                       Estimate Std. Error z value Pr(>|z|)    
## (Intercept)             -1.007      0.268   -3.76  0.00017 ***
## challenges_clarityYes    0.228      0.303    0.75  0.45115    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 372.03  on 302  degrees of freedom
## Residual deviance: 371.45  on 301  degrees of freedom
## AIC: 375.5
## 
## Number of Fisher Scoring iterations: 4

Build transparency approaches (e.g., use documentation that can make dataset and model decisions transparent to others)

## 
## Call:
## glm(formula = q9_buildtransparency ~ challenges_clarity, family = "binomial", 
##     data = genaiclean)
## 
## Coefficients:
##                       Estimate Std. Error z value Pr(>|z|)    
## (Intercept)             -1.235      0.284   -4.35 0.000014 ***
## challenges_clarityYes    0.535      0.316    1.69    0.091 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 373.67  on 302  degrees of freedom
## Residual deviance: 370.65  on 301  degrees of freedom
## AIC: 374.6
## 
## Number of Fisher Scoring iterations: 4

No actions taken (to my knowledge)

## 
## Call:
## glm(formula = q9_noactions ~ challenges_clarity, family = "binomial", 
##     data = genaiclean)
## 
## Coefficients:
##                       Estimate Std. Error z value  Pr(>|z|)    
## (Intercept)             -1.495      0.307   -4.87 0.0000011 ***
## challenges_clarityYes    0.125      0.348    0.36      0.72    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 301.57  on 302  degrees of freedom
## Residual deviance: 301.44  on 301  degrees of freedom
## AIC: 305.4
## 
## Number of Fisher Scoring iterations: 4

Pred: Q12 Lack of training

Take ethical / responsible AI trainings

## 
## Call:
## glm(formula = q9_takeethical ~ challenges_training, family = "binomial", 
##     data = genaiclean)
## 
## Coefficients:
##                        Estimate Std. Error z value Pr(>|z|)
## (Intercept)              -0.174      0.148   -1.18     0.24
## challenges_trainingYes   -0.323      0.240   -1.35     0.18
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 413.34  on 302  degrees of freedom
## Residual deviance: 411.52  on 301  degrees of freedom
## AIC: 415.5
## 
## Number of Fisher Scoring iterations: 4

Conduct audits of the gen AI tools

## 
## Call:
## glm(formula = q9_conductaudits ~ challenges_training, family = "binomial", 
##     data = genaiclean)
## 
## Coefficients:
##                        Estimate Std. Error z value    Pr(>|z|)    
## (Intercept)              -0.879      0.162   -5.43 0.000000057 ***
## challenges_trainingYes   -0.550      0.283   -1.94       0.052 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 343.49  on 302  degrees of freedom
## Residual deviance: 339.57  on 301  degrees of freedom
## AIC: 343.6
## 
## Number of Fisher Scoring iterations: 4

Conduct fairness / bias testing

## 
## Call:
## glm(formula = q9_conductfair ~ challenges_training, family = "binomial", 
##     data = genaiclean)
## 
## Coefficients:
##                        Estimate Std. Error z value Pr(>|z|)    
## (Intercept)              -0.653      0.155   -4.20 0.000027 ***
## challenges_trainingYes   -0.526      0.266   -1.98    0.048 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 370.35  on 302  degrees of freedom
## Residual deviance: 366.33  on 301  degrees of freedom
## AIC: 370.3
## 
## Number of Fisher Scoring iterations: 4

Consider data privacy implications and take actions to protect data privacy

## 
## Call:
## glm(formula = q9_considerdatapriv ~ challenges_training, family = "binomial", 
##     data = genaiclean)
## 
## Coefficients:
##                        Estimate Std. Error z value Pr(>|z|)
## (Intercept)             -0.0435     0.1475   -0.29     0.77
## challenges_trainingYes  -0.2100     0.2364   -0.89     0.37
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 418.85  on 302  degrees of freedom
## Residual deviance: 418.06  on 301  degrees of freedom
## AIC: 422.1
## 
## Number of Fisher Scoring iterations: 3

Ask about the data or model to understand potential limitations or issues it has

## 
## Call:
## glm(formula = q9_askaboutdata ~ challenges_training, family = "binomial", 
##     data = genaiclean)
## 
## Coefficients:
##                        Estimate Std. Error z value Pr(>|z|)   
## (Intercept)              -0.396      0.150   -2.64   0.0084 **
## challenges_trainingYes   -0.210      0.244   -0.86   0.3895   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 403.25  on 302  degrees of freedom
## Residual deviance: 402.51  on 301  degrees of freedom
## AIC: 406.5
## 
## Number of Fisher Scoring iterations: 4

Conduct adversarial testing or red teaming (pretend to be a bad actor to test how a product we develop could be used for harm by bad actors)

## 
## Call:
## glm(formula = q9_adversarial ~ challenges_training, family = "binomial", 
##     data = genaiclean)
## 
## Coefficients:
##                        Estimate Std. Error z value            Pr(>|z|)    
## (Intercept)             -1.8045     0.2116   -8.53 <0.0000000000000002 ***
## challenges_trainingYes   0.0127     0.3368    0.04                0.97    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 247.5  on 302  degrees of freedom
## Residual deviance: 247.5  on 301  degrees of freedom
## AIC: 251.5
## 
## Number of Fisher Scoring iterations: 4

Use explainability methods (e.g., to enable team members to better understand and probe the model)

## 
## Call:
## glm(formula = q9_explainability ~ challenges_training, family = "binomial", 
##     data = genaiclean)
## 
## Coefficients:
##                        Estimate Std. Error z value    Pr(>|z|)    
## (Intercept)              -0.905      0.163   -5.56 0.000000027 ***
## challenges_trainingYes    0.186      0.254    0.73        0.46    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 372.03  on 302  degrees of freedom
## Residual deviance: 371.49  on 301  degrees of freedom
## AIC: 375.5
## 
## Number of Fisher Scoring iterations: 4

Build transparency approaches (e.g., use documentation that can make dataset and model decisions transparent to others)

## 
## Call:
## glm(formula = q9_buildtransparency ~ challenges_training, family = "binomial", 
##     data = genaiclean)
## 
## Coefficients:
##                        Estimate Std. Error z value   Pr(>|z|)    
## (Intercept)             -0.8525     0.1610   -5.29 0.00000012 ***
## challenges_trainingYes   0.0956     0.2542    0.38       0.71    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 373.67  on 302  degrees of freedom
## Residual deviance: 373.53  on 301  degrees of freedom
## AIC: 377.5
## 
## Number of Fisher Scoring iterations: 4

No actions taken (to my knowledge)

## 
## Call:
## glm(formula = q9_noactions ~ challenges_training, family = "binomial", 
##     data = genaiclean)
## 
## Coefficients:
##                        Estimate Std. Error z value            Pr(>|z|)    
## (Intercept)              -1.596      0.197   -8.11 0.00000000000000053 ***
## challenges_trainingYes    0.464      0.290    1.60                0.11    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 301.57  on 302  degrees of freedom
## Residual deviance: 299.04  on 301  degrees of freedom
## AIC: 303
## 
## Number of Fisher Scoring iterations: 4

Pred: Q12 Lack of resources or tools

Take ethical / responsible AI trainings

## 
## Call:
## glm(formula = q9_takeethical ~ challenges_resources, family = "binomial", 
##     data = genaiclean)
## 
## Coefficients:
##                         Estimate Std. Error z value Pr(>|z|)  
## (Intercept)               -0.385      0.160   -2.41    0.016 *
## challenges_resourcesYes    0.184      0.233    0.79    0.429  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 413.34  on 302  degrees of freedom
## Residual deviance: 412.71  on 301  degrees of freedom
## AIC: 416.7
## 
## Number of Fisher Scoring iterations: 4

Conduct audits of the gen AI tools

## 
## Call:
## glm(formula = q9_conductaudits ~ challenges_resources, family = "binomial", 
##     data = genaiclean)
## 
## Coefficients:
##                         Estimate Std. Error z value         Pr(>|z|)    
## (Intercept)               -1.449      0.200   -7.26 0.00000000000039 ***
## challenges_resourcesYes    0.734      0.269    2.73           0.0063 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 343.49  on 302  degrees of freedom
## Residual deviance: 335.88  on 301  degrees of freedom
## AIC: 339.9
## 
## Number of Fisher Scoring iterations: 4

Conduct fairness / bias testing

## 
## Call:
## glm(formula = q9_conductfair ~ challenges_resources, family = "binomial", 
##     data = genaiclean)
## 
## Coefficients:
##                         Estimate Std. Error z value   Pr(>|z|)    
## (Intercept)              -0.8737     0.1718   -5.08 0.00000037 ***
## challenges_resourcesYes   0.0602     0.2512    0.24       0.81    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 370.35  on 302  degrees of freedom
## Residual deviance: 370.30  on 301  degrees of freedom
## AIC: 374.3
## 
## Number of Fisher Scoring iterations: 4

Consider data privacy implications and take actions to protect data privacy

## 
## Call:
## glm(formula = q9_considerdatapriv ~ challenges_resources, family = "binomial", 
##     data = genaiclean)
## 
## Coefficients:
##                         Estimate Std. Error z value Pr(>|z|)
## (Intercept)               -0.259      0.158   -1.64     0.10
## challenges_resourcesYes    0.288      0.231    1.24     0.21
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 418.85  on 302  degrees of freedom
## Residual deviance: 417.31  on 301  degrees of freedom
## AIC: 421.3
## 
## Number of Fisher Scoring iterations: 3

Ask about the data or model to understand potential limitations or issues it has

## 
## Call:
## glm(formula = q9_askaboutdata ~ challenges_resources, family = "binomial", 
##     data = genaiclean)
## 
## Coefficients:
##                         Estimate Std. Error z value Pr(>|z|)    
## (Intercept)               -0.647      0.165   -3.93 0.000086 ***
## challenges_resourcesYes    0.360      0.237    1.52     0.13    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 403.25  on 302  degrees of freedom
## Residual deviance: 400.95  on 301  degrees of freedom
## AIC: 405
## 
## Number of Fisher Scoring iterations: 4

Conduct adversarial testing or red teaming (pretend to be a bad actor to test how a product we develop could be used for harm by bad actors)

## 
## Call:
## glm(formula = q9_adversarial ~ challenges_resources, family = "binomial", 
##     data = genaiclean)
## 
## Coefficients:
##                         Estimate Std. Error z value            Pr(>|z|)    
## (Intercept)               -1.967      0.239   -8.24 <0.0000000000000002 ***
## challenges_resourcesYes    0.340      0.330    1.03                 0.3    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 247.50  on 302  degrees of freedom
## Residual deviance: 246.44  on 301  degrees of freedom
## AIC: 250.4
## 
## Number of Fisher Scoring iterations: 4

Use explainability methods (e.g., to enable team members to better understand and probe the model)

## 
## Call:
## glm(formula = q9_explainability ~ challenges_resources, family = "binomial", 
##     data = genaiclean)
## 
## Coefficients:
##                         Estimate Std. Error z value  Pr(>|z|)    
## (Intercept)              -0.8154     0.1699   -4.80 0.0000016 ***
## challenges_resourcesYes  -0.0319     0.2507   -0.13       0.9    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 372.03  on 302  degrees of freedom
## Residual deviance: 372.01  on 301  degrees of freedom
## AIC: 376
## 
## Number of Fisher Scoring iterations: 4

Build transparency approaches (e.g., use documentation that can make dataset and model decisions transparent to others)

## 
## Call:
## glm(formula = q9_buildtransparency ~ challenges_resources, family = "binomial", 
##     data = genaiclean)
## 
## Coefficients:
##                         Estimate Std. Error z value     Pr(>|z|)    
## (Intercept)               -1.026      0.178   -5.77 0.0000000077 ***
## challenges_resourcesYes    0.439      0.250    1.75         0.08 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 373.67  on 302  degrees of freedom
## Residual deviance: 370.59  on 301  degrees of freedom
## AIC: 374.6
## 
## Number of Fisher Scoring iterations: 4

No actions taken (to my knowledge)

## 
## Call:
## glm(formula = q9_noactions ~ challenges_resources, family = "binomial", 
##     data = genaiclean)
## 
## Coefficients:
##                         Estimate Std. Error z value         Pr(>|z|)    
## (Intercept)               -1.489      0.202   -7.37 0.00000000000017 ***
## challenges_resourcesYes    0.190      0.289    0.66             0.51    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 301.57  on 302  degrees of freedom
## Residual deviance: 301.14  on 301  degrees of freedom
## AIC: 305.1
## 
## Number of Fisher Scoring iterations: 4

Pred: Q12 Lack of incentives

Take ethical / responsible AI trainings

## 
## Call:
## glm(formula = q9_takeethical ~ challenges_incentives, family = "binomial", 
##     data = genaiclean)
## 
## Coefficients:
##                          Estimate Std. Error z value Pr(>|z|)  
## (Intercept)                -0.349      0.147   -2.38    0.018 *
## challenges_incentivesYes    0.134      0.240    0.56    0.577  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 413.34  on 302  degrees of freedom
## Residual deviance: 413.03  on 301  degrees of freedom
## AIC: 417
## 
## Number of Fisher Scoring iterations: 4

Conduct audits of the gen AI tools

## 
## Call:
## glm(formula = q9_conductaudits ~ challenges_incentives, family = "binomial", 
##     data = genaiclean)
## 
## Coefficients:
##                          Estimate Std. Error z value      Pr(>|z|)    
## (Intercept)               -1.0916     0.1668   -6.54 0.00000000006 ***
## challenges_incentivesYes   0.0401     0.2727    0.15          0.88    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 343.49  on 302  degrees of freedom
## Residual deviance: 343.47  on 301  degrees of freedom
## AIC: 347.5
## 
## Number of Fisher Scoring iterations: 4

Conduct fairness / bias testing

## 
## Call:
## glm(formula = q9_conductfair ~ challenges_incentives, family = "binomial", 
##     data = genaiclean)
## 
## Coefficients:
##                          Estimate Std. Error z value       Pr(>|z|)    
## (Intercept)                -1.120      0.168   -6.67 0.000000000026 ***
## challenges_incentivesYes    0.684      0.256    2.67         0.0076 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 370.35  on 302  degrees of freedom
## Residual deviance: 363.23  on 301  degrees of freedom
## AIC: 367.2
## 
## Number of Fisher Scoring iterations: 4

Consider data privacy implications and take actions to protect data privacy

## 
## Call:
## glm(formula = q9_considerdatapriv ~ challenges_incentives, family = "binomial", 
##     data = genaiclean)
## 
## Coefficients:
##                          Estimate Std. Error z value Pr(>|z|)
## (Intercept)                -0.178      0.145   -1.23     0.22
## challenges_incentivesYes    0.143      0.238    0.60     0.55
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 418.85  on 302  degrees of freedom
## Residual deviance: 418.50  on 301  degrees of freedom
## AIC: 422.5
## 
## Number of Fisher Scoring iterations: 3

Ask about the data or model to understand potential limitations or issues it has

## 
## Call:
## glm(formula = q9_askaboutdata ~ challenges_incentives, family = "binomial", 
##     data = genaiclean)
## 
## Coefficients:
##                          Estimate Std. Error z value Pr(>|z|)    
## (Intercept)                -0.570      0.151   -3.78  0.00015 ***
## challenges_incentivesYes    0.246      0.244    1.01  0.31325    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 403.25  on 302  degrees of freedom
## Residual deviance: 402.24  on 301  degrees of freedom
## AIC: 406.2
## 
## Number of Fisher Scoring iterations: 4

Conduct adversarial testing or red teaming (pretend to be a bad actor to test how a product we develop could be used for harm by bad actors)

## 
## Call:
## glm(formula = q9_adversarial ~ challenges_incentives, family = "binomial", 
##     data = genaiclean)
## 
## Coefficients:
##                          Estimate Std. Error z value            Pr(>|z|)    
## (Intercept)                -2.039      0.227   -9.00 <0.0000000000000002 ***
## challenges_incentivesYes    0.573      0.332    1.73               0.084 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 247.50  on 302  degrees of freedom
## Residual deviance: 244.55  on 301  degrees of freedom
## AIC: 248.6
## 
## Number of Fisher Scoring iterations: 4

Use explainability methods (e.g., to enable team members to better understand and probe the model)

## 
## Call:
## glm(formula = q9_explainability ~ challenges_incentives, family = "binomial", 
##     data = genaiclean)
## 
## Coefficients:
##                          Estimate Std. Error z value      Pr(>|z|)    
## (Intercept)                -1.010      0.164   -6.17 0.00000000067 ***
## challenges_incentivesYes    0.461      0.255    1.80         0.071 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 372.03  on 302  degrees of freedom
## Residual deviance: 368.79  on 301  degrees of freedom
## AIC: 372.8
## 
## Number of Fisher Scoring iterations: 4

Build transparency approaches (e.g., use documentation that can make dataset and model decisions transparent to others)

## 
## Call:
## glm(formula = q9_buildtransparency ~ challenges_incentives, family = "binomial", 
##     data = genaiclean)
## 
## Coefficients:
##                          Estimate Std. Error z value     Pr(>|z|)    
## (Intercept)                -1.037      0.165   -6.30 0.0000000003 ***
## challenges_incentivesYes    0.564      0.255    2.21        0.027 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 373.67  on 302  degrees of freedom
## Residual deviance: 368.79  on 301  degrees of freedom
## AIC: 372.8
## 
## Number of Fisher Scoring iterations: 4

No actions taken (to my knowledge)

## 
## Call:
## glm(formula = q9_noactions ~ challenges_incentives, family = "binomial", 
##     data = genaiclean)
## 
## Coefficients:
##                          Estimate Std. Error z value       Pr(>|z|)    
## (Intercept)                -1.120      0.168   -6.67 0.000000000026 ***
## challenges_incentivesYes   -0.911      0.339   -2.68         0.0073 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 301.57  on 302  degrees of freedom
## Residual deviance: 293.57  on 301  degrees of freedom
## AIC: 297.6
## 
## Number of Fisher Scoring iterations: 4

Pred: Q12 Lack of understanding whether / why it may be valuable

Take ethical / responsible AI trainings

## 
## Call:
## glm(formula = q9_takeethical ~ challenges_valuable, family = "binomial", 
##     data = genaiclean)
## 
## Coefficients:
##                        Estimate Std. Error z value Pr(>|z|)  
## (Intercept)              -0.278      0.131   -2.13    0.033 *
## challenges_valuableYes   -0.102      0.286   -0.36    0.723  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 413.34  on 302  degrees of freedom
## Residual deviance: 413.21  on 301  degrees of freedom
## AIC: 417.2
## 
## Number of Fisher Scoring iterations: 4

Conduct audits of the gen AI tools

## 
## Call:
## glm(formula = q9_conductaudits ~ challenges_valuable, family = "binomial", 
##     data = genaiclean)
## 
## Coefficients:
##                        Estimate Std. Error z value        Pr(>|z|)    
## (Intercept)              -1.049      0.148   -7.11 0.0000000000012 ***
## challenges_valuableYes   -0.135      0.330   -0.41            0.68    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 343.49  on 302  degrees of freedom
## Residual deviance: 343.33  on 301  degrees of freedom
## AIC: 347.3
## 
## Number of Fisher Scoring iterations: 4

Conduct fairness / bias testing

## 
## Call:
## glm(formula = q9_conductfair ~ challenges_valuable, family = "binomial", 
##     data = genaiclean)
## 
## Coefficients:
##                        Estimate Std. Error z value      Pr(>|z|)    
## (Intercept)              -0.922      0.143   -6.43 0.00000000013 ***
## challenges_valuableYes    0.344      0.297    1.16          0.25    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 370.35  on 302  degrees of freedom
## Residual deviance: 369.04  on 301  degrees of freedom
## AIC: 373
## 
## Number of Fisher Scoring iterations: 4

Consider data privacy implications and take actions to protect data privacy

## 
## Call:
## glm(formula = q9_considerdatapriv ~ challenges_valuable, family = "binomial", 
##     data = genaiclean)
## 
## Coefficients:
##                        Estimate Std. Error z value Pr(>|z|)
## (Intercept)              -0.193      0.130   -1.49     0.14
## challenges_valuableYes    0.318      0.282    1.13     0.26
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 418.85  on 302  degrees of freedom
## Residual deviance: 417.58  on 301  degrees of freedom
## AIC: 421.6
## 
## Number of Fisher Scoring iterations: 3

Ask about the data or model to understand potential limitations or issues it has

## 
## Call:
## glm(formula = q9_askaboutdata ~ challenges_valuable, family = "binomial", 
##     data = genaiclean)
## 
## Coefficients:
##                        Estimate Std. Error z value Pr(>|z|)    
## (Intercept)             -0.4864     0.1332   -3.65  0.00026 ***
## challenges_valuableYes   0.0417     0.2888    0.14  0.88527    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 403.25  on 302  degrees of freedom
## Residual deviance: 403.23  on 301  degrees of freedom
## AIC: 407.2
## 
## Number of Fisher Scoring iterations: 4

Conduct adversarial testing or red teaming (pretend to be a bad actor to test how a product we develop could be used for harm by bad actors)

## 
## Call:
## glm(formula = q9_adversarial ~ challenges_valuable, family = "binomial", 
##     data = genaiclean)
## 
## Coefficients:
##                        Estimate Std. Error z value            Pr(>|z|)    
## (Intercept)              -1.831      0.188   -9.77 <0.0000000000000002 ***
## challenges_valuableYes    0.145      0.392    0.37                0.71    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 247.50  on 302  degrees of freedom
## Residual deviance: 247.37  on 301  degrees of freedom
## AIC: 251.4
## 
## Number of Fisher Scoring iterations: 4

Use explainability methods (e.g., to enable team members to better understand and probe the model)

## 
## Call:
## glm(formula = q9_explainability ~ challenges_valuable, family = "binomial", 
##     data = genaiclean)
## 
## Coefficients:
##                        Estimate Std. Error z value       Pr(>|z|)    
## (Intercept)              -0.964      0.145   -6.66 0.000000000027 ***
## challenges_valuableYes    0.584      0.293    2.00          0.046 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 372.03  on 302  degrees of freedom
## Residual deviance: 368.14  on 301  degrees of freedom
## AIC: 372.1
## 
## Number of Fisher Scoring iterations: 4

Build transparency approaches (e.g., use documentation that can make dataset and model decisions transparent to others)

## 
## Call:
## glm(formula = q9_buildtransparency ~ challenges_valuable, family = "binomial", 
##     data = genaiclean)
## 
## Coefficients:
##                        Estimate Std. Error z value      Pr(>|z|)    
## (Intercept)              -0.922      0.143   -6.43 0.00000000013 ***
## challenges_valuableYes    0.477      0.294    1.63           0.1    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 373.67  on 302  degrees of freedom
## Residual deviance: 371.08  on 301  degrees of freedom
## AIC: 375.1
## 
## Number of Fisher Scoring iterations: 4

No actions taken (to my knowledge)

## 
## Call:
## glm(formula = q9_noactions ~ challenges_valuable, family = "binomial", 
##     data = genaiclean)
## 
## Coefficients:
##                        Estimate Std. Error z value            Pr(>|z|)    
## (Intercept)              -1.355      0.160   -8.46 <0.0000000000000002 ***
## challenges_valuableYes   -0.217      0.368   -0.59                0.56    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 301.57  on 302  degrees of freedom
## Residual deviance: 301.21  on 301  degrees of freedom
## AIC: 305.2
## 
## Number of Fisher Scoring iterations: 4

Pred: Q12 Lack of incentives

Take ethical / responsible AI trainings

## 
## Call:
## glm(formula = q9_takeethical ~ challenges_incentives, family = "binomial", 
##     data = genaiclean)
## 
## Coefficients:
##                          Estimate Std. Error z value Pr(>|z|)  
## (Intercept)                -0.349      0.147   -2.38    0.018 *
## challenges_incentivesYes    0.134      0.240    0.56    0.577  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 413.34  on 302  degrees of freedom
## Residual deviance: 413.03  on 301  degrees of freedom
## AIC: 417
## 
## Number of Fisher Scoring iterations: 4

Conduct audits of the gen AI tools

## 
## Call:
## glm(formula = q9_conductaudits ~ challenges_incentives, family = "binomial", 
##     data = genaiclean)
## 
## Coefficients:
##                          Estimate Std. Error z value      Pr(>|z|)    
## (Intercept)               -1.0916     0.1668   -6.54 0.00000000006 ***
## challenges_incentivesYes   0.0401     0.2727    0.15          0.88    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 343.49  on 302  degrees of freedom
## Residual deviance: 343.47  on 301  degrees of freedom
## AIC: 347.5
## 
## Number of Fisher Scoring iterations: 4

Conduct fairness / bias testing

## 
## Call:
## glm(formula = q9_conductfair ~ challenges_incentives, family = "binomial", 
##     data = genaiclean)
## 
## Coefficients:
##                          Estimate Std. Error z value       Pr(>|z|)    
## (Intercept)                -1.120      0.168   -6.67 0.000000000026 ***
## challenges_incentivesYes    0.684      0.256    2.67         0.0076 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 370.35  on 302  degrees of freedom
## Residual deviance: 363.23  on 301  degrees of freedom
## AIC: 367.2
## 
## Number of Fisher Scoring iterations: 4

Consider data privacy implications and take actions to protect data privacy

## 
## Call:
## glm(formula = q9_considerdatapriv ~ challenges_incentives, family = "binomial", 
##     data = genaiclean)
## 
## Coefficients:
##                          Estimate Std. Error z value Pr(>|z|)
## (Intercept)                -0.178      0.145   -1.23     0.22
## challenges_incentivesYes    0.143      0.238    0.60     0.55
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 418.85  on 302  degrees of freedom
## Residual deviance: 418.50  on 301  degrees of freedom
## AIC: 422.5
## 
## Number of Fisher Scoring iterations: 3

Ask about the data or model to understand potential limitations or issues it has

## 
## Call:
## glm(formula = q9_askaboutdata ~ challenges_incentives, family = "binomial", 
##     data = genaiclean)
## 
## Coefficients:
##                          Estimate Std. Error z value Pr(>|z|)    
## (Intercept)                -0.570      0.151   -3.78  0.00015 ***
## challenges_incentivesYes    0.246      0.244    1.01  0.31325    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 403.25  on 302  degrees of freedom
## Residual deviance: 402.24  on 301  degrees of freedom
## AIC: 406.2
## 
## Number of Fisher Scoring iterations: 4

Conduct adversarial testing or red teaming (pretend to be a bad actor to test how a product we develop could be used for harm by bad actors)

## 
## Call:
## glm(formula = q9_adversarial ~ challenges_incentives, family = "binomial", 
##     data = genaiclean)
## 
## Coefficients:
##                          Estimate Std. Error z value            Pr(>|z|)    
## (Intercept)                -2.039      0.227   -9.00 <0.0000000000000002 ***
## challenges_incentivesYes    0.573      0.332    1.73               0.084 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 247.50  on 302  degrees of freedom
## Residual deviance: 244.55  on 301  degrees of freedom
## AIC: 248.6
## 
## Number of Fisher Scoring iterations: 4

Use explainability methods (e.g., to enable team members to better understand and probe the model)

## 
## Call:
## glm(formula = q9_explainability ~ challenges_incentives, family = "binomial", 
##     data = genaiclean)
## 
## Coefficients:
##                          Estimate Std. Error z value      Pr(>|z|)    
## (Intercept)                -1.010      0.164   -6.17 0.00000000067 ***
## challenges_incentivesYes    0.461      0.255    1.80         0.071 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 372.03  on 302  degrees of freedom
## Residual deviance: 368.79  on 301  degrees of freedom
## AIC: 372.8
## 
## Number of Fisher Scoring iterations: 4

Build transparency approaches (e.g., use documentation that can make dataset and model decisions transparent to others)

## 
## Call:
## glm(formula = q9_buildtransparency ~ challenges_incentives, family = "binomial", 
##     data = genaiclean)
## 
## Coefficients:
##                          Estimate Std. Error z value     Pr(>|z|)    
## (Intercept)                -1.037      0.165   -6.30 0.0000000003 ***
## challenges_incentivesYes    0.564      0.255    2.21        0.027 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 373.67  on 302  degrees of freedom
## Residual deviance: 368.79  on 301  degrees of freedom
## AIC: 372.8
## 
## Number of Fisher Scoring iterations: 4

No actions taken (to my knowledge)

## 
## Call:
## glm(formula = q9_noactions ~ challenges_incentives, family = "binomial", 
##     data = genaiclean)
## 
## Coefficients:
##                          Estimate Std. Error z value       Pr(>|z|)    
## (Intercept)                -1.120      0.168   -6.67 0.000000000026 ***
## challenges_incentivesYes   -0.911      0.339   -2.68         0.0073 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 301.57  on 302  degrees of freedom
## Residual deviance: 293.57  on 301  degrees of freedom
## AIC: 297.6
## 
## Number of Fisher Scoring iterations: 4

Pred: Q12 Lack of support

Take ethical / responsible AI trainings

## 
## Call:
## glm(formula = q9_takeethical ~ challenges_support, family = "binomial", 
##     data = genaiclean)
## 
## Coefficients:
##                       Estimate Std. Error z value Pr(>|z|)   
## (Intercept)             -0.422      0.129   -3.26   0.0011 **
## challenges_supportYes    0.688      0.306    2.25   0.0245 * 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 413.34  on 302  degrees of freedom
## Residual deviance: 408.22  on 301  degrees of freedom
## AIC: 412.2
## 
## Number of Fisher Scoring iterations: 4

Conduct audits of the gen AI tools

## 
## Call:
## glm(formula = q9_conductaudits ~ challenges_support, family = "binomial", 
##     data = genaiclean)
## 
## Coefficients:
##                       Estimate Std. Error z value          Pr(>|z|)    
## (Intercept)            -1.0880     0.1457   -7.47 0.000000000000081 ***
## challenges_supportYes   0.0635     0.3439    0.18              0.85    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 343.49  on 302  degrees of freedom
## Residual deviance: 343.46  on 301  degrees of freedom
## AIC: 347.5
## 
## Number of Fisher Scoring iterations: 4

Conduct fairness / bias testing

## 
## Call:
## glm(formula = q9_conductfair ~ challenges_support, family = "binomial", 
##     data = genaiclean)
## 
## Coefficients:
##                       Estimate Std. Error z value      Pr(>|z|)    
## (Intercept)             -0.944      0.141   -6.71 0.00000000002 ***
## challenges_supportYes    0.523      0.314    1.67         0.096 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 370.35  on 302  degrees of freedom
## Residual deviance: 367.65  on 301  degrees of freedom
## AIC: 371.7
## 
## Number of Fisher Scoring iterations: 4

Consider data privacy implications and take actions to protect data privacy

## 
## Call:
## glm(formula = q9_considerdatapriv ~ challenges_support, family = "binomial", 
##     data = genaiclean)
## 
## Coefficients:
##                       Estimate Std. Error z value Pr(>|z|)  
## (Intercept)             -0.241      0.127   -1.89    0.058 .
## challenges_supportYes    0.662      0.308    2.15    0.032 *
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 418.85  on 302  degrees of freedom
## Residual deviance: 414.14  on 301  degrees of freedom
## AIC: 418.1
## 
## Number of Fisher Scoring iterations: 4

Ask about the data or model to understand potential limitations or issues it has

## 
## Call:
## glm(formula = q9_askaboutdata ~ challenges_support, family = "binomial", 
##     data = genaiclean)
## 
## Coefficients:
##                       Estimate Std. Error z value Pr(>|z|)   
## (Intercept)             -0.422      0.129   -3.26   0.0011 **
## challenges_supportYes   -0.328      0.321   -1.02   0.3073   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 403.25  on 302  degrees of freedom
## Residual deviance: 402.19  on 301  degrees of freedom
## AIC: 406.2
## 
## Number of Fisher Scoring iterations: 4

Conduct adversarial testing or red teaming (pretend to be a bad actor to test how a product we develop could be used for harm by bad actors)

## 
## Call:
## glm(formula = q9_adversarial ~ challenges_support, family = "binomial", 
##     data = genaiclean)
## 
## Coefficients:
##                       Estimate Std. Error z value            Pr(>|z|)    
## (Intercept)             -1.992      0.195  -10.24 <0.0000000000000002 ***
## challenges_supportYes    0.869      0.374    2.32                0.02 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 247.50  on 302  degrees of freedom
## Residual deviance: 242.51  on 301  degrees of freedom
## AIC: 246.5
## 
## Number of Fisher Scoring iterations: 4

Use explainability methods (e.g., to enable team members to better understand and probe the model)

## 
## Call:
## glm(formula = q9_explainability ~ challenges_support, family = "binomial", 
##     data = genaiclean)
## 
## Coefficients:
##                       Estimate Std. Error z value       Pr(>|z|)    
## (Intercept)             -0.905      0.140   -6.48 0.000000000091 ***
## challenges_supportYes    0.404      0.316    1.28            0.2    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 372.03  on 302  degrees of freedom
## Residual deviance: 370.43  on 301  degrees of freedom
## AIC: 374.4
## 
## Number of Fisher Scoring iterations: 4

Build transparency approaches (e.g., use documentation that can make dataset and model decisions transparent to others)

## 
## Call:
## glm(formula = q9_buildtransparency ~ challenges_support, family = "binomial", 
##     data = genaiclean)
## 
## Coefficients:
##                       Estimate Std. Error z value       Pr(>|z|)    
## (Intercept)             -0.905      0.140   -6.48 0.000000000091 ***
## challenges_supportYes    0.484      0.314    1.54           0.12    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 373.67  on 302  degrees of freedom
## Residual deviance: 371.35  on 301  degrees of freedom
## AIC: 375.3
## 
## Number of Fisher Scoring iterations: 4

No actions taken (to my knowledge)

## 
## Call:
## glm(formula = q9_noactions ~ challenges_support, family = "binomial", 
##     data = genaiclean)
## 
## Coefficients:
##                       Estimate Std. Error z value            Pr(>|z|)    
## (Intercept)             -1.337      0.156   -8.58 <0.0000000000000002 ***
## challenges_supportYes   -0.390      0.414   -0.94                0.35    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 301.57  on 302  degrees of freedom
## Residual deviance: 300.63  on 301  degrees of freedom
## AIC: 304.6
## 
## Number of Fisher Scoring iterations: 4

Pred: Q12 Lack of clarity about expectations

Take ethical / responsible AI trainings

## 
## Call:
## glm(formula = q9_takeethical ~ challenges_clarityexpectations, 
##     family = "binomial", data = genaiclean)
## 
## Coefficients:
##                                   Estimate Std. Error z value Pr(>|z|)   
## (Intercept)                         -0.396      0.129   -3.07   0.0021 **
## challenges_clarityexpectationsYes    0.550      0.307    1.79   0.0729 . 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 413.34  on 302  degrees of freedom
## Residual deviance: 410.11  on 301  degrees of freedom
## AIC: 414.1
## 
## Number of Fisher Scoring iterations: 4

Conduct audits of the gen AI tools

## 
## Call:
## glm(formula = q9_conductaudits ~ challenges_clarityexpectations, 
##     family = "binomial", data = genaiclean)
## 
## Coefficients:
##                                   Estimate Std. Error z value         Pr(>|z|)    
## (Intercept)                         -1.031      0.143   -7.19 0.00000000000065 ***
## challenges_clarityexpectationsYes   -0.285      0.369   -0.77             0.44    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 343.49  on 302  degrees of freedom
## Residual deviance: 342.87  on 301  degrees of freedom
## AIC: 346.9
## 
## Number of Fisher Scoring iterations: 4

Conduct fairness / bias testing

## 
## Call:
## glm(formula = q9_conductfair ~ challenges_clarityexpectations, 
##     family = "binomial", data = genaiclean)
## 
## Coefficients:
##                                   Estimate Std. Error z value        Pr(>|z|)    
## (Intercept)                         -0.990      0.142   -6.97 0.0000000000032 ***
## challenges_clarityexpectationsYes    0.758      0.313    2.42           0.016 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 370.35  on 302  degrees of freedom
## Residual deviance: 364.65  on 301  degrees of freedom
## AIC: 368.6
## 
## Number of Fisher Scoring iterations: 4

Consider data privacy implications and take actions to protect data privacy

## 
## Call:
## glm(formula = q9_considerdatapriv ~ challenges_clarityexpectations, 
##     family = "binomial", data = genaiclean)
## 
## Coefficients:
##                                   Estimate Std. Error z value Pr(>|z|)   
## (Intercept)                         -0.264      0.127   -2.08   0.0378 * 
## challenges_clarityexpectationsYes    0.817      0.315    2.59   0.0095 **
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 418.85  on 302  degrees of freedom
## Residual deviance: 411.88  on 301  degrees of freedom
## AIC: 415.9
## 
## Number of Fisher Scoring iterations: 4

Ask about the data or model to understand potential limitations or issues it has

## 
## Call:
## glm(formula = q9_askaboutdata ~ challenges_clarityexpectations, 
##     family = "binomial", data = genaiclean)
## 
## Coefficients:
##                                   Estimate Std. Error z value Pr(>|z|)    
## (Intercept)                         -0.530      0.131   -4.06  0.00005 ***
## challenges_clarityexpectationsYes    0.298      0.308    0.97     0.33    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 403.25  on 302  degrees of freedom
## Residual deviance: 402.33  on 301  degrees of freedom
## AIC: 406.3
## 
## Number of Fisher Scoring iterations: 4

Conduct adversarial testing or red teaming (pretend to be a bad actor to test how a product we develop could be used for harm by bad actors)

## 
## Call:
## glm(formula = q9_adversarial ~ challenges_clarityexpectations, 
##     family = "binomial", data = genaiclean)
## 
## Coefficients:
##                                   Estimate Std. Error z value            Pr(>|z|)    
## (Intercept)                         -1.755      0.178   -9.86 <0.0000000000000002 ***
## challenges_clarityexpectationsYes   -0.282      0.469   -0.60                0.55    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 247.50  on 302  degrees of freedom
## Residual deviance: 247.12  on 301  degrees of freedom
## AIC: 251.1
## 
## Number of Fisher Scoring iterations: 4

Use explainability methods (e.g., to enable team members to better understand and probe the model)

## 
## Call:
## glm(formula = q9_explainability ~ challenges_clarityexpectations, 
##     family = "binomial", data = genaiclean)
## 
## Coefficients:
##                                   Estimate Std. Error z value      Pr(>|z|)    
## (Intercept)                         -0.853      0.138   -6.19 0.00000000062 ***
## challenges_clarityexpectationsYes    0.131      0.326    0.40          0.69    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 372.03  on 302  degrees of freedom
## Residual deviance: 371.87  on 301  degrees of freedom
## AIC: 375.9
## 
## Number of Fisher Scoring iterations: 4

Build transparency approaches (e.g., use documentation that can make dataset and model decisions transparent to others)

## 
## Call:
## glm(formula = q9_buildtransparency ~ challenges_clarityexpectations, 
##     family = "binomial", data = genaiclean)
## 
## Coefficients:
##                                   Estimate Std. Error z value      Pr(>|z|)    
## (Intercept)                         -0.853      0.138   -6.19 0.00000000062 ***
## challenges_clarityexpectationsYes    0.217      0.322    0.67           0.5    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 373.67  on 302  degrees of freedom
## Residual deviance: 373.23  on 301  degrees of freedom
## AIC: 377.2
## 
## Number of Fisher Scoring iterations: 4

No actions taken (to my knowledge)

## 
## Call:
## glm(formula = q9_noactions ~ challenges_clarityexpectations, 
##     family = "binomial", data = genaiclean)
## 
## Coefficients:
##                                   Estimate Std. Error z value            Pr(>|z|)    
## (Intercept)                         -1.294      0.154   -8.43 <0.0000000000000002 ***
## challenges_clarityexpectationsYes   -0.743      0.460   -1.61                0.11    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 301.57  on 302  degrees of freedom
## Residual deviance: 298.58  on 301  degrees of freedom
## AIC: 302.6
## 
## Number of Fisher Scoring iterations: 4

Pred: Q12 Lack of Trust

Take ethical / responsible AI trainings

## 
## Call:
## glm(formula = q9_takeethical ~ challenges_trust, family = "binomial", 
##     data = genaiclean)
## 
## Coefficients:
##                     Estimate Std. Error z value Pr(>|z|)  
## (Intercept)          -0.3087     0.1358   -2.27    0.023 *
## challenges_trustYes   0.0354     0.2622    0.14    0.892  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 413.34  on 302  degrees of freedom
## Residual deviance: 413.32  on 301  degrees of freedom
## AIC: 417.3
## 
## Number of Fisher Scoring iterations: 4

Conduct audits of the gen AI tools

## 
## Call:
## glm(formula = q9_conductaudits ~ challenges_trust, family = "binomial", 
##     data = genaiclean)
## 
## Coefficients:
##                     Estimate Std. Error z value        Pr(>|z|)    
## (Intercept)           -1.135      0.156   -7.26 0.0000000000004 ***
## challenges_trustYes    0.210      0.292    0.72            0.47    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 343.49  on 302  degrees of freedom
## Residual deviance: 342.98  on 301  degrees of freedom
## AIC: 347
## 
## Number of Fisher Scoring iterations: 4

Conduct fairness / bias testing

## 
## Call:
## glm(formula = q9_conductfair ~ challenges_trust, family = "binomial", 
##     data = genaiclean)
## 
## Coefficients:
##                     Estimate Std. Error z value      Pr(>|z|)    
## (Intercept)           -1.039      0.153   -6.80 0.00000000001 ***
## challenges_trustYes    0.665      0.273    2.44         0.015 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 370.35  on 302  degrees of freedom
## Residual deviance: 364.52  on 301  degrees of freedom
## AIC: 368.5
## 
## Number of Fisher Scoring iterations: 4

Consider data privacy implications and take actions to protect data privacy

## 
## Call:
## glm(formula = q9_considerdatapriv ~ challenges_trust, family = "binomial", 
##     data = genaiclean)
## 
## Coefficients:
##                     Estimate Std. Error z value Pr(>|z|)  
## (Intercept)           -0.235      0.135   -1.74    0.082 .
## challenges_trustYes    0.409      0.261    1.57    0.117  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 418.85  on 302  degrees of freedom
## Residual deviance: 416.39  on 301  degrees of freedom
## AIC: 420.4
## 
## Number of Fisher Scoring iterations: 3

Ask about the data or model to understand potential limitations or issues it has

## 
## Call:
## glm(formula = q9_askaboutdata ~ challenges_trust, family = "binomial", 
##     data = genaiclean)
## 
## Coefficients:
##                     Estimate Std. Error z value Pr(>|z|)    
## (Intercept)           -0.593      0.140   -4.23 0.000023 ***
## challenges_trustYes    0.420      0.263    1.59     0.11    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 403.25  on 302  degrees of freedom
## Residual deviance: 400.73  on 301  degrees of freedom
## AIC: 404.7
## 
## Number of Fisher Scoring iterations: 4

Conduct adversarial testing or red teaming (pretend to be a bad actor to test how a product we develop could be used for harm by bad actors)

## 
## Call:
## glm(formula = q9_adversarial ~ challenges_trust, family = "binomial", 
##     data = genaiclean)
## 
## Coefficients:
##                     Estimate Std. Error z value            Pr(>|z|)    
## (Intercept)           -2.064      0.212   -9.72 <0.0000000000000002 ***
## challenges_trustYes    0.812      0.341    2.38               0.017 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 247.50  on 302  degrees of freedom
## Residual deviance: 242.08  on 301  degrees of freedom
## AIC: 246.1
## 
## Number of Fisher Scoring iterations: 4

Use explainability methods (e.g., to enable team members to better understand and probe the model)

## 
## Call:
## glm(formula = q9_explainability ~ challenges_trust, family = "binomial", 
##     data = genaiclean)
## 
## Coefficients:
##                     Estimate Std. Error z value      Pr(>|z|)    
## (Intercept)           -0.971      0.150   -6.46 0.00000000011 ***
## challenges_trustYes    0.492      0.274    1.80         0.072 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 372.03  on 302  degrees of freedom
## Residual deviance: 368.84  on 301  degrees of freedom
## AIC: 372.8
## 
## Number of Fisher Scoring iterations: 4

Build transparency approaches (e.g., use documentation that can make dataset and model decisions transparent to others)

## 
## Call:
## glm(formula = q9_buildtransparency ~ challenges_trust, family = "binomial", 
##     data = genaiclean)
## 
## Coefficients:
##                     Estimate Std. Error z value      Pr(>|z|)    
## (Intercept)           -0.971      0.150   -6.46 0.00000000011 ***
## challenges_trustYes    0.544      0.273    2.00         0.046 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 373.67  on 302  degrees of freedom
## Residual deviance: 369.75  on 301  degrees of freedom
## AIC: 373.7
## 
## Number of Fisher Scoring iterations: 4

No actions taken (to my knowledge)

## 
## Call:
## glm(formula = q9_noactions ~ challenges_trust, family = "binomial", 
##     data = genaiclean)
## 
## Coefficients:
##                     Estimate Std. Error z value          Pr(>|z|)    
## (Intercept)           -1.235      0.161   -7.69 0.000000000000015 ***
## challenges_trustYes   -0.725      0.374   -1.94             0.053 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 301.57  on 302  degrees of freedom
## Residual deviance: 297.40  on 301  degrees of freedom
## AIC: 301.4
## 
## Number of Fisher Scoring iterations: 4

Pred: Q12 None

Take ethical / responsible AI trainings

## 
## Call:
## glm(formula = q9_takeethical ~ challenges_none, family = "binomial", 
##     data = genaiclean)
## 
## Coefficients:
##                    Estimate Std. Error z value Pr(>|z|)  
## (Intercept)          -0.349      0.137   -2.55    0.011 *
## challenges_noneYes    0.180      0.259    0.69    0.488  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 413.34  on 302  degrees of freedom
## Residual deviance: 412.86  on 301  degrees of freedom
## AIC: 416.9
## 
## Number of Fisher Scoring iterations: 4

Conduct audits of the gen AI tools

## 
## Call:
## glm(formula = q9_conductaudits ~ challenges_none, family = "binomial", 
##     data = genaiclean)
## 
## Coefficients:
##                    Estimate Std. Error z value          Pr(>|z|)    
## (Intercept)          -1.224      0.161   -7.61 0.000000000000028 ***
## challenges_noneYes    0.494      0.284    1.74             0.082 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 343.49  on 302  degrees of freedom
## Residual deviance: 340.54  on 301  degrees of freedom
## AIC: 344.5
## 
## Number of Fisher Scoring iterations: 4

Conduct fairness / bias testing

## 
## Call:
## glm(formula = q9_conductfair ~ challenges_none, family = "binomial", 
##     data = genaiclean)
## 
## Coefficients:
##                    Estimate Std. Error z value     Pr(>|z|)    
## (Intercept)        -0.84730    0.14712   -5.76 0.0000000085 ***
## challenges_noneYes  0.00573    0.28087    0.02         0.98    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 370.35  on 302  degrees of freedom
## Residual deviance: 370.35  on 301  degrees of freedom
## AIC: 374.4
## 
## Number of Fisher Scoring iterations: 4

Consider data privacy implications and take actions to protect data privacy

## 
## Call:
## glm(formula = q9_considerdatapriv ~ challenges_none, family = "binomial", 
##     data = genaiclean)
## 
## Coefficients:
##                    Estimate Std. Error z value Pr(>|z|)
## (Intercept)          -0.091      0.135   -0.67     0.50
## challenges_noneYes   -0.127      0.259   -0.49     0.62
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 418.85  on 302  degrees of freedom
## Residual deviance: 418.61  on 301  degrees of freedom
## AIC: 422.6
## 
## Number of Fisher Scoring iterations: 3

Ask about the data or model to understand potential limitations or issues it has

## 
## Call:
## glm(formula = q9_askaboutdata ~ challenges_none, family = "binomial", 
##     data = genaiclean)
## 
## Coefficients:
##                    Estimate Std. Error z value Pr(>|z|)    
## (Intercept)         -0.4626     0.1385   -3.34  0.00083 ***
## challenges_noneYes  -0.0546     0.2658   -0.21  0.83716    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 403.25  on 302  degrees of freedom
## Residual deviance: 403.21  on 301  degrees of freedom
## AIC: 407.2
## 
## Number of Fisher Scoring iterations: 4

Conduct adversarial testing or red teaming (pretend to be a bad actor to test how a product we develop could be used for harm by bad actors)

## 
## Call:
## glm(formula = q9_adversarial ~ challenges_none, family = "binomial", 
##     data = genaiclean)
## 
## Coefficients:
##                    Estimate Std. Error z value            Pr(>|z|)    
## (Intercept)          -1.735      0.189   -9.19 <0.0000000000000002 ***
## challenges_noneYes   -0.253      0.386   -0.66                0.51    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 247.50  on 302  degrees of freedom
## Residual deviance: 247.06  on 301  degrees of freedom
## AIC: 251.1
## 
## Number of Fisher Scoring iterations: 4

Use explainability methods (e.g., to enable team members to better understand and probe the model)

## 
## Call:
## glm(formula = q9_explainability ~ challenges_none, family = "binomial", 
##     data = genaiclean)
## 
## Coefficients:
##                    Estimate Std. Error z value   Pr(>|z|)    
## (Intercept)          -0.762      0.145   -5.27 0.00000014 ***
## challenges_noneYes   -0.258      0.288   -0.90       0.37    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 372.03  on 302  degrees of freedom
## Residual deviance: 371.21  on 301  degrees of freedom
## AIC: 375.2
## 
## Number of Fisher Scoring iterations: 4

Build transparency approaches (e.g., use documentation that can make dataset and model decisions transparent to others)

## 
## Call:
## glm(formula = q9_buildtransparency ~ challenges_none, family = "binomial", 
##     data = genaiclean)
## 
## Coefficients:
##                    Estimate Std. Error z value    Pr(>|z|)    
## (Intercept)         -0.8044     0.1459   -5.51 0.000000035 ***
## challenges_noneYes  -0.0372     0.2802   -0.13        0.89    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 373.67  on 302  degrees of freedom
## Residual deviance: 373.66  on 301  degrees of freedom
## AIC: 377.7
## 
## Number of Fisher Scoring iterations: 4

No actions taken (to my knowledge)

## 
## Call:
## glm(formula = q9_noactions ~ challenges_none, family = "binomial", 
##     data = genaiclean)
## 
## Coefficients:
##                    Estimate Std. Error z value            Pr(>|z|)    
## (Intercept)          -1.566      0.178   -8.78 <0.0000000000000002 ***
## challenges_noneYes    0.547      0.306    1.79               0.074 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 301.57  on 302  degrees of freedom
## Residual deviance: 298.48  on 301  degrees of freedom
## AIC: 302.5
## 
## Number of Fisher Scoring iterations: 4

Q12: What types of challenges have you or your team faced in regards to using gen AI responsibly?

Q11 Pred: Leadership that has expressed commitment to responsible AI

Lack of clarity on what that looks like

## 
## Call:
## glm(formula = challenges_clarity ~ orghave_leadership, family = "binomial", 
##     data = genaiclean)
## 
## Coefficients:
##                       Estimate Std. Error z value      Pr(>|z|)    
## (Intercept)              1.114      0.174    6.41 0.00000000015 ***
## orghave_leadershipYes    0.175      0.278    0.63          0.53    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 329.94  on 302  degrees of freedom
## Residual deviance: 329.53  on 301  degrees of freedom
## AIC: 333.5
## 
## Number of Fisher Scoring iterations: 4

Lack of training

## 
## Call:
## glm(formula = challenges_training ~ orghave_leadership, family = "binomial", 
##     data = genaiclean)
## 
## Coefficients:
##                       Estimate Std. Error z value Pr(>|z|)  
## (Intercept)             -0.203      0.151   -1.35    0.178  
## orghave_leadershipYes   -0.588      0.245   -2.40    0.016 *
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 405.99  on 302  degrees of freedom
## Residual deviance: 400.11  on 301  degrees of freedom
## AIC: 404.1
## 
## Number of Fisher Scoring iterations: 4

Lack of resources or tools

## 
## Call:
## glm(formula = challenges_resources ~ orghave_leadership, family = "binomial", 
##     data = genaiclean)
## 
## Coefficients:
##                       Estimate Std. Error z value Pr(>|z|)  
## (Intercept)             -0.364      0.152   -2.39    0.017 *
## orghave_leadershipYes    0.508      0.235    2.16    0.031 *
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 418.30  on 302  degrees of freedom
## Residual deviance: 413.61  on 301  degrees of freedom
## AIC: 417.6
## 
## Number of Fisher Scoring iterations: 4

Lack of incentives

## 
## Call:
## glm(formula = challenges_incentives ~ orghave_leadership, family = "binomial", 
##     data = genaiclean)
## 
## Coefficients:
##                       Estimate Std. Error z value Pr(>|z|)   
## (Intercept)            -0.5048     0.1547   -3.26   0.0011 **
## orghave_leadershipYes  -0.0705     0.2422   -0.29   0.7709   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 399.21  on 302  degrees of freedom
## Residual deviance: 399.12  on 301  degrees of freedom
## AIC: 403.1
## 
## Number of Fisher Scoring iterations: 4

Lack of understanding whether / why it may be valuable

## 
## Call:
## glm(formula = challenges_valuable ~ orghave_leadership, family = "binomial", 
##     data = genaiclean)
## 
## Coefficients:
##                       Estimate Std. Error z value         Pr(>|z|)    
## (Intercept)            -1.3378     0.1847   -7.24 0.00000000000044 ***
## orghave_leadershipYes   0.0487     0.2852    0.17             0.86    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 312.44  on 302  degrees of freedom
## Residual deviance: 312.41  on 301  degrees of freedom
## AIC: 316.4
## 
## Number of Fisher Scoring iterations: 4

Lack of support

## 
## Call:
## glm(formula = challenges_support ~ orghave_leadership, family = "binomial", 
##     data = genaiclean)
## 
## Coefficients:
##                       Estimate Std. Error z value          Pr(>|z|)    
## (Intercept)             -1.407      0.189   -7.46 0.000000000000084 ***
## orghave_leadershipYes   -0.375      0.317   -1.18              0.24    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 280.94  on 302  degrees of freedom
## Residual deviance: 279.51  on 301  degrees of freedom
## AIC: 283.5
## 
## Number of Fisher Scoring iterations: 4

Lack of clarity about expectations or relevance to my role

## 
## Call:
## glm(formula = challenges_clarityexpectations ~ orghave_leadership, 
##     family = "binomial", data = genaiclean)
## 
## Coefficients:
##                       Estimate Std. Error z value           Pr(>|z|)    
## (Intercept)            -1.5960     0.2002   -7.97 0.0000000000000016 ***
## orghave_leadershipYes   0.0523     0.3086    0.17               0.87    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 277.82  on 302  degrees of freedom
## Residual deviance: 277.79  on 301  degrees of freedom
## AIC: 281.8
## 
## Number of Fisher Scoring iterations: 3

Lack of trust (personally)in the gen AI tool/model itself

## 
## Call:
## glm(formula = challenges_trust ~ orghave_leadership, family = "binomial", 
##     data = genaiclean)
## 
## Coefficients:
##                       Estimate Std. Error z value     Pr(>|z|)    
## (Intercept)            -0.9963     0.1689   -5.90 0.0000000037 ***
## orghave_leadershipYes  -0.0289     0.2640   -0.11         0.91    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 351.83  on 302  degrees of freedom
## Residual deviance: 351.82  on 301  degrees of freedom
## AIC: 355.8
## 
## Number of Fisher Scoring iterations: 4

None

## 
## Call:
## glm(formula = challenges_none ~ orghave_leadership, family = "binomial", 
##     data = genaiclean)
## 
## Coefficients:
##                       Estimate Std. Error z value       Pr(>|z|)    
## (Intercept)             -1.206      0.178   -6.78 0.000000000012 ***
## orghave_leadershipYes    0.525      0.260    2.02          0.043 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 355.80  on 302  degrees of freedom
## Residual deviance: 351.71  on 301  degrees of freedom
## AIC: 355.7
## 
## Number of Fisher Scoring iterations: 4

Pred: Responsible or ethical AI principles

Lack of clarity on what that looks like

## 
## Call:
## glm(formula = challenges_clarity ~ orghave_responsible, family = "binomial", 
##     data = genaiclean)
## 
## Coefficients:
##                        Estimate Std. Error z value     Pr(>|z|)    
## (Intercept)               1.023      0.172    5.95 0.0000000026 ***
## orghave_responsibleYes    0.402      0.281    1.43         0.15    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 329.94  on 302  degrees of freedom
## Residual deviance: 327.85  on 301  degrees of freedom
## AIC: 331.9
## 
## Number of Fisher Scoring iterations: 4

Lack of training

## 
## Call:
## glm(formula = challenges_training ~ orghave_responsible, family = "binomial", 
##     data = genaiclean)
## 
## Coefficients:
##                        Estimate Std. Error z value Pr(>|z|)  
## (Intercept)              -0.208      0.152   -1.36    0.173  
## orghave_responsibleYes   -0.556      0.243   -2.29    0.022 *
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 405.99  on 302  degrees of freedom
## Residual deviance: 400.66  on 301  degrees of freedom
## AIC: 404.7
## 
## Number of Fisher Scoring iterations: 4

Lack of resources or tools

## 
## Call:
## glm(formula = challenges_resources ~ orghave_responsible, family = "binomial", 
##     data = genaiclean)
## 
## Coefficients:
##                        Estimate Std. Error z value Pr(>|z|)
## (Intercept)              -0.208      0.152   -1.36     0.17
## orghave_responsibleYes    0.130      0.233    0.56     0.58
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 418.30  on 302  degrees of freedom
## Residual deviance: 417.99  on 301  degrees of freedom
## AIC: 422
## 
## Number of Fisher Scoring iterations: 3

Lack of incentives

## 
## Call:
## glm(formula = challenges_incentives ~ orghave_responsible, family = "binomial", 
##     data = genaiclean)
## 
## Coefficients:
##                        Estimate Std. Error z value Pr(>|z|)    
## (Intercept)              -0.693      0.161   -4.31 0.000016 ***
## orghave_responsibleYes    0.365      0.240    1.52     0.13    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 399.21  on 302  degrees of freedom
## Residual deviance: 396.91  on 301  degrees of freedom
## AIC: 400.9
## 
## Number of Fisher Scoring iterations: 4

Lack of understanding whether / why it may be valuable

## 
## Call:
## glm(formula = challenges_valuable ~ orghave_responsible, family = "binomial", 
##     data = genaiclean)
## 
## Coefficients:
##                        Estimate Std. Error z value       Pr(>|z|)    
## (Intercept)              -1.209      0.180   -6.71 0.000000000019 ***
## orghave_responsibleYes   -0.267      0.289   -0.92           0.36    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 312.44  on 302  degrees of freedom
## Residual deviance: 311.57  on 301  degrees of freedom
## AIC: 315.6
## 
## Number of Fisher Scoring iterations: 4

Lack of support

## 
## Call:
## glm(formula = challenges_support ~ orghave_responsible, family = "binomial", 
##     data = genaiclean)
## 
## Coefficients:
##                        Estimate Std. Error z value         Pr(>|z|)    
## (Intercept)              -1.415      0.191   -7.40 0.00000000000013 ***
## orghave_responsibleYes   -0.341      0.313   -1.09             0.28    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 280.94  on 302  degrees of freedom
## Residual deviance: 279.74  on 301  degrees of freedom
## AIC: 283.7
## 
## Number of Fisher Scoring iterations: 4

Lack of clarity about expectations or relevance to my role

## 
## Call:
## glm(formula = challenges_clarityexpectations ~ orghave_responsible, 
##     family = "binomial", data = genaiclean)
## 
## Coefficients:
##                        Estimate Std. Error z value           Pr(>|z|)    
## (Intercept)             -1.6094     0.2034   -7.91 0.0000000000000025 ***
## orghave_responsibleYes   0.0815     0.3071    0.27               0.79    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 277.82  on 302  degrees of freedom
## Residual deviance: 277.75  on 301  degrees of freedom
## AIC: 281.7
## 
## Number of Fisher Scoring iterations: 4

Lack of trust (personally)in the gen AI tool/model itself

## 
## Call:
## glm(formula = challenges_trust ~ orghave_responsible, family = "binomial", 
##     data = genaiclean)
## 
## Coefficients:
##                        Estimate Std. Error z value       Pr(>|z|)    
## (Intercept)              -1.177      0.179   -6.59 0.000000000045 ***
## orghave_responsibleYes    0.377      0.261    1.44           0.15    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 351.83  on 302  degrees of freedom
## Residual deviance: 349.75  on 301  degrees of freedom
## AIC: 353.7
## 
## Number of Fisher Scoring iterations: 4

None

## 
## Call:
## glm(formula = challenges_none ~ orghave_responsible, family = "binomial", 
##     data = genaiclean)
## 
## Coefficients:
##                        Estimate Std. Error z value      Pr(>|z|)    
## (Intercept)              -1.083      0.174   -6.21 0.00000000053 ***
## orghave_responsibleYes    0.247      0.259    0.95          0.34    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 355.80  on 302  degrees of freedom
## Residual deviance: 354.89  on 301  degrees of freedom
## AIC: 358.9
## 
## Number of Fisher Scoring iterations: 4

Q11 Pred: A policy/policies that inform the use of gen AI

Lack of clarity on what that looks like

## 
## Call:
## glm(formula = challenges_clarity ~ orghave_policy, family = "binomial", 
##     data = genaiclean)
## 
## Coefficients:
##                   Estimate Std. Error z value      Pr(>|z|)    
## (Intercept)          1.050      0.166    6.32 0.00000000025 ***
## orghave_policyYes    0.381      0.290    1.32          0.19    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 329.94  on 302  degrees of freedom
## Residual deviance: 328.16  on 301  degrees of freedom
## AIC: 332.2
## 
## Number of Fisher Scoring iterations: 4

Lack of training

## 
## Call:
## glm(formula = challenges_training ~ orghave_policy, family = "binomial", 
##     data = genaiclean)
## 
## Coefficients:
##                   Estimate Std. Error z value Pr(>|z|)  
## (Intercept)         -0.245      0.147   -1.67    0.095 .
## orghave_policyYes   -0.529      0.249   -2.12    0.034 *
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 405.99  on 302  degrees of freedom
## Residual deviance: 401.40  on 301  degrees of freedom
## AIC: 405.4
## 
## Number of Fisher Scoring iterations: 4

Lack of resources or tools

## 
## Call:
## glm(formula = challenges_resources ~ orghave_policy, family = "binomial", 
##     data = genaiclean)
## 
## Coefficients:
##                   Estimate Std. Error z value Pr(>|z|)
## (Intercept)         -0.202      0.146   -1.38     0.17
## orghave_policyYes    0.132      0.238    0.55     0.58
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 418.30  on 302  degrees of freedom
## Residual deviance: 417.99  on 301  degrees of freedom
## AIC: 422
## 
## Number of Fisher Scoring iterations: 3

Lack of incentives

## 
## Call:
## glm(formula = challenges_incentives ~ orghave_policy, family = "binomial", 
##     data = genaiclean)
## 
## Coefficients:
##                   Estimate Std. Error z value  Pr(>|z|)    
## (Intercept)         -0.741      0.156   -4.76 0.0000019 ***
## orghave_policyYes    0.530      0.244    2.17      0.03 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 399.21  on 302  degrees of freedom
## Residual deviance: 394.51  on 301  degrees of freedom
## AIC: 398.5
## 
## Number of Fisher Scoring iterations: 4

Lack of understanding whether / why it may be valuable

## 
## Call:
## glm(formula = challenges_valuable ~ orghave_policy, family = "binomial", 
##     data = genaiclean)
## 
## Coefficients:
##                   Estimate Std. Error z value         Pr(>|z|)    
## (Intercept)       -1.31507    0.17808   -7.38 0.00000000000015 ***
## orghave_policyYes -0.00669    0.29067   -0.02             0.98    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 312.44  on 302  degrees of freedom
## Residual deviance: 312.43  on 301  degrees of freedom
## AIC: 316.4
## 
## Number of Fisher Scoring iterations: 4

Lack of support

## 
## Call:
## glm(formula = challenges_support ~ orghave_policy, family = "binomial", 
##     data = genaiclean)
## 
## Coefficients:
##                   Estimate Std. Error z value            Pr(>|z|)    
## (Intercept)         -1.591      0.194   -8.20 0.00000000000000024 ***
## orghave_policyYes    0.102      0.310    0.33                0.74    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 280.94  on 302  degrees of freedom
## Residual deviance: 280.83  on 301  degrees of freedom
## AIC: 284.8
## 
## Number of Fisher Scoring iterations: 4

Lack of clarity about expectations or relevance to my role

## 
## Call:
## glm(formula = challenges_clarityexpectations ~ orghave_policy, 
##     family = "binomial", data = genaiclean)
## 
## Coefficients:
##                   Estimate Std. Error z value            Pr(>|z|)    
## (Intercept)         -1.668      0.199   -8.38 <0.0000000000000002 ***
## orghave_policyYes    0.237      0.310    0.76                0.44    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 277.82  on 302  degrees of freedom
## Residual deviance: 277.24  on 301  degrees of freedom
## AIC: 281.2
## 
## Number of Fisher Scoring iterations: 4

Lack of trust (personally)in the gen AI tool/model itself

## 
## Call:
## glm(formula = challenges_trust ~ orghave_policy, family = "binomial", 
##     data = genaiclean)
## 
## Coefficients:
##                   Estimate Std. Error z value      Pr(>|z|)    
## (Intercept)         -1.106      0.168   -6.57 0.00000000005 ***
## orghave_policyYes    0.250      0.265    0.94          0.35    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 351.83  on 302  degrees of freedom
## Residual deviance: 350.95  on 301  degrees of freedom
## AIC: 354.9
## 
## Number of Fisher Scoring iterations: 4

None

## 
## Call:
## glm(formula = challenges_none ~ orghave_policy, family = "binomial", 
##     data = genaiclean)
## 
## Coefficients:
##                   Estimate Std. Error z value      Pr(>|z|)    
## (Intercept)         -1.078      0.167   -6.45 0.00000000011 ***
## orghave_policyYes    0.263      0.263    1.00          0.32    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 355.8  on 302  degrees of freedom
## Residual deviance: 354.8  on 301  degrees of freedom
## AIC: 358.8
## 
## Number of Fisher Scoring iterations: 4

Q11 Pred: Clear incentives for using/implementing gen AI responsibly

Lack of clarity on what that looks like

## 
## Call:
## glm(formula = challenges_clarity ~ orghave_incentives, family = "binomial", 
##     data = genaiclean)
## 
## Coefficients:
##                       Estimate Std. Error z value          Pr(>|z|)    
## (Intercept)              1.121      0.149    7.54 0.000000000000048 ***
## orghave_incentivesYes    0.353      0.366    0.96              0.33    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 329.94  on 302  degrees of freedom
## Residual deviance: 328.96  on 301  degrees of freedom
## AIC: 333
## 
## Number of Fisher Scoring iterations: 4

Lack of training

## 
## Call:
## glm(formula = challenges_training ~ orghave_incentives, family = "binomial", 
##     data = genaiclean)
## 
## Coefficients:
##                       Estimate Std. Error z value Pr(>|z|)   
## (Intercept)             -0.365      0.130   -2.80   0.0051 **
## orghave_incentivesYes   -0.380      0.308   -1.23   0.2168   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 405.99  on 302  degrees of freedom
## Residual deviance: 404.43  on 301  degrees of freedom
## AIC: 408.4
## 
## Number of Fisher Scoring iterations: 4

Lack of resources or tools

## 
## Call:
## glm(formula = challenges_resources ~ orghave_incentives, family = "binomial", 
##     data = genaiclean)
## 
## Coefficients:
##                       Estimate Std. Error z value Pr(>|z|)
## (Intercept)             -0.181      0.129   -1.41     0.16
## orghave_incentivesYes    0.147      0.290    0.51     0.61
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 418.30  on 302  degrees of freedom
## Residual deviance: 418.04  on 301  degrees of freedom
## AIC: 422
## 
## Number of Fisher Scoring iterations: 3

Lack of incentives

## 
## Call:
## glm(formula = challenges_incentives ~ orghave_incentives, family = "binomial", 
##     data = genaiclean)
## 
## Coefficients:
##                       Estimate Std. Error z value Pr(>|z|)    
## (Intercept)             -0.573      0.133   -4.29 0.000018 ***
## orghave_incentivesYes    0.195      0.297    0.66     0.51    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 399.21  on 302  degrees of freedom
## Residual deviance: 398.78  on 301  degrees of freedom
## AIC: 402.8
## 
## Number of Fisher Scoring iterations: 4

Lack of understanding whether / why it may be valuable

## 
## Call:
## glm(formula = challenges_valuable ~ orghave_incentives, family = "binomial", 
##     data = genaiclean)
## 
## Coefficients:
##                       Estimate Std. Error z value            Pr(>|z|)    
## (Intercept)             -1.356      0.159   -8.55 <0.0000000000000002 ***
## orghave_incentivesYes    0.188      0.345    0.55                0.58    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 312.44  on 302  degrees of freedom
## Residual deviance: 312.14  on 301  degrees of freedom
## AIC: 316.1
## 
## Number of Fisher Scoring iterations: 4

Lack of support

## 
## Call:
## glm(formula = challenges_support ~ orghave_incentives, family = "binomial", 
##     data = genaiclean)
## 
## Coefficients:
##                       Estimate Std. Error z value            Pr(>|z|)    
## (Intercept)             -1.514      0.167   -9.09 <0.0000000000000002 ***
## orghave_incentivesYes   -0.201      0.399   -0.50                0.61    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 280.94  on 302  degrees of freedom
## Residual deviance: 280.68  on 301  degrees of freedom
## AIC: 284.7
## 
## Number of Fisher Scoring iterations: 4

Lack of clarity about expectations or relevance to my role

## 
## Call:
## glm(formula = challenges_clarityexpectations ~ orghave_incentives, 
##     family = "binomial", data = genaiclean)
## 
## Coefficients:
##                       Estimate Std. Error z value            Pr(>|z|)    
## (Intercept)            -1.5706     0.1696   -9.26 <0.0000000000000002 ***
## orghave_incentivesYes  -0.0186     0.3862   -0.05                0.96    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 277.82  on 302  degrees of freedom
## Residual deviance: 277.81  on 301  degrees of freedom
## AIC: 281.8
## 
## Number of Fisher Scoring iterations: 3

Lack of trust (personally)in the gen AI tool/model itself

## 
## Call:
## glm(formula = challenges_trust ~ orghave_incentives, family = "binomial", 
##     data = genaiclean)
## 
## Coefficients:
##                       Estimate Std. Error z value          Pr(>|z|)    
## (Intercept)             -1.143      0.150   -7.64 0.000000000000021 ***
## orghave_incentivesYes    0.623      0.308    2.02             0.043 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 351.83  on 302  degrees of freedom
## Residual deviance: 347.87  on 301  degrees of freedom
## AIC: 351.9
## 
## Number of Fisher Scoring iterations: 4

None

## 
## Call:
## glm(formula = challenges_none ~ orghave_incentives, family = "binomial", 
##     data = genaiclean)
## 
## Coefficients:
##                       Estimate Std. Error z value        Pr(>|z|)    
## (Intercept)             -1.034      0.146   -7.11 0.0000000000012 ***
## orghave_incentivesYes    0.290      0.314    0.92            0.36    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 355.80  on 302  degrees of freedom
## Residual deviance: 354.97  on 301  degrees of freedom
## AIC: 359
## 
## Number of Fisher Scoring iterations: 4

Q11 Pred: None

Lack of clarity on what that looks like

## 
## Call:
## glm(formula = challenges_clarity ~ orghave_neither, family = "binomial", 
##     data = genaiclean)
## 
## Coefficients:
##                    Estimate Std. Error z value          Pr(>|z|)    
## (Intercept)          1.1688     0.1544    7.57 0.000000000000037 ***
## orghave_neitherYes   0.0659     0.3233    0.20              0.84    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 329.94  on 302  degrees of freedom
## Residual deviance: 329.89  on 301  degrees of freedom
## AIC: 333.9
## 
## Number of Fisher Scoring iterations: 4

Lack of training

## 
## Call:
## glm(formula = challenges_training ~ orghave_neither, family = "binomial", 
##     data = genaiclean)
## 
## Coefficients:
##                    Estimate Std. Error z value Pr(>|z|)    
## (Intercept)          -0.511      0.136   -3.77  0.00017 ***
## orghave_neitherYes    0.313      0.274    1.14  0.25396    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 405.99  on 302  degrees of freedom
## Residual deviance: 404.70  on 301  degrees of freedom
## AIC: 408.7
## 
## Number of Fisher Scoring iterations: 4

Lack of resources or tools

## 
## Call:
## glm(formula = challenges_resources ~ orghave_neither, family = "binomial", 
##     data = genaiclean)
## 
## Coefficients:
##                    Estimate Std. Error z value Pr(>|z|)
## (Intercept)          -0.104      0.131   -0.79     0.43
## orghave_neitherYes   -0.209      0.274   -0.76     0.45
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 418.30  on 302  degrees of freedom
## Residual deviance: 417.72  on 301  degrees of freedom
## AIC: 421.7
## 
## Number of Fisher Scoring iterations: 3

Lack of incentives

## 
## Call:
## glm(formula = challenges_incentives ~ orghave_neither, family = "binomial", 
##     data = genaiclean)
## 
## Coefficients:
##                    Estimate Std. Error z value Pr(>|z|)    
## (Intercept)         -0.5478     0.1363   -4.02 0.000058 ***
## orghave_neitherYes   0.0594     0.2799    0.21     0.83    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 399.21  on 302  degrees of freedom
## Residual deviance: 399.16  on 301  degrees of freedom
## AIC: 403.2
## 
## Number of Fisher Scoring iterations: 4

Lack of understanding whether / why it may be valuable

## 
## Call:
## glm(formula = challenges_valuable ~ orghave_neither, family = "binomial", 
##     data = genaiclean)
## 
## Coefficients:
##                    Estimate Std. Error z value            Pr(>|z|)    
## (Intercept)          -1.397      0.165   -8.48 <0.0000000000000002 ***
## orghave_neitherYes    0.317      0.319    1.00                0.32    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 312.44  on 302  degrees of freedom
## Residual deviance: 311.47  on 301  degrees of freedom
## AIC: 315.5
## 
## Number of Fisher Scoring iterations: 4

Lack of support

## 
## Call:
## glm(formula = challenges_support ~ orghave_neither, family = "binomial", 
##     data = genaiclean)
## 
## Coefficients:
##                    Estimate Std. Error z value            Pr(>|z|)    
## (Intercept)          -1.630      0.177   -9.19 <0.0000000000000002 ***
## orghave_neitherYes    0.313      0.341    0.92                0.36    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 280.94  on 302  degrees of freedom
## Residual deviance: 280.12  on 301  degrees of freedom
## AIC: 284.1
## 
## Number of Fisher Scoring iterations: 4

Lack of clarity about expectations or relevance to my role

## 
## Call:
## glm(formula = challenges_clarityexpectations ~ orghave_neither, 
##     family = "binomial", data = genaiclean)
## 
## Coefficients:
##                    Estimate Std. Error z value            Pr(>|z|)    
## (Intercept)          -1.481      0.169   -8.76 <0.0000000000000002 ***
## orghave_neitherYes   -0.449      0.395   -1.14                0.25    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 277.82  on 302  degrees of freedom
## Residual deviance: 276.43  on 301  degrees of freedom
## AIC: 280.4
## 
## Number of Fisher Scoring iterations: 4

Lack of trust (personally)in the gen AI tool/model itself

## 
## Call:
## glm(formula = challenges_trust ~ orghave_neither, family = "binomial", 
##     data = genaiclean)
## 
## Coefficients:
##                    Estimate Std. Error z value         Pr(>|z|)    
## (Intercept)          -1.076      0.151   -7.14 0.00000000000097 ***
## orghave_neitherYes    0.275      0.298    0.92             0.36    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 351.83  on 302  degrees of freedom
## Residual deviance: 350.99  on 301  degrees of freedom
## AIC: 355
## 
## Number of Fisher Scoring iterations: 4

None

## 
## Call:
## glm(formula = challenges_none ~ orghave_neither, family = "binomial", 
##     data = genaiclean)
## 
## Coefficients:
##                    Estimate Std. Error z value      Pr(>|z|)    
## (Intercept)          -0.944      0.146   -6.45 0.00000000011 ***
## orghave_neitherYes   -0.136      0.310   -0.44          0.66    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 355.8  on 302  degrees of freedom
## Residual deviance: 355.6  on 301  degrees of freedom
## AIC: 359.6
## 
## Number of Fisher Scoring iterations: 4

Q13: On a scale of 1 to 5, to what extent do you agree that the following are challenges to using AI responsibly?

Q11 Pred: Leadership that has expressed commitment to responsible AI

Business pressures (e.g., speed to market)

## 
## Call:
## lm(formula = Q13_1 ~ orghave_leadership, data = genaiclean)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -2.680 -0.627  0.320  0.373  1.373 
## 
## Coefficients:
##                       Estimate Std. Error t value            Pr(>|t|)    
## (Intercept)             3.6271     0.0838   43.30 <0.0000000000000002 ***
## orghave_leadershipYes   0.0529     0.1302    0.41                0.68    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.11 on 300 degrees of freedom
##   (1 observation deleted due to missingness)
## Multiple R-squared:  0.00055,    Adjusted R-squared:  -0.00278 
## F-statistic: 0.165 on 1 and 300 DF,  p-value: 0.685

Concerns about being labeled a “troublemaker”

## 
## Call:
## lm(formula = Q13_2 ~ orghave_leadership, data = genaiclean)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -1.616 -0.616 -0.560  0.440  2.440 
## 
## Coefficients:
##                       Estimate Std. Error t value            Pr(>|t|)    
## (Intercept)             2.6158     0.0826   31.65 <0.0000000000000002 ***
## orghave_leadershipYes  -0.0558     0.1285   -0.43                0.66    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.1 on 300 degrees of freedom
##   (1 observation deleted due to missingness)
## Multiple R-squared:  0.000629,   Adjusted R-squared:  -0.0027 
## F-statistic: 0.189 on 1 and 300 DF,  p-value: 0.664

Discomfort raising issues around responsibility

## 
## Call:
## lm(formula = Q13_3 ~ orghave_leadership, data = genaiclean)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -1.9545 -0.9545  0.0455  1.0455  2.1360 
## 
## Coefficients:
##                       Estimate Std. Error t value            Pr(>|t|)    
## (Intercept)             2.9545     0.0863   34.22 <0.0000000000000002 ***
## orghave_leadershipYes  -0.0905     0.1340   -0.68                 0.5    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.15 on 299 degrees of freedom
##   (2 observations deleted due to missingness)
## Multiple R-squared:  0.00153,    Adjusted R-squared:  -0.00181 
## F-statistic: 0.457 on 1 and 299 DF,  p-value: 0.5

Other

## 
## Call:
## lm(formula = Q13_4 ~ orghave_leadership, data = genaiclean)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -1.772 -0.772  0.228  0.312  2.312 
## 
## Coefficients:
##                       Estimate Std. Error t value            Pr(>|t|)    
## (Intercept)             2.7724     0.1067   25.99 <0.0000000000000002 ***
## orghave_leadershipYes  -0.0842     0.1626   -0.52                0.61    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.18 on 214 degrees of freedom
##   (87 observations deleted due to missingness)
## Multiple R-squared:  0.00125,    Adjusted R-squared:  -0.00342 
## F-statistic: 0.268 on 1 and 214 DF,  p-value: 0.605

Q11 Pred: Responsible or ethical AI principles

Business pressures (e.g., speed to market)

## 
## Call:
## lm(formula = Q13_1 ~ orghave_responsible, data = genaiclean)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -2.690 -0.619  0.310  0.382  1.381 
## 
## Coefficients:
##                        Estimate Std. Error t value            Pr(>|t|)    
## (Intercept)              3.6185     0.0847   42.72 <0.0000000000000002 ***
## orghave_responsibleYes   0.0714     0.1296    0.55                0.58    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.11 on 300 degrees of freedom
##   (1 observation deleted due to missingness)
## Multiple R-squared:  0.00101,    Adjusted R-squared:  -0.00232 
## F-statistic: 0.304 on 1 and 300 DF,  p-value: 0.582

Concerns about being labeled a “troublemaker”

## 
## Call:
## lm(formula = Q13_2 ~ orghave_responsible, data = genaiclean)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -1.651 -0.651 -0.549  0.451  2.451 
## 
## Coefficients:
##                        Estimate Std. Error t value            Pr(>|t|)    
## (Intercept)              2.5491     0.0835    30.5 <0.0000000000000002 ***
## orghave_responsibleYes   0.1020     0.1278     0.8                0.43    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.1 on 300 degrees of freedom
##   (1 observation deleted due to missingness)
## Multiple R-squared:  0.00212,    Adjusted R-squared:  -0.00121 
## F-statistic: 0.637 on 1 and 300 DF,  p-value: 0.425

Discomfort raising issues around responsibility

## 
## Call:
## lm(formula = Q13_3 ~ orghave_responsible, data = genaiclean)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -2.046 -0.820  0.180  0.954  2.180 
## 
## Coefficients:
##                        Estimate Std. Error t value            Pr(>|t|)    
## (Intercept)               2.820      0.087   32.42 <0.0000000000000002 ***
## orghave_responsibleYes    0.227      0.133    1.71               0.089 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.14 on 299 degrees of freedom
##   (2 observations deleted due to missingness)
## Multiple R-squared:  0.00965,    Adjusted R-squared:  0.00633 
## F-statistic: 2.91 on 1 and 299 DF,  p-value: 0.089

Other

## 
## Call:
## lm(formula = Q13_4 ~ orghave_responsible, data = genaiclean)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -1.776 -0.775  0.297  0.297  2.297 
## 
## Coefficients:
##                        Estimate Std. Error t value            Pr(>|t|)    
## (Intercept)              2.7034     0.1089   24.82 <0.0000000000000002 ***
## orghave_responsibleYes   0.0721     0.1617    0.45                0.66    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.18 on 214 degrees of freedom
##   (87 observations deleted due to missingness)
## Multiple R-squared:  0.000928,   Adjusted R-squared:  -0.00374 
## F-statistic: 0.199 on 1 and 214 DF,  p-value: 0.656

Q11 Pred: A policy/policies that inform the use of gen AI

Business pressures (e.g., speed to market)

## 
## Call:
## lm(formula = Q13_1 ~ orghave_policy, data = genaiclean)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -2.649 -0.649  0.351  0.351  1.351 
## 
## Coefficients:
##                   Estimate Std. Error t value            Pr(>|t|)    
## (Intercept)       3.648936   0.081301    44.9 <0.0000000000000002 ***
## orghave_policyYes 0.000187   0.132326     0.0                   1    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.11 on 300 degrees of freedom
##   (1 observation deleted due to missingness)
## Multiple R-squared:  6.63e-09,   Adjusted R-squared:  -0.00333 
## F-statistic: 1.99e-06 on 1 and 300 DF,  p-value: 0.999

Concerns about being labeled a “troublemaker”

## 
## Call:
## lm(formula = Q13_2 ~ orghave_policy, data = genaiclean)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -1.633 -0.633 -0.526  0.474  2.474 
## 
## Coefficients:
##                   Estimate Std. Error t value            Pr(>|t|)    
## (Intercept)         2.6330     0.0801   32.86 <0.0000000000000002 ***
## orghave_policyYes  -0.1067     0.1304   -0.82                0.41    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.1 on 300 degrees of freedom
##   (1 observation deleted due to missingness)
## Multiple R-squared:  0.00222,    Adjusted R-squared:  -0.0011 
## F-statistic: 0.669 on 1 and 300 DF,  p-value: 0.414

Discomfort raising issues around responsibility

## 
## Call:
## lm(formula = Q13_3 ~ orghave_policy, data = genaiclean)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -1.9893 -0.9893  0.0107  1.0107  2.2018 
## 
## Coefficients:
##                   Estimate Std. Error t value            Pr(>|t|)    
## (Intercept)         2.9893     0.0836   35.78 <0.0000000000000002 ***
## orghave_policyYes  -0.1911     0.1358   -1.41                0.16    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.14 on 299 degrees of freedom
##   (2 observations deleted due to missingness)
## Multiple R-squared:  0.00658,    Adjusted R-squared:  0.00326 
## F-statistic: 1.98 on 1 and 299 DF,  p-value: 0.16

Other

## 
## Call:
## lm(formula = Q13_4 ~ orghave_policy, data = genaiclean)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -1.837 -0.838  0.324  0.324  2.324 
## 
## Coefficients:
##                   Estimate Std. Error t value            Pr(>|t|)    
## (Intercept)          2.676      0.101   26.42 <0.0000000000000002 ***
## orghave_policyYes    0.161      0.166    0.97                0.33    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.18 on 214 degrees of freedom
##   (87 observations deleted due to missingness)
## Multiple R-squared:  0.00435,    Adjusted R-squared:  -0.000298 
## F-statistic: 0.936 on 1 and 214 DF,  p-value: 0.334

Q11 Pred: Clear incentives for using/implementing gen AI responsibly

Business pressures (e.g., speed to market)

## 
## Call:
## lm(formula = Q13_1 ~ orghave_incentives, data = genaiclean)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -2.667 -0.667  0.333  0.424  1.424 
## 
## Coefficients:
##                       Estimate Std. Error t value            Pr(>|t|)    
## (Intercept)             3.6667     0.0715   51.30 <0.0000000000000002 ***
## orghave_incentivesYes  -0.0904     0.1617   -0.56                0.58    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.11 on 300 degrees of freedom
##   (1 observation deleted due to missingness)
## Multiple R-squared:  0.00104,    Adjusted R-squared:  -0.00229 
## F-statistic: 0.312 on 1 and 300 DF,  p-value: 0.577

Concerns about being labeled a “troublemaker”

## 
## Call:
## lm(formula = Q13_2 ~ orghave_incentives, data = genaiclean)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -1.597 -0.597 -0.576  0.424  2.424 
## 
## Coefficients:
##                       Estimate Std. Error t value            Pr(>|t|)    
## (Intercept)             2.5967     0.0706   36.80 <0.0000000000000002 ***
## orghave_incentivesYes  -0.0204     0.1596   -0.13                 0.9    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.1 on 300 degrees of freedom
##   (1 observation deleted due to missingness)
## Multiple R-squared:  5.46e-05,   Adjusted R-squared:  -0.00328 
## F-statistic: 0.0164 on 1 and 300 DF,  p-value: 0.898

Discomfort raising issues around responsibility

## 
## Call:
## lm(formula = Q13_3 ~ orghave_incentives, data = genaiclean)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -2.017 -0.893  0.107  1.107  2.107 
## 
## Coefficients:
##                       Estimate Std. Error t value            Pr(>|t|)    
## (Intercept)             2.8926     0.0736   39.29 <0.0000000000000002 ***
## orghave_incentivesYes   0.1244     0.1663    0.75                0.46    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.15 on 299 degrees of freedom
##   (2 observations deleted due to missingness)
## Multiple R-squared:  0.00187,    Adjusted R-squared:  -0.00147 
## F-statistic: 0.56 on 1 and 299 DF,  p-value: 0.455

Other

## 
## Call:
## lm(formula = Q13_4 ~ orghave_incentives, data = genaiclean)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -2.064 -1.064  0.355  0.355  2.355 
## 
## Coefficients:
##                       Estimate Std. Error t value            Pr(>|t|)    
## (Intercept)             2.6450     0.0901   29.36 <0.0000000000000002 ***
## orghave_incentivesYes   0.4189     0.1931    2.17               0.031 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.17 on 214 degrees of freedom
##   (87 observations deleted due to missingness)
## Multiple R-squared:  0.0215, Adjusted R-squared:  0.0169 
## F-statistic:  4.7 on 1 and 214 DF,  p-value: 0.0312

Q11 Pred: None

Business pressures (e.g., speed to market)

## 
## Call:
## lm(formula = Q13_1 ~ orghave_neither, data = genaiclean)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -2.667 -0.667  0.333  0.408  1.409 
## 
## Coefficients:
##                    Estimate Std. Error t value            Pr(>|t|)    
## (Intercept)          3.6667     0.0733    50.0 <0.0000000000000002 ***
## orghave_neitherYes  -0.0751     0.1512    -0.5                0.62    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.11 on 300 degrees of freedom
##   (1 observation deleted due to missingness)
## Multiple R-squared:  0.000822,   Adjusted R-squared:  -0.00251 
## F-statistic: 0.247 on 1 and 300 DF,  p-value: 0.62

Concerns about being labeled a “troublemaker”

## 
## Call:
## lm(formula = Q13_2 ~ orghave_neither, data = genaiclean)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -1.690 -0.563 -0.563  0.437  2.437 
## 
## Coefficients:
##                    Estimate Std. Error t value            Pr(>|t|)    
## (Intercept)          2.5628     0.0723   35.46 <0.0000000000000002 ***
## orghave_neitherYes   0.1274     0.1491    0.85                0.39    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.1 on 300 degrees of freedom
##   (1 observation deleted due to missingness)
## Multiple R-squared:  0.00243,    Adjusted R-squared:  -0.000897 
## F-statistic: 0.73 on 1 and 300 DF,  p-value: 0.394

Discomfort raising issues around responsibility

## 
## Call:
## lm(formula = Q13_3 ~ orghave_neither, data = genaiclean)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -2.028 -0.883  0.117  1.117  2.117 
## 
## Coefficients:
##                    Estimate Std. Error t value            Pr(>|t|)    
## (Intercept)          2.8826     0.0755   38.19 <0.0000000000000002 ***
## orghave_neitherYes   0.1456     0.1554    0.94                0.35    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.14 on 299 degrees of freedom
##   (2 observations deleted due to missingness)
## Multiple R-squared:  0.00293,    Adjusted R-squared:  -0.000409 
## F-statistic: 0.877 on 1 and 299 DF,  p-value: 0.35

Other

## 
## Call:
## lm(formula = Q13_4 ~ orghave_neither, data = genaiclean)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -1.911 -0.745  0.310  0.310  2.310 
## 
## Coefficients:
##                    Estimate Std. Error t value            Pr(>|t|)    
## (Intercept)          2.6901     0.0903   29.80 <0.0000000000000002 ***
## orghave_neitherYes   0.2211     0.1978    1.12                0.26    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.18 on 214 degrees of freedom
##   (87 observations deleted due to missingness)
## Multiple R-squared:  0.0058, Adjusted R-squared:  0.00116 
## F-statistic: 1.25 on 1 and 214 DF,  p-value: 0.265

Q12 Pred: Lack of clarity on what that looks like

Business pressures (e.g., speed to market)

## 
## Call:
## lm(formula = Q13_1 ~ challenges_clarity, data = genaiclean)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -2.698 -0.698  0.302  0.514  1.514 
## 
## Coefficients:
##                       Estimate Std. Error t value            Pr(>|t|)    
## (Intercept)              3.486      0.133    26.2 <0.0000000000000002 ***
## challenges_clarityYes    0.213      0.152     1.4                0.16    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.11 on 300 degrees of freedom
##   (1 observation deleted due to missingness)
## Multiple R-squared:  0.00652,    Adjusted R-squared:  0.00321 
## F-statistic: 1.97 on 1 and 300 DF,  p-value: 0.162

Concerns about being labeled a “troublemaker”

## 
## Call:
## lm(formula = Q13_2 ~ challenges_clarity, data = genaiclean)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -1.686 -0.565 -0.565  0.435  2.435 
## 
## Coefficients:
##                       Estimate Std. Error t value            Pr(>|t|)    
## (Intercept)              2.686      0.131   20.45 <0.0000000000000002 ***
## challenges_clarityYes   -0.121      0.150   -0.81                0.42    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.1 on 300 degrees of freedom
##   (1 observation deleted due to missingness)
## Multiple R-squared:  0.00217,    Adjusted R-squared:  -0.00115 
## F-statistic: 0.653 on 1 and 300 DF,  p-value: 0.42

Concerns about being labeled a “troublemaker”

## 
## Call:
## lm(formula = Q13_3 ~ challenges_clarity, data = genaiclean)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -1.9714 -0.9004  0.0996  1.0996  2.0996 
## 
## Coefficients:
##                       Estimate Std. Error t value            Pr(>|t|)    
## (Intercept)              2.971      0.137   21.69 <0.0000000000000002 ***
## challenges_clarityYes   -0.071      0.156   -0.45                0.65    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.15 on 299 degrees of freedom
##   (2 observations deleted due to missingness)
## Multiple R-squared:  0.000689,   Adjusted R-squared:  -0.00265 
## F-statistic: 0.206 on 1 and 299 DF,  p-value: 0.65

Other

## 
## Call:
## lm(formula = Q13_4 ~ challenges_clarity, data = genaiclean)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -1.755 -0.755  0.270  0.270  2.270 
## 
## Coefficients:
##                       Estimate Std. Error t value            Pr(>|t|)    
## (Intercept)             2.7547     0.1626   16.94 <0.0000000000000002 ***
## challenges_clarityYes  -0.0247     0.1872   -0.13                 0.9    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.18 on 214 degrees of freedom
##   (87 observations deleted due to missingness)
## Multiple R-squared:  8.11e-05,   Adjusted R-squared:  -0.00459 
## F-statistic: 0.0173 on 1 and 214 DF,  p-value: 0.895

Q12 Pred: Lack of training

Business pressures (e.g., speed to market)

## 
## Call:
## lm(formula = Q13_1 ~ challenges_training, data = genaiclean)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -2.706 -0.612  0.294  0.388  1.388 
## 
## Coefficients:
##                        Estimate Std. Error t value            Pr(>|t|)    
## (Intercept)              3.6120     0.0823   43.87 <0.0000000000000002 ***
## challenges_trainingYes   0.0939     0.1312    0.72                0.47    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.11 on 300 degrees of freedom
##   (1 observation deleted due to missingness)
## Multiple R-squared:  0.0017, Adjusted R-squared:  -0.00162 
## F-statistic: 0.512 on 1 and 300 DF,  p-value: 0.475

Concerns about being labeled a “troublemaker”

## 
## Call:
## lm(formula = Q13_2 ~ challenges_training, data = genaiclean)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -1.731 -0.731 -0.503  0.497  2.497 
## 
## Coefficients:
##                        Estimate Std. Error t value            Pr(>|t|)    
## (Intercept)              2.5027     0.0809   30.94 <0.0000000000000002 ***
## challenges_trainingYes   0.2284     0.1288    1.77               0.077 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.09 on 300 degrees of freedom
##   (1 observation deleted due to missingness)
## Multiple R-squared:  0.0104, Adjusted R-squared:  0.00706 
## F-statistic: 3.14 on 1 and 300 DF,  p-value: 0.0774

Concerns about being labeled a “troublemaker”

## 
## Call:
## lm(formula = Q13_3 ~ challenges_training, data = genaiclean)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -2.161 -0.760  0.240  0.839  2.240 
## 
## Coefficients:
##                        Estimate Std. Error t value            Pr(>|t|)    
## (Intercept)              2.7596     0.0835   33.05 <0.0000000000000002 ***
## challenges_trainingYes   0.4015     0.1333    3.01              0.0028 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.13 on 299 degrees of freedom
##   (2 observations deleted due to missingness)
## Multiple R-squared:  0.0294, Adjusted R-squared:  0.0262 
## F-statistic: 9.07 on 1 and 299 DF,  p-value: 0.00283

Other

## 
## Call:
## lm(formula = Q13_4 ~ challenges_training, data = genaiclean)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -1.887 -0.887  0.113  0.353  2.353 
## 
## Coefficients:
##                        Estimate Std. Error t value            Pr(>|t|)    
## (Intercept)               2.647      0.101   26.20 <0.0000000000000002 ***
## challenges_trainingYes    0.240      0.166    1.45                0.15    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.18 on 214 degrees of freedom
##   (87 observations deleted due to missingness)
## Multiple R-squared:  0.00971,    Adjusted R-squared:  0.00508 
## F-statistic:  2.1 on 1 and 214 DF,  p-value: 0.149

Q12 Pred: Lack of resources or tools

Business pressures (e.g., speed to market)

## 
## Call:
## lm(formula = Q13_1 ~ challenges_resources, data = genaiclean)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -2.772 -0.507  0.228  0.493  1.493 
## 
## Coefficients:
##                         Estimate Std. Error t value            Pr(>|t|)    
## (Intercept)                3.772      0.087   43.37 <0.0000000000000002 ***
## challenges_resourcesYes   -0.265      0.128   -2.07               0.039 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.11 on 300 degrees of freedom
##   (1 observation deleted due to missingness)
## Multiple R-squared:  0.0141, Adjusted R-squared:  0.0108 
## F-statistic: 4.29 on 1 and 300 DF,  p-value: 0.0393

Concerns about being labeled a “troublemaker”

## 
## Call:
## lm(formula = Q13_2 ~ challenges_resources, data = genaiclean)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -1.617 -0.617 -0.564  0.436  2.436 
## 
## Coefficients:
##                         Estimate Std. Error t value            Pr(>|t|)    
## (Intercept)               2.6173     0.0864   30.30 <0.0000000000000002 ***
## challenges_resourcesYes  -0.0530     0.1269   -0.42                0.68    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.1 on 300 degrees of freedom
##   (1 observation deleted due to missingness)
## Multiple R-squared:  0.000581,   Adjusted R-squared:  -0.00275 
## F-statistic: 0.174 on 1 and 300 DF,  p-value: 0.676

Concerns about being labeled a “troublemaker”

## 
## Call:
## lm(formula = Q13_3 ~ challenges_resources, data = genaiclean)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -2.0556 -1.0556 -0.0556  0.9444  2.2446 
## 
## Coefficients:
##                         Estimate Std. Error t value            Pr(>|t|)    
## (Intercept)               3.0556     0.0893   34.22 <0.0000000000000002 ***
## challenges_resourcesYes  -0.3002     0.1314   -2.28               0.023 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.14 on 299 degrees of freedom
##   (2 observations deleted due to missingness)
## Multiple R-squared:  0.0172, Adjusted R-squared:  0.0139 
## F-statistic: 5.22 on 1 and 299 DF,  p-value: 0.023

Other

## 
## Call:
## lm(formula = Q13_4 ~ challenges_resources, data = genaiclean)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -1.832 -0.832  0.168  0.369  2.369 
## 
## Coefficients:
##                         Estimate Std. Error t value            Pr(>|t|)    
## (Intercept)                2.832      0.111   25.52 <0.0000000000000002 ***
## challenges_resourcesYes   -0.201      0.161   -1.25                0.21    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.18 on 214 degrees of freedom
##   (87 observations deleted due to missingness)
## Multiple R-squared:  0.00724,    Adjusted R-squared:  0.0026 
## F-statistic: 1.56 on 1 and 214 DF,  p-value: 0.213

Q12 Pred: Lack incentives

Business pressures (e.g., speed to market)

## 
## Call:
## lm(formula = Q13_1 ~ challenges_incentives, data = genaiclean)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -3.0268 -0.4263 -0.0268  0.5737  1.5737 
## 
## Coefficients:
##                          Estimate Std. Error t value             Pr(>|t|)    
## (Intercept)                3.4263     0.0781   43.89 < 0.0000000000000002 ***
## challenges_incentivesYes   0.6005     0.1282    4.68            0.0000043 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.08 on 300 degrees of freedom
##   (1 observation deleted due to missingness)
## Multiple R-squared:  0.0682, Adjusted R-squared:  0.065 
## F-statistic: 21.9 on 1 and 300 DF,  p-value: 0.00000427

Concerns about being labeled a “troublemaker”

## 
## Call:
## lm(formula = Q13_2 ~ challenges_incentives, data = genaiclean)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -1.696 -0.696 -0.532  0.468  2.468 
## 
## Coefficients:
##                          Estimate Std. Error t value            Pr(>|t|)    
## (Intercept)                2.5316     0.0796   31.81 <0.0000000000000002 ***
## challenges_incentivesYes   0.1648     0.1307    1.26                0.21    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.1 on 300 degrees of freedom
##   (1 observation deleted due to missingness)
## Multiple R-squared:  0.00528,    Adjusted R-squared:  0.00196 
## F-statistic: 1.59 on 1 and 300 DF,  p-value: 0.208

Concerns about being labeled a “troublemaker”

## 
## Call:
## lm(formula = Q13_3 ~ challenges_incentives, data = genaiclean)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -2.134 -0.788  0.212  1.212  2.212 
## 
## Coefficients:
##                          Estimate Std. Error t value            Pr(>|t|)    
## (Intercept)                2.7884     0.0825   33.80 <0.0000000000000002 ***
## challenges_incentivesYes   0.3456     0.1352    2.56               0.011 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.13 on 299 degrees of freedom
##   (2 observations deleted due to missingness)
## Multiple R-squared:  0.0214, Adjusted R-squared:  0.0181 
## F-statistic: 6.53 on 1 and 299 DF,  p-value: 0.0111

Other

## 
## Call:
## lm(formula = Q13_4 ~ challenges_incentives, data = genaiclean)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -2.026 -0.686  0.427  0.427  2.428 
## 
## Coefficients:
##                          Estimate Std. Error t value            Pr(>|t|)    
## (Intercept)                 2.572      0.099   25.97 <0.0000000000000002 ***
## challenges_incentivesYes    0.453      0.165    2.75              0.0065 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.16 on 214 degrees of freedom
##   (87 observations deleted due to missingness)
## Multiple R-squared:  0.0341, Adjusted R-squared:  0.0296 
## F-statistic: 7.56 on 1 and 214 DF,  p-value: 0.00648

Q12 Pred: Lack of understanding whether / why it may be valuable

Business pressures (e.g., speed to market)

## 
## Call:
## lm(formula = Q13_1 ~ challenges_valuable, data = genaiclean)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -2.563 -0.563  0.437  0.437  1.437 
## 
## Coefficients:
##                        Estimate Std. Error t value            Pr(>|t|)    
## (Intercept)              3.5630     0.0714   49.87 <0.0000000000000002 ***
## challenges_valuableYes   0.4057     0.1552    2.61              0.0094 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.1 on 300 degrees of freedom
##   (1 observation deleted due to missingness)
## Multiple R-squared:  0.0223, Adjusted R-squared:  0.019 
## F-statistic: 6.83 on 1 and 300 DF,  p-value: 0.0094

Concerns about being labeled a “troublemaker”

## 
## Call:
## lm(formula = Q13_2 ~ challenges_valuable, data = genaiclean)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -1.766 -0.546 -0.546  0.454  2.454 
## 
## Coefficients:
##                        Estimate Std. Error t value            Pr(>|t|)    
## (Intercept)              2.5462     0.0711   35.83 <0.0000000000000002 ***
## challenges_valuableYes   0.2194     0.1543    1.42                0.16    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.1 on 300 degrees of freedom
##   (1 observation deleted due to missingness)
## Multiple R-squared:  0.00669,    Adjusted R-squared:  0.00338 
## F-statistic: 2.02 on 1 and 300 DF,  p-value: 0.156

Concerns about being labeled a “troublemaker”

## 
## Call:
## lm(formula = Q13_3 ~ challenges_valuable, data = genaiclean)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -2.125 -0.861  0.139  1.139  2.139 
## 
## Coefficients:
##                        Estimate Std. Error t value            Pr(>|t|)    
## (Intercept)              2.8608     0.0741   38.59 <0.0000000000000002 ***
## challenges_valuableYes   0.2642     0.1608    1.64                 0.1    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.14 on 299 degrees of freedom
##   (2 observations deleted due to missingness)
## Multiple R-squared:  0.00895,    Adjusted R-squared:  0.00564 
## F-statistic:  2.7 on 1 and 299 DF,  p-value: 0.101

Other

## 
## Call:
## lm(formula = Q13_4 ~ challenges_valuable, data = genaiclean)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -1.932 -0.686  0.314  0.314  2.314 
## 
## Coefficients:
##                        Estimate Std. Error t value            Pr(>|t|)    
## (Intercept)               2.686      0.090   29.86 <0.0000000000000002 ***
## challenges_valuableYes    0.246      0.199    1.23                0.22    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.18 on 214 degrees of freedom
##   (87 observations deleted due to missingness)
## Multiple R-squared:  0.00706,    Adjusted R-squared:  0.00242 
## F-statistic: 1.52 on 1 and 214 DF,  p-value: 0.219

Q12 Pred: Lack of support

Business pressures (e.g., speed to market)

## 
## Call:
## lm(formula = Q13_1 ~ challenges_support, data = genaiclean)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -2.849 -0.606  0.394  0.394  1.394 
## 
## Coefficients:
##                       Estimate Std. Error t value            Pr(>|t|)    
## (Intercept)             3.6064     0.0704   51.23 <0.0000000000000002 ***
## challenges_supportYes   0.2426     0.1680    1.44                0.15    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.11 on 300 degrees of freedom
##   (1 observation deleted due to missingness)
## Multiple R-squared:  0.0069, Adjusted R-squared:  0.00359 
## F-statistic: 2.08 on 1 and 300 DF,  p-value: 0.15

Concerns about being labeled a “troublemaker”

## 
## Call:
## lm(formula = Q13_2 ~ challenges_support, data = genaiclean)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -1.849 -0.538 -0.538  0.462  2.462 
## 
## Coefficients:
##                       Estimate Std. Error t value            Pr(>|t|)    
## (Intercept)             2.5382     0.0693   36.63 <0.0000000000000002 ***
## challenges_supportYes   0.3109     0.1654    1.88               0.061 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.09 on 300 degrees of freedom
##   (1 observation deleted due to missingness)
## Multiple R-squared:  0.0116, Adjusted R-squared:  0.00834 
## F-statistic: 3.53 on 1 and 300 DF,  p-value: 0.0611

Concerns about being labeled a “troublemaker”

## 
## Call:
## lm(formula = Q13_3 ~ challenges_support, data = genaiclean)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -2.346 -0.827  0.173  1.173  2.173 
## 
## Coefficients:
##                       Estimate Std. Error t value            Pr(>|t|)    
## (Intercept)             2.8273     0.0716   39.50 <0.0000000000000002 ***
## challenges_supportYes   0.5188     0.1722    3.01              0.0028 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.13 on 299 degrees of freedom
##   (2 observations deleted due to missingness)
## Multiple R-squared:  0.0295, Adjusted R-squared:  0.0262 
## F-statistic: 9.08 on 1 and 299 DF,  p-value: 0.00281

Other

## 
## Call:
## lm(formula = Q13_4 ~ challenges_valuable, data = genaiclean)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -1.932 -0.686  0.314  0.314  2.314 
## 
## Coefficients:
##                        Estimate Std. Error t value            Pr(>|t|)    
## (Intercept)               2.686      0.090   29.86 <0.0000000000000002 ***
## challenges_valuableYes    0.246      0.199    1.23                0.22    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.18 on 214 degrees of freedom
##   (87 observations deleted due to missingness)
## Multiple R-squared:  0.00706,    Adjusted R-squared:  0.00242 
## F-statistic: 1.52 on 1 and 214 DF,  p-value: 0.219

Q12 Pred: Lack of clarity about expectations or relevance to my role

Business pressures (e.g., speed to market)

## 
## Call:
## lm(formula = Q13_1 ~ challenges_clarityexpectations, data = genaiclean)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
##  -2.79  -0.62   0.38   0.38   1.38 
## 
## Coefficients:
##                                   Estimate Std. Error t value            Pr(>|t|)    
## (Intercept)                         3.6200     0.0704   51.43 <0.0000000000000002 ***
## challenges_clarityexpectationsYes   0.1685     0.1696    0.99                0.32    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.11 on 300 degrees of freedom
##   (1 observation deleted due to missingness)
## Multiple R-squared:  0.00328,    Adjusted R-squared:  -4.55e-05 
## F-statistic: 0.986 on 1 and 300 DF,  p-value: 0.321

Concerns about being labeled a “troublemaker”

## 
## Call:
## lm(formula = Q13_2 ~ challenges_clarityexpectations, data = genaiclean)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -1.865 -0.536 -0.536  0.464  2.464 
## 
## Coefficients:
##                                   Estimate Std. Error t value            Pr(>|t|)    
## (Intercept)                         2.5360     0.0691   36.69 <0.0000000000000002 ***
## challenges_clarityexpectationsYes   0.3294     0.1666    1.98               0.049 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.09 on 300 degrees of freedom
##   (1 observation deleted due to missingness)
## Multiple R-squared:  0.0129, Adjusted R-squared:  0.00958 
## F-statistic: 3.91 on 1 and 300 DF,  p-value: 0.0489

Concerns about being labeled a “troublemaker”

## 
## Call:
## lm(formula = Q13_3 ~ challenges_clarityexpectations, data = genaiclean)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -2.231 -0.851  0.149  1.149  2.149 
## 
## Coefficients:
##                                   Estimate Std. Error t value            Pr(>|t|)    
## (Intercept)                         2.8514     0.0721   39.56 <0.0000000000000002 ***
## challenges_clarityexpectationsYes   0.3794     0.1734    2.19               0.029 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.14 on 299 degrees of freedom
##   (2 observations deleted due to missingness)
## Multiple R-squared:  0.0158, Adjusted R-squared:  0.0125 
## F-statistic: 4.79 on 1 and 299 DF,  p-value: 0.0295

Other

## 
## Call:
## lm(formula = Q13_4 ~ challenges_clarityexpectations, data = genaiclean)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -2.000 -0.768  0.310  0.310  2.310 
## 
## Coefficients:
##                                   Estimate Std. Error t value            Pr(>|t|)    
## (Intercept)                         2.6902     0.0869   30.96 <0.0000000000000002 ***
## challenges_clarityexpectationsYes   0.3098     0.2258    1.37                0.17    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.18 on 214 degrees of freedom
##   (87 observations deleted due to missingness)
## Multiple R-squared:  0.00872,    Adjusted R-squared:  0.00409 
## F-statistic: 1.88 on 1 and 214 DF,  p-value: 0.171

Q12 Pred: Lack of trust

Business pressures (e.g., speed to market)

## 
## Call:
## lm(formula = Q13_1 ~ challenges_trust, data = genaiclean)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -2.498 -0.498  0.502  0.502  1.502 
## 
## Coefficients:
##                     Estimate Std. Error t value             Pr(>|t|)    
## (Intercept)           3.4977     0.0731    47.9 < 0.0000000000000002 ***
## challenges_trustYes   0.5640     0.1411     4.0             0.000081 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.09 on 300 degrees of freedom
##   (1 observation deleted due to missingness)
## Multiple R-squared:  0.0506, Adjusted R-squared:  0.0474 
## F-statistic:   16 on 1 and 300 DF,  p-value: 0.0000806

Concerns about being labeled a “troublemaker”

## 
## Call:
## lm(formula = Q13_2 ~ challenges_trust, data = genaiclean)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -1.593 -0.593 -0.593  0.407  2.407 
## 
## Coefficients:
##                      Estimate Std. Error t value            Pr(>|t|)    
## (Intercept)          2.592760   0.073984      35 <0.0000000000000002 ***
## challenges_trustYes -0.000168   0.142857       0                   1    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.1 on 300 degrees of freedom
##   (1 observation deleted due to missingness)
## Multiple R-squared:  4.59e-09,   Adjusted R-squared:  -0.00333 
## F-statistic: 1.38e-06 on 1 and 300 DF,  p-value: 0.999

Concerns about being labeled a “troublemaker”

## 
## Call:
## lm(formula = Q13_3 ~ challenges_trust, data = genaiclean)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -2.160 -0.827  0.173  1.173  2.173 
## 
## Coefficients:
##                     Estimate Std. Error t value            Pr(>|t|)    
## (Intercept)           2.8273     0.0766   36.89 <0.0000000000000002 ***
## challenges_trustYes   0.3332     0.1477    2.26               0.025 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.14 on 299 degrees of freedom
##   (2 observations deleted due to missingness)
## Multiple R-squared:  0.0167, Adjusted R-squared:  0.0134 
## F-statistic: 5.09 on 1 and 299 DF,  p-value: 0.0248

Other

## 
## Call:
## lm(formula = Q13_4 ~ challenges_trust, data = genaiclean)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -2.051 -0.618  0.382  0.382  2.382 
## 
## Coefficients:
##                     Estimate Std. Error t value            Pr(>|t|)    
## (Intercept)           2.6178     0.0932   28.08 <0.0000000000000002 ***
## challenges_trustYes   0.4330     0.1784    2.43               0.016 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.17 on 214 degrees of freedom
##   (87 observations deleted due to missingness)
## Multiple R-squared:  0.0268, Adjusted R-squared:  0.0223 
## F-statistic: 5.89 on 1 and 214 DF,  p-value: 0.016

Q12 Pred: None

Business pressures (e.g., speed to market)

## 
## Call:
## lm(formula = Q13_1 ~ challenges_none, data = genaiclean)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -2.831 -0.831  0.169  0.831  1.831 
## 
## Coefficients:
##                    Estimate Std. Error t value             Pr(>|t|)    
## (Intercept)          3.8311     0.0726   52.76 < 0.0000000000000002 ***
## challenges_noneYes  -0.6624     0.1385   -4.78            0.0000027 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.07 on 300 degrees of freedom
##   (1 observation deleted due to missingness)
## Multiple R-squared:  0.0708, Adjusted R-squared:  0.0677 
## F-statistic: 22.9 on 1 and 300 DF,  p-value: 0.00000272

Concerns about being labeled a “troublemaker”

## 
## Call:
## lm(formula = Q13_2 ~ challenges_none, data = genaiclean)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -1.657 -0.657 -0.422  0.578  2.578 
## 
## Coefficients:
##                    Estimate Std. Error t value            Pr(>|t|)    
## (Intercept)           2.658      0.074   35.92 <0.0000000000000002 ***
## challenges_noneYes   -0.236      0.141   -1.67               0.096 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.09 on 300 degrees of freedom
##   (1 observation deleted due to missingness)
## Multiple R-squared:  0.00923,    Adjusted R-squared:  0.00592 
## F-statistic: 2.79 on 1 and 300 DF,  p-value: 0.0957

Concerns about being labeled a “troublemaker”

## 
## Call:
## lm(formula = Q13_3 ~ challenges_none, data = genaiclean)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -2.0872 -1.0872 -0.0872  0.9128  2.5301 
## 
## Coefficients:
##                    Estimate Std. Error t value             Pr(>|t|)    
## (Intercept)          3.0872     0.0753    41.0 < 0.0000000000000002 ***
## challenges_noneYes  -0.6173     0.1435    -4.3             0.000023 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.11 on 299 degrees of freedom
##   (2 observations deleted due to missingness)
## Multiple R-squared:  0.0583, Adjusted R-squared:  0.0551 
## F-statistic: 18.5 on 1 and 299 DF,  p-value: 0.0000229

Other

## 
## Call:
## lm(formula = Q13_4 ~ challenges_none, data = genaiclean)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -1.829 -0.829  0.171  0.484  2.484 
## 
## Coefficients:
##                    Estimate Std. Error t value            Pr(>|t|)    
## (Intercept)          2.8289     0.0953   29.68 <0.0000000000000002 ***
## challenges_noneYes  -0.3133     0.1751   -1.79               0.075 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.18 on 214 degrees of freedom
##   (87 observations deleted due to missingness)
## Multiple R-squared:  0.0147, Adjusted R-squared:  0.0101 
## F-statistic:  3.2 on 1 and 214 DF,  p-value: 0.075

Q13 Business pressures (e.g., speed to market)

Take ethical / responsible AI trainings

## 
## Call:
## lm(formula = q9_takeethical ~ Q13_1, data = genaiclean)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -0.454 -0.424 -0.414  0.576  0.586 
## 
## Coefficients:
##             Estimate Std. Error t value  Pr(>|t|)    
## (Intercept)  0.46358    0.09802    4.73 0.0000035 ***
## Q13_1       -0.00998    0.02570   -0.39       0.7    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.496 on 300 degrees of freedom
##   (1 observation deleted due to missingness)
## Multiple R-squared:  0.000503,   Adjusted R-squared:  -0.00283 
## F-statistic: 0.151 on 1 and 300 DF,  p-value: 0.698

Conduct audits of the gen AI tools

## 
## Call:
## lm(formula = q9_conductaudits ~ Q13_1, data = genaiclean)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -0.295 -0.265 -0.236  0.705  0.823 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)  
## (Intercept)   0.1470     0.0861    1.71    0.089 .
## Q13_1         0.0296     0.0226    1.31    0.191  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.436 on 300 degrees of freedom
##   (1 observation deleted due to missingness)
## Multiple R-squared:  0.00569,    Adjusted R-squared:  0.00237 
## F-statistic: 1.72 on 1 and 300 DF,  p-value: 0.191

Conduct fairness / bias testing

## 
## Call:
## lm(formula = q9_conductfair ~ Q13_1, data = genaiclean)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -0.323 -0.307 -0.291  0.677  0.741 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)   
## (Intercept)   0.2432     0.0909    2.68   0.0079 **
## Q13_1         0.0159     0.0238    0.67   0.5041   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.46 on 300 degrees of freedom
##   (1 observation deleted due to missingness)
## Multiple R-squared:  0.00149,    Adjusted R-squared:  -0.00184 
## F-statistic: 0.447 on 1 and 300 DF,  p-value: 0.504

Consider data privacy implications and take actions to protect data privacy

## 
## Call:
## lm(formula = q9_considerdatapriv ~ Q13_1, data = genaiclean)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -0.495 -0.477 -0.431  0.523  0.578 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   0.4032     0.0988    4.08 0.000058 ***
## Q13_1         0.0184     0.0259    0.71     0.48    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.5 on 300 degrees of freedom
##   (1 observation deleted due to missingness)
## Multiple R-squared:  0.00167,    Adjusted R-squared:  -0.00166 
## F-statistic: 0.501 on 1 and 300 DF,  p-value: 0.479

Ask about the data or model to understand potential limitations or issues it has

## 
## Call:
## lm(formula = q9_askaboutdata ~ Q13_1, data = genaiclean)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -0.448 -0.401 -0.353  0.599  0.742 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)  
## (Intercept)   0.2107     0.0958    2.20    0.029 *
## Q13_1         0.0475     0.0251    1.89    0.060 .
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.485 on 300 degrees of freedom
##   (1 observation deleted due to missingness)
## Multiple R-squared:  0.0118, Adjusted R-squared:  0.00849 
## F-statistic: 3.58 on 1 and 300 DF,  p-value: 0.0595

Conduct adversarial testing or red teaming (pretend to be a bad actor to test how a product we develop could be used for harm by bad actors)

## 
## Call:
## lm(formula = q9_adversarial ~ Q13_1, data = genaiclean)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -0.1971 -0.1566 -0.1566 -0.0756  0.9649 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)  
## (Intercept) -0.00535    0.06869   -0.08    0.938  
## Q13_1        0.04049    0.01801    2.25    0.025 *
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.348 on 300 degrees of freedom
##   (1 observation deleted due to missingness)
## Multiple R-squared:  0.0166, Adjusted R-squared:  0.0133 
## F-statistic: 5.05 on 1 and 300 DF,  p-value: 0.0253

Use explainability methods (e.g., to enable team members to better understand and probe the model)

## 
## Call:
## lm(formula = q9_explainability ~ Q13_1, data = genaiclean)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -0.342 -0.314 -0.287  0.658  0.768 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)  
## (Intercept)   0.2039     0.0910    2.24    0.026 *
## Q13_1         0.0276     0.0239    1.16    0.248  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.461 on 300 degrees of freedom
##   (1 observation deleted due to missingness)
## Multiple R-squared:  0.00444,    Adjusted R-squared:  0.00112 
## F-statistic: 1.34 on 1 and 300 DF,  p-value: 0.248

Build transparency approaches (e.g., use documentation that can make dataset and model decisions transparent to others)

## 
## Call:
## lm(formula = q9_buildtransparency ~ Q13_1, data = genaiclean)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -0.361 -0.322 -0.282  0.639  0.796 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)  
## (Intercept)   0.1646     0.0911    1.81    0.072 .
## Q13_1         0.0393     0.0239    1.64    0.101  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.461 on 300 degrees of freedom
##   (1 observation deleted due to missingness)
## Multiple R-squared:  0.00894,    Adjusted R-squared:  0.00563 
## F-statistic:  2.7 on 1 and 300 DF,  p-value: 0.101

No actions taken (to my knowledge)

## 
## Call:
## lm(formula = q9_noactions ~ Q13_1, data = genaiclean)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -0.319 -0.183 -0.183 -0.137  0.863 
## 
## Coefficients:
##             Estimate Std. Error t value  Pr(>|t|)    
## (Intercept)   0.3645     0.0785    4.65 0.0000051 ***
## Q13_1        -0.0454     0.0206   -2.21     0.028 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.397 on 300 degrees of freedom
##   (1 observation deleted due to missingness)
## Multiple R-squared:  0.016,  Adjusted R-squared:  0.0127 
## F-statistic: 4.88 on 1 and 300 DF,  p-value: 0.0279

Lack of clarity on what that looks like

## 
## Call:
## glm(formula = challenges_clarity ~ Q13_1, family = "binomial", 
##     data = genaiclean)
## 
## Coefficients:
##             Estimate Std. Error z value Pr(>|z|)
## (Intercept)    0.601      0.443    1.36     0.18
## Q13_1          0.166      0.119    1.40     0.16
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 327.02  on 301  degrees of freedom
## Residual deviance: 325.10  on 300  degrees of freedom
##   (1 observation deleted due to missingness)
## AIC: 329.1
## 
## Number of Fisher Scoring iterations: 4
## Q13_1 
##  1.73
##  2.5 % 97.5 % 
## 0.9324 1.4895

Lack of training

## 
## Call:
## glm(formula = challenges_training ~ Q13_1, family = "binomial", 
##     data = genaiclean)
## 
## Coefficients:
##             Estimate Std. Error z value Pr(>|z|)  
## (Intercept)  -0.7113     0.4104   -1.73    0.083 .
## Q13_1         0.0768     0.1071    0.72    0.474  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 404.99  on 301  degrees of freedom
## Residual deviance: 404.48  on 300  degrees of freedom
##   (1 observation deleted due to missingness)
## AIC: 408.5
## 
## Number of Fisher Scoring iterations: 4
## Q13_1 
##  1.08
##  2.5 % 97.5 % 
## 0.8769 1.3364

Lack of resources or tools

## 
## Call:
## glm(formula = challenges_resources ~ Q13_1, family = "binomial", 
##     data = genaiclean)
## 
## Coefficients:
##             Estimate Std. Error z value Pr(>|z|)  
## (Intercept)    0.641      0.401    1.60    0.110  
## Q13_1         -0.216      0.105   -2.05    0.041 *
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 417.06  on 301  degrees of freedom
## Residual deviance: 412.79  on 300  degrees of freedom
##   (1 observation deleted due to missingness)
## AIC: 416.8
## 
## Number of Fisher Scoring iterations: 4
##  Q13_1 
## 0.8059
##  2.5 % 97.5 % 
## 0.6534 0.9891

Lack of incentives

## 
## Call:
## glm(formula = challenges_incentives ~ Q13_1, family = "binomial", 
##     data = genaiclean)
## 
## Coefficients:
##             Estimate Std. Error z value   Pr(>|z|)    
## (Intercept)   -2.649      0.516   -5.13 0.00000028 ***
## Q13_1          0.565      0.130    4.35 0.00001340 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 398.29  on 301  degrees of freedom
## Residual deviance: 375.91  on 300  degrees of freedom
##   (1 observation deleted due to missingness)
## AIC: 379.9
## 
## Number of Fisher Scoring iterations: 3
## Q13_1 
## 1.759
##  2.5 % 97.5 % 
##  1.377  2.295

Lack of understanding whether / why it may be valuable

## 
## Call:
## glm(formula = challenges_valuable ~ Q13_1, family = "binomial", 
##     data = genaiclean)
## 
## Coefficients:
##             Estimate Std. Error z value  Pr(>|z|)    
## (Intercept)   -2.727      0.590   -4.63 0.0000037 ***
## Q13_1          0.374      0.147    2.55     0.011 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 311.96  on 301  degrees of freedom
## Residual deviance: 304.68  on 300  degrees of freedom
##   (1 observation deleted due to missingness)
## AIC: 308.7
## 
## Number of Fisher Scoring iterations: 4
## Q13_1 
## 1.454
##  2.5 % 97.5 % 
##  1.377  2.295

Lack of support

## 
## Call:
## glm(formula = challenges_support ~ Q13_1, family = "binomial", 
##     data = genaiclean)
## 
## Coefficients:
##             Estimate Std. Error z value Pr(>|z|)    
## (Intercept)   -2.337      0.582   -4.01  0.00006 ***
## Q13_1          0.212      0.147    1.44     0.15    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 280.56  on 301  degrees of freedom
## Residual deviance: 278.37  on 300  degrees of freedom
##   (1 observation deleted due to missingness)
## AIC: 282.4
## 
## Number of Fisher Scoring iterations: 4
## Q13_1 
## 1.236
##  2.5 % 97.5 % 
## 0.9355 1.6718

Lack of clarity about expectations or relevance to my role

## 
## Call:
## glm(formula = challenges_clarityexpectations ~ Q13_1, family = "binomial", 
##     data = genaiclean)
## 
## Coefficients:
##             Estimate Std. Error z value Pr(>|z|)    
## (Intercept)   -2.101      0.564   -3.72   0.0002 ***
## Q13_1          0.143      0.144    0.99   0.3211    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 277.44  on 301  degrees of freedom
## Residual deviance: 276.42  on 300  degrees of freedom
##   (1 observation deleted due to missingness)
## AIC: 280.4
## 
## Number of Fisher Scoring iterations: 4
## Q13_1 
## 1.154
##  2.5 % 97.5 % 
## 0.8777 1.5502

Lack of trust (personally)in the gen AI tool/model itself

## 
## Call:
## glm(formula = challenges_trust ~ Q13_1, family = "binomial", 
##     data = genaiclean)
## 
## Coefficients:
##             Estimate Std. Error z value   Pr(>|z|)    
## (Intercept)   -3.089      0.588   -5.25 0.00000015 ***
## Q13_1          0.548      0.145    3.78    0.00016 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 351.21  on 301  degrees of freedom
## Residual deviance: 334.21  on 300  degrees of freedom
##   (1 observation deleted due to missingness)
## AIC: 338.2
## 
## Number of Fisher Scoring iterations: 4
## Q13_1 
##  1.73
##  2.5 % 97.5 % 
##  1.318  2.332

Q13 Concerns about being labeled a “troublemaker”

Take ethical / responsible AI trainings

## 
## Call:
## lm(formula = q9_takeethical ~ Q13_2, data = genaiclean)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -0.470 -0.434 -0.399  0.566  0.602 
## 
## Coefficients:
##             Estimate Std. Error t value   Pr(>|t|)    
## (Intercept)   0.3804     0.0733    5.19 0.00000039 ***
## Q13_2         0.0180     0.0260    0.69       0.49    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.496 on 300 degrees of freedom
##   (1 observation deleted due to missingness)
## Multiple R-squared:  0.00159,    Adjusted R-squared:  -0.00173 
## F-statistic: 0.479 on 1 and 300 DF,  p-value: 0.489

Conduct audits of the gen AI tools

## 
## Call:
## lm(formula = q9_conductaudits ~ Q13_2, data = genaiclean)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -0.297 -0.271 -0.244  0.703  0.809 
## 
## Coefficients:
##             Estimate Std. Error t value   Pr(>|t|)    
## (Intercept)   0.3238     0.0645    5.02 0.00000088 ***
## Q13_2        -0.0266     0.0229   -1.16       0.25    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.436 on 300 degrees of freedom
##   (1 observation deleted due to missingness)
## Multiple R-squared:  0.00446,    Adjusted R-squared:  0.00114 
## F-statistic: 1.34 on 1 and 300 DF,  p-value: 0.247

Conduct fairness / bias testing

## 
## Call:
## lm(formula = q9_conductfair ~ Q13_2, data = genaiclean)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -0.308 -0.302 -0.300  0.695  0.703 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  0.29373    0.06802    4.32 0.000021 ***
## Q13_2        0.00293    0.02417    0.12      0.9    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.46 on 300 degrees of freedom
##   (1 observation deleted due to missingness)
## Multiple R-squared:  4.9e-05,    Adjusted R-squared:  -0.00328 
## F-statistic: 0.0147 on 1 and 300 DF,  p-value: 0.904

Consider data privacy implications and take actions to protect data privacy

## 
## Call:
## lm(formula = q9_considerdatapriv ~ Q13_2, data = genaiclean)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -0.519 -0.488 -0.411  0.512  0.604 
## 
## Coefficients:
##             Estimate Std. Error t value       Pr(>|t|)    
## (Intercept)   0.5500     0.0738    7.45 0.000000000001 ***
## Q13_2        -0.0308     0.0262   -1.17           0.24    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.5 on 300 degrees of freedom
##   (1 observation deleted due to missingness)
## Multiple R-squared:  0.00457,    Adjusted R-squared:  0.00125 
## F-statistic: 1.38 on 1 and 300 DF,  p-value: 0.242

Ask about the data or model to understand potential limitations or issues it has

## 
## Call:
## lm(formula = q9_askaboutdata ~ Q13_2, data = genaiclean)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -0.414 -0.395 -0.358  0.605  0.661 
## 
## Coefficients:
##             Estimate Std. Error t value     Pr(>|t|)    
## (Intercept)   0.4324     0.0720    6.00 0.0000000056 ***
## Q13_2        -0.0186     0.0256   -0.73         0.47    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.488 on 300 degrees of freedom
##   (1 observation deleted due to missingness)
## Multiple R-squared:  0.00176,    Adjusted R-squared:  -0.00157 
## F-statistic: 0.529 on 1 and 300 DF,  p-value: 0.468

Conduct adversarial testing or red teaming (pretend to be a bad actor to test how a product we develop could be used for harm by bad actors)

## 
## Call:
## lm(formula = q9_adversarial ~ Q13_2, data = genaiclean)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -0.149 -0.145 -0.141 -0.137  0.868 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)   
## (Intercept)   0.1530     0.0518    2.95   0.0034 **
## Q13_2        -0.0041     0.0184   -0.22   0.8240   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.351 on 300 degrees of freedom
##   (1 observation deleted due to missingness)
## Multiple R-squared:  0.000165,   Adjusted R-squared:  -0.00317 
## F-statistic: 0.0496 on 1 and 300 DF,  p-value: 0.824

Use explainability methods (e.g., to enable team members to better understand and probe the model)

## 
## Call:
## lm(formula = q9_explainability ~ Q13_2, data = genaiclean)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -0.325 -0.312 -0.300  0.685  0.725 
## 
## Coefficients:
##             Estimate Std. Error t value  Pr(>|t|)    
## (Intercept)   0.3370     0.0682    4.94 0.0000013 ***
## Q13_2        -0.0125     0.0242   -0.52      0.61    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.462 on 300 degrees of freedom
##   (1 observation deleted due to missingness)
## Multiple R-squared:  0.000884,   Adjusted R-squared:  -0.00245 
## F-statistic: 0.265 on 1 and 300 DF,  p-value: 0.607

Build transparency approaches (e.g., use documentation that can make dataset and model decisions transparent to others)

## 
## Call:
## lm(formula = q9_buildtransparency ~ Q13_2, data = genaiclean)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -0.314 -0.309 -0.306  0.689  0.696 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  0.30168    0.06844    4.41 0.000015 ***
## Q13_2        0.00242    0.02431    0.10     0.92    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.463 on 300 degrees of freedom
##   (1 observation deleted due to missingness)
## Multiple R-squared:  3.3e-05,    Adjusted R-squared:  -0.0033 
## F-statistic: 0.00989 on 1 and 300 DF,  p-value: 0.921

No actions taken (to my knowledge)

## 
## Call:
## lm(formula = q9_noactions ~ Q13_2, data = genaiclean)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -0.228 -0.204 -0.191 -0.179  0.821 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)   
## (Intercept)   0.1670     0.0591    2.82   0.0051 **
## Q13_2         0.0122     0.0210    0.58   0.5609   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.4 on 300 degrees of freedom
##   (1 observation deleted due to missingness)
## Multiple R-squared:  0.00113,    Adjusted R-squared:  -0.0022 
## F-statistic: 0.339 on 1 and 300 DF,  p-value: 0.561

Lack of clarity on what that looks like

## 
## Call:
## glm(formula = challenges_clarity ~ Q13_2, family = "binomial", 
##     data = genaiclean)
## 
## Coefficients:
##             Estimate Std. Error z value Pr(>|z|)    
## (Intercept)   1.4600     0.3548    4.11 0.000039 ***
## Q13_2        -0.0997     0.1233   -0.81     0.42    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 327.02  on 301  degrees of freedom
## Residual deviance: 326.37  on 300  degrees of freedom
##   (1 observation deleted due to missingness)
## AIC: 330.4
## 
## Number of Fisher Scoring iterations: 4
##  Q13_2 
## 0.9999
##  2.5 % 97.5 % 
##  0.711  1.155

Lack of training

## 
## Call:
## glm(formula = challenges_training ~ Q13_2, family = "binomial", 
##     data = genaiclean)
## 
## Coefficients:
##             Estimate Std. Error z value Pr(>|z|)   
## (Intercept)   -0.927      0.308   -3.01   0.0026 **
## Q13_2          0.190      0.108    1.76   0.0782 . 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 404.99  on 301  degrees of freedom
## Residual deviance: 401.87  on 300  degrees of freedom
##   (1 observation deleted due to missingness)
## AIC: 405.9
## 
## Number of Fisher Scoring iterations: 4
## Q13_2 
## 1.209
##  2.5 % 97.5 % 
## 0.9795 1.4968

Lack of resources or tools

## 
## Call:
## glm(formula = challenges_resources ~ Q13_2, family = "binomial", 
##     data = genaiclean)
## 
## Coefficients:
##             Estimate Std. Error z value Pr(>|z|)
## (Intercept)  -0.0316     0.2963   -0.11     0.92
## Q13_2        -0.0442     0.1054   -0.42     0.68
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 417.06  on 301  degrees of freedom
## Residual deviance: 416.88  on 300  degrees of freedom
##   (1 observation deleted due to missingness)
## AIC: 420.9
## 
## Number of Fisher Scoring iterations: 3
##  Q13_2 
## 0.9568
##  2.5 % 97.5 % 
## 0.7772 1.1762

Lack of incentives

## 
## Call:
## glm(formula = challenges_incentives ~ Q13_2, family = "binomial", 
##     data = genaiclean)
## 
## Coefficients:
##             Estimate Std. Error z value Pr(>|z|)   
## (Intercept)   -0.886      0.310   -2.86   0.0042 **
## Q13_2          0.137      0.109    1.26   0.2079   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 398.29  on 301  degrees of freedom
## Residual deviance: 396.70  on 300  degrees of freedom
##   (1 observation deleted due to missingness)
## AIC: 400.7
## 
## Number of Fisher Scoring iterations: 4
## Q13_2 
## 1.146
##  2.5 % 97.5 % 
## 0.9268 1.4200

Lack of understanding whether / why it may be valuable

## 
## Call:
## glm(formula = challenges_valuable ~ Q13_2, family = "binomial", 
##     data = genaiclean)
## 
## Coefficients:
##             Estimate Std. Error z value  Pr(>|z|)    
## (Intercept)   -1.790      0.372   -4.81 0.0000015 ***
## Q13_2          0.180      0.127    1.42      0.16    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 311.96  on 301  degrees of freedom
## Residual deviance: 309.96  on 300  degrees of freedom
##   (1 observation deleted due to missingness)
## AIC: 314
## 
## Number of Fisher Scoring iterations: 4
## Q13_2 
## 1.197
##  2.5 % 97.5 % 
## 0.9268 1.4200

Lack of support

## 
## Call:
## glm(formula = challenges_support ~ Q13_2, family = "binomial", 
##     data = genaiclean)
## 
## Coefficients:
##             Estimate Std. Error z value    Pr(>|z|)    
## (Intercept)   -2.227      0.408   -5.46 0.000000047 ***
## Q13_2          0.253      0.136    1.86       0.063 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 280.56  on 301  degrees of freedom
## Residual deviance: 277.10  on 300  degrees of freedom
##   (1 observation deleted due to missingness)
## AIC: 281.1
## 
## Number of Fisher Scoring iterations: 4
## Q13_2 
## 1.287
##  2.5 % 97.5 % 
## 0.9861 1.6815

Lack of clarity about expectations or relevance to my role

## 
## Call:
## glm(formula = challenges_clarityexpectations ~ Q13_2, family = "binomial", 
##     data = genaiclean)
## 
## Coefficients:
##             Estimate Std. Error z value    Pr(>|z|)    
## (Intercept)   -2.291      0.412   -5.56 0.000000028 ***
## Q13_2          0.267      0.137    1.96        0.05 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 277.44  on 301  degrees of freedom
## Residual deviance: 273.63  on 300  degrees of freedom
##   (1 observation deleted due to missingness)
## AIC: 277.6
## 
## Number of Fisher Scoring iterations: 4
## Q13_2 
## 1.306
##  2.5 % 97.5 % 
## 0.9989 1.7102

Lack of trust (personally)in the gen AI tool/model itself

## 
## Call:
## glm(formula = challenges_trust ~ Q13_2, family = "binomial", 
##     data = genaiclean)
## 
## Coefficients:
##              Estimate Std. Error z value Pr(>|z|)   
## (Intercept) -1.003352   0.333530   -3.01   0.0026 **
## Q13_2       -0.000139   0.118489    0.00   0.9991   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 351.21  on 301  degrees of freedom
## Residual deviance: 351.21  on 300  degrees of freedom
##   (1 observation deleted due to missingness)
## AIC: 355.2
## 
## Number of Fisher Scoring iterations: 4
##  Q13_2 
## 0.9999
##  2.5 % 97.5 % 
## 0.7906 1.2597

Q13 Discomfort raising issues around responsibility

Take ethical / responsible AI trainings

## 
## Call:
## lm(formula = q9_takeethical ~ Q13_3, data = genaiclean)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -0.460 -0.427 -0.410  0.556  0.607 
## 
## Coefficients:
##             Estimate Std. Error t value  Pr(>|t|)    
## (Intercept)   0.3760     0.0783    4.80 0.0000025 ***
## Q13_3         0.0169     0.0250    0.67       0.5    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.496 on 299 degrees of freedom
##   (2 observations deleted due to missingness)
## Multiple R-squared:  0.00152,    Adjusted R-squared:  -0.00182 
## F-statistic: 0.456 on 1 and 299 DF,  p-value: 0.5

Conduct audits of the gen AI tools

## 
## Call:
## lm(formula = q9_conductaudits ~ Q13_3, data = genaiclean)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -0.332 -0.292 -0.213  0.668  0.827 
## 
## Coefficients:
##             Estimate Std. Error t value   Pr(>|t|)    
## (Intercept)   0.3717     0.0688    5.40 0.00000014 ***
## Q13_3        -0.0397     0.0220   -1.81      0.072 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.435 on 299 degrees of freedom
##   (2 observations deleted due to missingness)
## Multiple R-squared:  0.0108, Adjusted R-squared:  0.00751 
## F-statistic: 3.27 on 1 and 299 DF,  p-value: 0.0716

Conduct fairness / bias testing

## 
## Call:
## lm(formula = q9_conductfair ~ Q13_3, data = genaiclean)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -0.353 -0.304 -0.280  0.671  0.744 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)   
## (Intercept)   0.2314     0.0727    3.18   0.0016 **
## Q13_3         0.0243     0.0232    1.05   0.2953   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.46 on 299 degrees of freedom
##   (2 observations deleted due to missingness)
## Multiple R-squared:  0.00366,    Adjusted R-squared:  0.00033 
## F-statistic:  1.1 on 1 and 299 DF,  p-value: 0.295

Consider data privacy implications and take actions to protect data privacy

## 
## Call:
## lm(formula = q9_considerdatapriv ~ Q13_3, data = genaiclean)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -0.548 -0.465 -0.382  0.535  0.618 
## 
## Coefficients:
##             Estimate Std. Error t value         Pr(>|t|)    
## (Intercept)   0.5894     0.0788    7.48 0.00000000000082 ***
## Q13_3        -0.0415     0.0251   -1.65              0.1    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.498 on 299 degrees of freedom
##   (2 observations deleted due to missingness)
## Multiple R-squared:  0.00901,    Adjusted R-squared:  0.0057 
## F-statistic: 2.72 on 1 and 299 DF,  p-value: 0.1

Ask about the data or model to understand potential limitations or issues it has

## 
## Call:
## lm(formula = q9_askaboutdata ~ Q13_3, data = genaiclean)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -0.418 -0.381 -0.361  0.601  0.657 
## 
## Coefficients:
##             Estimate Std. Error t value    Pr(>|t|)    
## (Intercept)   0.4374     0.0770    5.68 0.000000032 ***
## Q13_3        -0.0190     0.0246   -0.77        0.44    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.487 on 299 degrees of freedom
##   (2 observations deleted due to missingness)
## Multiple R-squared:  0.00199,    Adjusted R-squared:  -0.00135 
## F-statistic: 0.595 on 1 and 299 DF,  p-value: 0.441

Conduct adversarial testing or red teaming (pretend to be a bad actor to test how a product we develop could be used for harm by bad actors)

## 
## Call:
## lm(formula = q9_adversarial ~ Q13_3, data = genaiclean)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -0.147 -0.143 -0.139 -0.135  0.869 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)   
## (Intercept)  0.15076    0.05494    2.74   0.0064 **
## Q13_3       -0.00385    0.01754   -0.22   0.8265   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.348 on 299 degrees of freedom
##   (2 observations deleted due to missingness)
## Multiple R-squared:  0.000161,   Adjusted R-squared:  -0.00318 
## F-statistic: 0.0481 on 1 and 299 DF,  p-value: 0.827

Use explainability methods (e.g., to enable team members to better understand and probe the model)

## 
## Call:
## lm(formula = q9_explainability ~ Q13_3, data = genaiclean)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -0.321 -0.303 -0.294  0.688  0.715 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  0.27591    0.07281    3.79  0.00018 ***
## Q13_3        0.00906    0.02324    0.39  0.69708    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.461 on 299 degrees of freedom
##   (2 observations deleted due to missingness)
## Multiple R-squared:  0.000508,   Adjusted R-squared:  -0.00284 
## F-statistic: 0.152 on 1 and 299 DF,  p-value: 0.697

Build transparency approaches (e.g., use documentation that can make dataset and model decisions transparent to others)

## 
## Call:
## lm(formula = q9_buildtransparency ~ Q13_3, data = genaiclean)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -0.314 -0.306 -0.302  0.690  0.702 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  0.29346    0.07305    4.02 0.000074 ***
## Q13_3        0.00418    0.02332    0.18     0.86    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.462 on 299 degrees of freedom
##   (2 observations deleted due to missingness)
## Multiple R-squared:  0.000107,   Adjusted R-squared:  -0.00324 
## F-statistic: 0.0321 on 1 and 299 DF,  p-value: 0.858

No actions taken (to my knowledge)

## 
## Call:
## lm(formula = q9_noactions ~ Q13_3, data = genaiclean)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -0.252 -0.227 -0.176 -0.151  0.849 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)  
## (Intercept)   0.1252     0.0632    1.98    0.048 *
## Q13_3         0.0254     0.0202    1.26    0.209  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.4 on 299 degrees of freedom
##   (2 observations deleted due to missingness)
## Multiple R-squared:  0.00528,    Adjusted R-squared:  0.00195 
## F-statistic: 1.59 on 1 and 299 DF,  p-value: 0.209

Lack of clarity on what that looks like

## 
## Call:
## glm(formula = challenges_clarity ~ Q13_3, family = "binomial", 
##     data = genaiclean)
## 
## Coefficients:
##             Estimate Std. Error z value Pr(>|z|)    
## (Intercept)   1.3538     0.3789    3.57  0.00035 ***
## Q13_3        -0.0545     0.1196   -0.46  0.64890    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 326.49  on 300  degrees of freedom
## Residual deviance: 326.29  on 299  degrees of freedom
##   (2 observations deleted due to missingness)
## AIC: 330.3
## 
## Number of Fisher Scoring iterations: 4
## Q13_3 
## 1.297
##  2.5 % 97.5 % 
## 0.7478 1.1969

Lack of training

## 
## Call:
## glm(formula = challenges_training ~ Q13_3, family = "binomial", 
##     data = genaiclean)
## 
## Coefficients:
##             Estimate Std. Error z value Pr(>|z|)    
## (Intercept)   -1.371      0.343   -4.00 0.000064 ***
## Q13_3          0.315      0.107    2.94   0.0032 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 403.13  on 300  degrees of freedom
## Residual deviance: 394.16  on 299  degrees of freedom
##   (2 observations deleted due to missingness)
## AIC: 398.2
## 
## Number of Fisher Scoring iterations: 4
## Q13_3 
##  1.37
##  2.5 % 97.5 % 
##  1.114  1.695

Lack of resources or tools

## 
## Call:
## glm(formula = challenges_resources ~ Q13_3, family = "binomial", 
##     data = genaiclean)
## 
## Coefficients:
##             Estimate Std. Error z value Pr(>|z|)  
## (Intercept)    0.523      0.320    1.63    0.102  
## Q13_3         -0.233      0.103   -2.26    0.024 *
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 415.52  on 300  degrees of freedom
## Residual deviance: 410.32  on 299  degrees of freedom
##   (2 observations deleted due to missingness)
## AIC: 414.3
## 
## Number of Fisher Scoring iterations: 4
## <NA> 
##   NA
##  2.5 % 97.5 % 
## 0.6461 0.9682

Lack of incentives

## 
## Call:
## glm(formula = challenges_incentives ~ Q13_3, family = "binomial", 
##     data = genaiclean)
## 
## Coefficients:
##             Estimate Std. Error z value Pr(>|z|)    
## (Intercept)   -1.321      0.344   -3.84  0.00012 ***
## Q13_3          0.269      0.107    2.52  0.01186 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 397.36  on 300  degrees of freedom
## Residual deviance: 390.86  on 299  degrees of freedom
##   (2 observations deleted due to missingness)
## AIC: 394.9
## 
## Number of Fisher Scoring iterations: 4
## Q13_3 
## 1.309
##  2.5 % 97.5 % 
##  1.064  1.620

Lack of understanding whether / why it may be valuable

## 
## Call:
## glm(formula = challenges_valuable ~ Q13_3, family = "binomial", 
##     data = genaiclean)
## 
## Coefficients:
##             Estimate Std. Error z value  Pr(>|z|)    
## (Intercept)   -1.923      0.410   -4.69 0.0000028 ***
## Q13_3          0.205      0.125    1.63       0.1    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 311.48  on 300  degrees of freedom
## Residual deviance: 308.77  on 299  degrees of freedom
##   (2 observations deleted due to missingness)
## AIC: 312.8
## 
## Number of Fisher Scoring iterations: 4
## Q13_3 
## 1.227
##  2.5 % 97.5 % 
##  1.064  1.620

Lack of support

## 
## Call:
## glm(formula = challenges_support ~ Q13_3, family = "binomial", 
##     data = genaiclean)
## 
## Coefficients:
##             Estimate Std. Error z value     Pr(>|z|)    
## (Intercept)   -2.850      0.488   -5.84 0.0000000052 ***
## Q13_3          0.415      0.142    2.92       0.0034 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 277.06  on 300  degrees of freedom
## Residual deviance: 267.98  on 299  degrees of freedom
##   (2 observations deleted due to missingness)
## AIC: 272
## 
## Number of Fisher Scoring iterations: 4
## Q13_3 
## 1.515
##  2.5 % 97.5 % 
##  1.154  2.017

Lack of clarity about expectations or relevance to my role

## 
## Call:
## glm(formula = challenges_clarityexpectations ~ Q13_3, family = "binomial", 
##     data = genaiclean)
## 
## Coefficients:
##             Estimate Std. Error z value    Pr(>|z|)    
## (Intercept)   -2.472      0.463   -5.34 0.000000095 ***
## Q13_3          0.298      0.138    2.16       0.031 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 277.06  on 300  degrees of freedom
## Residual deviance: 272.25  on 299  degrees of freedom
##   (2 observations deleted due to missingness)
## AIC: 276.3
## 
## Number of Fisher Scoring iterations: 4
## Q13_3 
## 1.347
##  2.5 % 97.5 % 
##  1.032  1.776

Lack of trust (personally)in the gen AI tool/model itself

## 
## Call:
## glm(formula = challenges_trust ~ Q13_3, family = "binomial", 
##     data = genaiclean)
## 
## Coefficients:
##             Estimate Std. Error z value  Pr(>|z|)    
## (Intercept)   -1.778      0.382   -4.66 0.0000032 ***
## Q13_3          0.260      0.117    2.23     0.026 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 350.58  on 300  degrees of freedom
## Residual deviance: 345.50  on 299  degrees of freedom
##   (2 observations deleted due to missingness)
## AIC: 349.5
## 
## Number of Fisher Scoring iterations: 4
## Q13_3 
## 1.297
##  2.5 % 97.5 % 
##  1.034  1.636