{r setup, include=FALSE} knitr::opts_chunk$set(echo = TRUE)
options(repos = c(CRAN = "https://cloud.r-project.org"))
# Function to install a package if not already installed
install_if_needed <- function(pkg) {
if (!requireNamespace(pkg, quietly = TRUE)) {
install.packages(pkg)
}
}
# List of packages to check and install if necessary
required_packages <- c("fpp3", "dplyr", "ggplot2", "lubridate", "tsibble",
"tsibbledata", "feasts", "fable", "fabletools",
"curl", "USgas", "readxl", "readr", "tidyr", "forecast",
"seasonal", "patchwork", "LaTeX", "tinytex", "mlbench",
"VIM", "mice", "missForest", "caret")
# Loop through the list and install packages only if needed
for (pkg in required_packages) {
install_if_needed(pkg)
}
## Registered S3 method overwritten by 'tsibble':
## method from
## as_tibble.grouped_df dplyr
## Registered S3 method overwritten by 'quantmod':
## method from
## as.zoo.data.frame zoo
## Installing package into 'C:/Users/RemoteUser/AppData/Local/R/win-library/4.4'
## (as 'lib' is unspecified)
## Warning: package 'LaTeX' is not available for this version of R
##
## A version of this package for your version of R might be available elsewhere,
## see the ideas at
## https://cran.r-project.org/doc/manuals/r-patched/R-admin.html#Installing-packages
# Function to suppress package startup messages
suppressPackageStartupMessages({
library(fpp3)
library(dplyr)
library(ggplot2)
library(lubridate)
library(tsibble)
library(tsibbledata)
library(feasts)
library(fable)
library(fabletools)
library(readr)
library(readxl)
library(tidyr)
library(forecast)
library(seasonal)
library(patchwork)
library(tinytex)
library(mlbench)
library(caret)
})
# Load necessary libraries
library(mlbench)
library(ggplot2)
library(GGally)
## Registered S3 method overwritten by 'GGally':
## method from
## +.gg ggplot2
# Preview the data
data(Glass)
glass_data <- Glass
str(glass_data)
## 'data.frame': 214 obs. of 10 variables:
## $ RI : num 1.52 1.52 1.52 1.52 1.52 ...
## $ Na : num 13.6 13.9 13.5 13.2 13.3 ...
## $ Mg : num 4.49 3.6 3.55 3.69 3.62 3.61 3.6 3.61 3.58 3.6 ...
## $ Al : num 1.1 1.36 1.54 1.29 1.24 1.62 1.14 1.05 1.37 1.36 ...
## $ Si : num 71.8 72.7 73 72.6 73.1 ...
## $ K : num 0.06 0.48 0.39 0.57 0.55 0.64 0.58 0.57 0.56 0.57 ...
## $ Ca : num 8.75 7.83 7.78 8.22 8.07 8.07 8.17 8.24 8.3 8.4 ...
## $ Ba : num 0 0 0 0 0 0 0 0 0 0 ...
## $ Fe : num 0 0 0 0 0 0.26 0 0 0 0.11 ...
## $ Type: Factor w/ 6 levels "1","2","3","5",..: 1 1 1 1 1 1 1 1 1 1 ...
# Check for missing values in each column
missing_data <- colSums(is.na(glass_data))
# Print out columns with missing data
if (any(missing_data > 0)) {
cat("Columns with missing data:\n")
print(missing_data[missing_data > 0])
} else {
cat("There are no missing values in the dataset.\n")
}
## There are no missing values in the dataset.
Using visualizations, explore the predictor variables to understand their distributions as well as the relationships between predictors.
# Load necessary library
library(reshape2)
##
## Attaching package: 'reshape2'
## The following object is masked from 'package:tidyr':
##
## smiths
# Melt the glass data to long format
glass_melted <- melt(glass_data, id.vars = "Type")
# Plot histograms for each predictor
ggplot(glass_melted, aes(x = value)) +
geom_histogram(bins = 30, fill = "skyblue", color = "black") +
facet_wrap(~ variable, scales = "free") +
theme_minimal() +
labs(title = "Distribution of Predictor Variables")
# Individual box plot for each predictor to explore distributions
glass_melted <- melt(glass_data, id.vars = "Type")
ggplot(glass_melted, aes(x = value)) +
geom_boxplot(bins = 30, fill = "skyblue", color = "black") +
facet_wrap(~ variable, scales = "free") +
theme_minimal() +
labs(title = "Distribution of Predictor Variables")
## Warning in geom_boxplot(bins = 30, fill = "skyblue", color = "black"): Ignoring
## unknown parameters: `bins`
#### 3. Plot scatter plot to visualize any linear relationshp
# Individual scatter plot with lm line for each predictor to explore relationships
glass_melted <- melt(glass_data, id.vars = "Type")
ggplot(glass_melted, aes(x = as.numeric(value), y = as.numeric(Type))) +
geom_point(color = "black") +
geom_smooth(method = "lm", se = FALSE, color = "blue") +
facet_wrap(~ variable, scales = "free_x") + # Facet by variable with independent x-axis scaling
theme_minimal() +
labs(title = "Scatter Plots of Predictor Variables with Linear Model Line", x = "Value", y = "Type")
## `geom_smooth()` using formula = 'y ~ x'
# And excluding the Type variable as it's the target variable
ggpairs(Glass[, -10]) + theme_bw()
## b. Do there appear to be any outliers in the data? Are any predictors
skewed?
From the visualizations, we can make some observations about potential outliers and skewness in the predictor variables:
Are there any relevant transformations of one or more predictors that might improve the classification model?
Here are some transformations that might be relevant for improving the classification model:
# Exclude the 'Type' column (non-numeric) and scale the numeric columns
glass_data_numeric <- glass_data[, -ncol(glass_data)] # Exclude the last column ('Type')
glass_data_scaled <- scale(glass_data_numeric) # Scale the numeric columns
# Combine the scaled numeric data with the 'Type' column
glass_data_scaled <- data.frame(glass_data_scaled, Type = glass_data$Type)
# Check the first few rows of the scaled data
head(glass_data_scaled)
## RI Na Mg Al Si K Ca
## 1 0.8708258 0.2842867 1.2517037 -0.6908222 -1.12444556 -0.67013422 -0.1454254
## 2 -0.2487502 0.5904328 0.6346799 -0.1700615 0.10207972 -0.02615193 -0.7918771
## 3 -0.7196308 0.1495824 0.6000157 0.1904651 0.43776033 -0.16414813 -0.8270103
## 4 -0.2322859 -0.2422846 0.6970756 -0.3102663 -0.05284979 0.11184428 -0.5178378
## 5 -0.3113148 -0.1688095 0.6485456 -0.4104126 0.55395746 0.08117845 -0.6232375
## 6 -0.7920739 -0.7566101 0.6416128 0.3506992 0.41193874 0.21917466 -0.6232375
## Ba Fe Type
## 1 -0.3520514 -0.5850791 1
## 2 -0.3520514 -0.5850791 1
## 3 -0.3520514 -0.5850791 1
## 4 -0.3520514 -0.5850791 1
## 5 -0.3520514 -0.5850791 1
## 6 -0.3520514 2.0832652 1
## Example in Box-Cox transformation:
library(caret)
# Apply Box-Cox transformation to skewed variables
trans <- preProcess(glass_data, method = c("BoxCox"))
glass_data_transformed <- predict(trans, glass_data)
head(glass_data_transformed)
## RI Na Mg Al Si K Ca Ba Fe Type
## 1 0.2838746 2.613007 4.49 0.0976177 2575.684 0.06 0.8254539 0 0.00 1
## 2 0.2829051 2.631169 3.60 0.3323808 2644.326 0.48 0.8145827 0 0.00 1
## 3 0.2824954 2.604909 3.55 0.4819347 2663.270 0.39 0.8139144 0 0.00 1
## 4 0.2829194 2.580974 3.69 0.2715633 2635.606 0.57 0.8195032 0 0.00 1
## 5 0.2828507 2.585506 3.62 0.2271057 2669.843 0.55 0.8176698 0 0.00 1
## 6 0.2824323 2.548664 3.61 0.5455844 2661.810 0.64 0.8176698 0 0.26 1
# Example in R (Spatial Sign Transformation):
library(caret)
glass_data_spatial <- preProcess(glass_data, method = c("spatialSign"))
head(glass_data_spatial)
## $dim
## [1] 214 10
##
## $bc
## NULL
##
## $yj
## NULL
##
## $et
## NULL
##
## $invHyperbolicSine
## NULL
##
## $mean
## RI Na Mg Al Si K
## 1.51836542 13.40785047 2.68453271 1.44490654 72.65093458 0.49705607
## Ca Ba Fe
## 8.95696262 0.17504673 0.05700935
# load the data
data(Soybean)
soybean_data <- Soybean
str(Soybean)
## 'data.frame': 683 obs. of 36 variables:
## $ Class : Factor w/ 19 levels "2-4-d-injury",..: 11 11 11 11 11 11 11 11 11 11 ...
## $ date : Factor w/ 7 levels "0","1","2","3",..: 7 5 4 4 7 6 6 5 7 5 ...
## $ plant.stand : Ord.factor w/ 2 levels "0"<"1": 1 1 1 1 1 1 1 1 1 1 ...
## $ precip : Ord.factor w/ 3 levels "0"<"1"<"2": 3 3 3 3 3 3 3 3 3 3 ...
## $ temp : Ord.factor w/ 3 levels "0"<"1"<"2": 2 2 2 2 2 2 2 2 2 2 ...
## $ hail : Factor w/ 2 levels "0","1": 1 1 1 1 1 1 1 2 1 1 ...
## $ crop.hist : Factor w/ 4 levels "0","1","2","3": 2 3 2 2 3 4 3 2 4 3 ...
## $ area.dam : Factor w/ 4 levels "0","1","2","3": 2 1 1 1 1 1 1 1 1 1 ...
## $ sever : Factor w/ 3 levels "0","1","2": 2 3 3 3 2 2 2 2 2 3 ...
## $ seed.tmt : Factor w/ 3 levels "0","1","2": 1 2 2 1 1 1 2 1 2 1 ...
## $ germ : Ord.factor w/ 3 levels "0"<"1"<"2": 1 2 3 2 3 2 1 3 2 3 ...
## $ plant.growth : Factor w/ 2 levels "0","1": 2 2 2 2 2 2 2 2 2 2 ...
## $ leaves : Factor w/ 2 levels "0","1": 2 2 2 2 2 2 2 2 2 2 ...
## $ leaf.halo : Factor w/ 3 levels "0","1","2": 1 1 1 1 1 1 1 1 1 1 ...
## $ leaf.marg : Factor w/ 3 levels "0","1","2": 3 3 3 3 3 3 3 3 3 3 ...
## $ leaf.size : Ord.factor w/ 3 levels "0"<"1"<"2": 3 3 3 3 3 3 3 3 3 3 ...
## $ leaf.shread : Factor w/ 2 levels "0","1": 1 1 1 1 1 1 1 1 1 1 ...
## $ leaf.malf : Factor w/ 2 levels "0","1": 1 1 1 1 1 1 1 1 1 1 ...
## $ leaf.mild : Factor w/ 3 levels "0","1","2": 1 1 1 1 1 1 1 1 1 1 ...
## $ stem : Factor w/ 2 levels "0","1": 2 2 2 2 2 2 2 2 2 2 ...
## $ lodging : Factor w/ 2 levels "0","1": 2 1 1 1 1 1 2 1 1 1 ...
## $ stem.cankers : Factor w/ 4 levels "0","1","2","3": 4 4 4 4 4 4 4 4 4 4 ...
## $ canker.lesion : Factor w/ 4 levels "0","1","2","3": 2 2 1 1 2 1 2 2 2 2 ...
## $ fruiting.bodies: Factor w/ 2 levels "0","1": 2 2 2 2 2 2 2 2 2 2 ...
## $ ext.decay : Factor w/ 3 levels "0","1","2": 2 2 2 2 2 2 2 2 2 2 ...
## $ mycelium : Factor w/ 2 levels "0","1": 1 1 1 1 1 1 1 1 1 1 ...
## $ int.discolor : Factor w/ 3 levels "0","1","2": 1 1 1 1 1 1 1 1 1 1 ...
## $ sclerotia : Factor w/ 2 levels "0","1": 1 1 1 1 1 1 1 1 1 1 ...
## $ fruit.pods : Factor w/ 4 levels "0","1","2","3": 1 1 1 1 1 1 1 1 1 1 ...
## $ fruit.spots : Factor w/ 4 levels "0","1","2","4": 4 4 4 4 4 4 4 4 4 4 ...
## $ seed : Factor w/ 2 levels "0","1": 1 1 1 1 1 1 1 1 1 1 ...
## $ mold.growth : Factor w/ 2 levels "0","1": 1 1 1 1 1 1 1 1 1 1 ...
## $ seed.discolor : Factor w/ 2 levels "0","1": 1 1 1 1 1 1 1 1 1 1 ...
## $ seed.size : Factor w/ 2 levels "0","1": 1 1 1 1 1 1 1 1 1 1 ...
## $ shriveling : Factor w/ 2 levels "0","1": 1 1 1 1 1 1 1 1 1 1 ...
## $ roots : Factor w/ 3 levels "0","1","2": 1 1 1 1 1 1 1 1 1 1 ...
# Identify the frequency distribution of each factor predictor
freq_tables_list <- list()
# Loop through all columns to calculate the frequency distribution
for (col in colnames(soybean_data)) {
freq_table <- table(soybean_data[[col]]) # Create a frequency table for each column
freq_df <- as.data.frame(freq_table) # Convert the table to a data frame
colnames(freq_df) <- c("Category", "Frequency") # Rename columns for clarity
freq_df$Predictor <- col # Add the predictor name
freq_tables_list[[col]] <- freq_df # Store the frequency table in a list
}
# Combine all frequency tables into one data frame
all_freq_tables <- do.call(rbind, freq_tables_list)
# View the combined frequency table
head(all_freq_tables)
## Category Frequency Predictor
## Class.1 2-4-d-injury 16 Class
## Class.2 alternarialeaf-spot 91 Class
## Class.3 anthracnose 44 Class
## Class.4 bacterial-blight 20 Class
## Class.5 bacterial-pustule 20 Class
## Class.6 brown-spot 92 Class
Looking at the frequency distribution table, we can evaluate whether any of the distributions are degenerate, meaning they provide little variability or are heavily skewed to one category, as discussed in the chapter on near-zero variance predictors in the book.
Identifying Degenerate Distributions: A degenerate distribution would have the majority of observations concentrated in one or two categories, making it potentially less useful for modeling. Based on the table above:
However, the distributions are not fully degenerate in the strictest sense but there is class imbalance, which could affect model performance.
# Install the kableExtra package if you don't have it
# install.packages("kableExtra")
library(kableExtra)
##
## Attaching package: 'kableExtra'
## The following object is masked from 'package:dplyr':
##
## group_rows
# Total number of rows in the dataset
total_rows <- nrow(soybean_data)
# Check for missing values and calculate the percentage of missing values
missing_values <- colSums(is.na(soybean_data))
missing_percent <- (missing_values / total_rows) * 100
# Create a dataframe that includes both the count and percentage of missing values
missing_values_df <- data.frame(
Column = names(missing_values),
Missing_Values = missing_values,
Percent_Missing = missing_percent
)
# Filter only columns with missing values and sort the dataframe by Missing_Values in descending order
missing_values_df <- missing_values_df %>%
filter(Missing_Values > 0) %>% # Only include columns with missing values
arrange(desc(Missing_Values)) # Sort by missing values
# Display the table with a scroll bar
missing_values_df %>%
kbl() %>%
kable_styling(bootstrap_options = c("striped", "hover", "condensed"), full_width = F) %>%
scroll_box(height = "400px")
Column | Missing_Values | Percent_Missing | |
---|---|---|---|
hail | hail | 121 | 17.7159590 |
sever | sever | 121 | 17.7159590 |
seed.tmt | seed.tmt | 121 | 17.7159590 |
lodging | lodging | 121 | 17.7159590 |
germ | germ | 112 | 16.3982430 |
leaf.mild | leaf.mild | 108 | 15.8125915 |
fruiting.bodies | fruiting.bodies | 106 | 15.5197657 |
fruit.spots | fruit.spots | 106 | 15.5197657 |
seed.discolor | seed.discolor | 106 | 15.5197657 |
shriveling | shriveling | 106 | 15.5197657 |
leaf.shread | leaf.shread | 100 | 14.6412884 |
seed | seed | 92 | 13.4699854 |
mold.growth | mold.growth | 92 | 13.4699854 |
seed.size | seed.size | 92 | 13.4699854 |
leaf.halo | leaf.halo | 84 | 12.2986823 |
leaf.marg | leaf.marg | 84 | 12.2986823 |
leaf.size | leaf.size | 84 | 12.2986823 |
leaf.malf | leaf.malf | 84 | 12.2986823 |
fruit.pods | fruit.pods | 84 | 12.2986823 |
precip | precip | 38 | 5.5636896 |
stem.cankers | stem.cankers | 38 | 5.5636896 |
canker.lesion | canker.lesion | 38 | 5.5636896 |
ext.decay | ext.decay | 38 | 5.5636896 |
mycelium | mycelium | 38 | 5.5636896 |
int.discolor | int.discolor | 38 | 5.5636896 |
sclerotia | sclerotia | 38 | 5.5636896 |
plant.stand | plant.stand | 36 | 5.2708638 |
roots | roots | 31 | 4.5387994 |
temp | temp | 30 | 4.3923865 |
crop.hist | crop.hist | 16 | 2.3426061 |
plant.growth | plant.growth | 16 | 2.3426061 |
stem | stem | 16 | 2.3426061 |
date | date | 1 | 0.1464129 |
area.dam | area.dam | 1 | 0.1464129 |
# Load necessary libraries
library(ggplot2)
# Total number of rows in the dataset
total_rows <- nrow(soybean_data)
# Check for missing values and calculate the percentage of missing values
missing_values <- colSums(is.na(soybean_data))
missing_percent <- (missing_values / total_rows) * 100
# Create a dataframe that includes both the count and percentage of missing values
missing_values_df <- data.frame(
Column = names(missing_values),
Missing_Values = missing_values,
Percent_Missing = missing_percent
)
# Filter only columns with missing values and sort the dataframe by Missing_Values in descending order
missing_values_df <- missing_values_df %>%
filter(Missing_Values > 0) %>%
arrange(desc(Missing_Values))
# Display the table with a scroll bar
missing_values_df %>%
kbl() %>%
kable_styling(bootstrap_options = c("striped", "hover", "condensed"), full_width = F) %>%
scroll_box(height = "400px")
Column | Missing_Values | Percent_Missing | |
---|---|---|---|
hail | hail | 121 | 17.7159590 |
sever | sever | 121 | 17.7159590 |
seed.tmt | seed.tmt | 121 | 17.7159590 |
lodging | lodging | 121 | 17.7159590 |
germ | germ | 112 | 16.3982430 |
leaf.mild | leaf.mild | 108 | 15.8125915 |
fruiting.bodies | fruiting.bodies | 106 | 15.5197657 |
fruit.spots | fruit.spots | 106 | 15.5197657 |
seed.discolor | seed.discolor | 106 | 15.5197657 |
shriveling | shriveling | 106 | 15.5197657 |
leaf.shread | leaf.shread | 100 | 14.6412884 |
seed | seed | 92 | 13.4699854 |
mold.growth | mold.growth | 92 | 13.4699854 |
seed.size | seed.size | 92 | 13.4699854 |
leaf.halo | leaf.halo | 84 | 12.2986823 |
leaf.marg | leaf.marg | 84 | 12.2986823 |
leaf.size | leaf.size | 84 | 12.2986823 |
leaf.malf | leaf.malf | 84 | 12.2986823 |
fruit.pods | fruit.pods | 84 | 12.2986823 |
precip | precip | 38 | 5.5636896 |
stem.cankers | stem.cankers | 38 | 5.5636896 |
canker.lesion | canker.lesion | 38 | 5.5636896 |
ext.decay | ext.decay | 38 | 5.5636896 |
mycelium | mycelium | 38 | 5.5636896 |
int.discolor | int.discolor | 38 | 5.5636896 |
sclerotia | sclerotia | 38 | 5.5636896 |
plant.stand | plant.stand | 36 | 5.2708638 |
roots | roots | 31 | 4.5387994 |
temp | temp | 30 | 4.3923865 |
crop.hist | crop.hist | 16 | 2.3426061 |
plant.growth | plant.growth | 16 | 2.3426061 |
stem | stem | 16 | 2.3426061 |
date | date | 1 | 0.1464129 |
area.dam | area.dam | 1 | 0.1464129 |
# Plot the bar chart using ggplot2
ggplot(missing_values_df, aes(x = reorder(Column, -Missing_Values), y = Missing_Values)) +
geom_bar(stat = "identity", fill = "skyblue") +
coord_flip() + # Flip coordinates to make the chart horizontal
labs(title = "Frequency of Missing Values by Column",
x = "Columns", y = "Number of Missing Values") +
theme_minimal()
From the bar chart and table, we can observe that some predictors have a significantly higher number of missing values than others. Here’s a breakdown of the observations and interpretation:
The columns with the highest number of missing values are: - hail, sever, seed.tmt, lodging: Have the most missing values (121).
Some predictors, such as date, and area.dam, have relatively few missing values (close to 0), suggesting that these predictors have more complete data and are less likely to be missing.
To determine if the missing data pattern is related to the classes (i.e., the target variable), we can investigate whether certain classes are more likely to have missing data in certain predictors. This is commonly referred to as informative missingness, where the missingness of a value might provide information about the outcome. We can check whether the missingness of predictors is related to the target classes.
library(kableExtra)
# Check if missing data is related to the class
library(dplyr)
soybean_data
## Class date plant.stand precip temp hail crop.hist
## 1 diaporthe-stem-canker 6 0 2 1 0 1
## 2 diaporthe-stem-canker 4 0 2 1 0 2
## 3 diaporthe-stem-canker 3 0 2 1 0 1
## 4 diaporthe-stem-canker 3 0 2 1 0 1
## 5 diaporthe-stem-canker 6 0 2 1 0 2
## 6 diaporthe-stem-canker 5 0 2 1 0 3
## 7 diaporthe-stem-canker 5 0 2 1 0 2
## 8 diaporthe-stem-canker 4 0 2 1 1 1
## 9 diaporthe-stem-canker 6 0 2 1 0 3
## 10 diaporthe-stem-canker 4 0 2 1 0 2
## 11 charcoal-rot 6 0 0 2 0 1
## 12 charcoal-rot 4 0 0 1 1 1
## 13 charcoal-rot 3 0 0 1 0 1
## 14 charcoal-rot 6 0 0 1 1 3
## 15 charcoal-rot 6 0 0 2 0 1
## 16 charcoal-rot 5 0 0 2 1 3
## 17 charcoal-rot 6 0 0 2 1 0
## 18 charcoal-rot 4 0 0 1 0 2
## 19 charcoal-rot 3 0 0 2 0 2
## 20 charcoal-rot 5 0 0 2 1 2
## 21 rhizoctonia-root-rot 1 1 2 0 0 2
## 22 rhizoctonia-root-rot 1 1 2 0 0 1
## 23 rhizoctonia-root-rot 3 0 2 0 1 3
## 24 rhizoctonia-root-rot 0 1 2 0 0 0
## 25 rhizoctonia-root-rot 0 1 2 0 0 1
## 26 rhizoctonia-root-rot 1 1 2 0 0 3
## 27 rhizoctonia-root-rot 1 1 2 0 0 0
## 28 rhizoctonia-root-rot 2 1 2 0 0 2
## 29 rhizoctonia-root-rot 1 1 2 0 0 1
## 30 rhizoctonia-root-rot 2 1 2 0 0 1
## 31 phytophthora-rot 0 1 2 1 1 1
## 32 phytophthora-rot 1 1 2 1 <NA> 3
## 33 phytophthora-rot 2 1 2 2 <NA> 2
## 34 phytophthora-rot 1 1 2 0 0 2
## 35 phytophthora-rot 2 1 2 2 <NA> 2
## 36 phytophthora-rot 3 1 2 1 <NA> 2
## 37 phytophthora-rot 0 1 1 1 0 1
## 38 phytophthora-rot 3 1 2 0 0 2
## 39 phytophthora-rot 2 1 1 1 <NA> 0
## 40 phytophthora-rot 2 1 2 0 0 1
## 41 phytophthora-rot 2 1 2 1 <NA> 1
## 42 phytophthora-rot 1 1 2 1 <NA> 1
## 43 phytophthora-rot 0 1 2 1 0 3
## 44 phytophthora-rot 0 1 1 1 1 2
## 45 phytophthora-rot 3 1 2 0 0 1
## 46 phytophthora-rot 2 1 2 2 <NA> 3
## 47 phytophthora-rot 0 1 2 1 0 2
## 48 phytophthora-rot 2 1 1 2 <NA> 2
## 49 phytophthora-rot 2 1 2 1 1 1
## 50 phytophthora-rot 0 1 2 1 0 3
## 51 phytophthora-rot 1 1 2 1 0 0
## 52 phytophthora-rot 1 1 2 1 <NA> 0
## 53 phytophthora-rot 3 1 2 1 <NA> 1
## 54 phytophthora-rot 2 1 2 1 <NA> 1
## 55 phytophthora-rot 3 1 2 2 <NA> 2
## 56 phytophthora-rot 1 1 2 1 1 3
## 57 phytophthora-rot 3 1 1 1 <NA> 3
## 58 phytophthora-rot 2 1 2 2 <NA> 1
## 59 phytophthora-rot 3 1 1 2 <NA> 2
## 60 phytophthora-rot 1 1 2 2 <NA> 1
## 61 phytophthora-rot 2 1 2 2 <NA> 3
## 62 phytophthora-rot 3 1 1 1 <NA> 0
## 63 phytophthora-rot 2 1 2 0 0 1
## 64 phytophthora-rot 3 1 1 1 <NA> 1
## 65 phytophthora-rot 2 1 2 2 <NA> 1
## 66 phytophthora-rot 1 1 2 0 0 0
## 67 phytophthora-rot 3 1 2 1 <NA> 2
## 68 phytophthora-rot 3 1 2 1 <NA> 3
## 69 phytophthora-rot 3 1 1 0 0 2
## 70 phytophthora-rot 3 1 2 2 <NA> 2
## 71 brown-stem-rot 4 0 0 1 0 1
## 72 brown-stem-rot 4 0 0 1 0 1
## 73 brown-stem-rot 3 1 0 0 0 3
## 74 brown-stem-rot 5 0 0 2 0 1
## 75 brown-stem-rot 5 0 0 2 0 2
## 76 brown-stem-rot 4 0 0 1 0 3
## 77 brown-stem-rot 5 0 0 1 1 3
## 78 brown-stem-rot 6 0 1 1 1 2
## 79 brown-stem-rot 5 1 0 0 0 3
## 80 brown-stem-rot 5 1 0 1 0 1
## 81 brown-stem-rot 4 0 1 0 1 2
## 82 brown-stem-rot 4 1 0 0 0 3
## 83 brown-stem-rot 4 0 0 1 0 2
## 84 brown-stem-rot 3 1 0 0 0 2
## 85 brown-stem-rot 5 0 0 1 0 3
## 86 brown-stem-rot 4 0 0 1 0 3
## 87 brown-stem-rot 4 0 0 1 0 3
## 88 brown-stem-rot 4 0 0 1 0 1
## 89 brown-stem-rot 4 0 0 1 0 1
## 90 brown-stem-rot 3 0 0 1 0 3
## 91 powdery-mildew 5 0 0 1 1 3
## 92 powdery-mildew 6 0 1 0 1 0
## 93 powdery-mildew 1 1 0 1 0 3
## 94 powdery-mildew 6 1 1 0 0 2
## 95 powdery-mildew 4 1 1 0 0 2
## 96 powdery-mildew 6 0 0 1 1 1
## 97 powdery-mildew 2 1 1 0 0 2
## 98 powdery-mildew 6 1 0 1 0 1
## 99 powdery-mildew 5 1 0 1 0 1
## 100 powdery-mildew 1 1 0 1 0 1
## 101 downy-mildew 6 0 2 0 1 2
## 102 downy-mildew 2 0 2 1 1 1
## 103 downy-mildew 1 0 2 1 1 3
## 104 downy-mildew 4 1 2 2 0 2
## 105 downy-mildew 1 0 2 0 1 0
## 106 downy-mildew 2 1 2 0 0 3
## 107 downy-mildew 2 1 2 1 0 2
## 108 downy-mildew 4 1 2 2 0 2
## 109 downy-mildew 4 1 2 0 0 1
## 110 downy-mildew 5 1 2 1 0 3
## 111 brown-spot 1 1 2 2 1 3
## 112 brown-spot 2 0 2 1 0 2
## 113 brown-spot 2 0 2 1 0 2
## 114 brown-spot 2 0 2 1 0 1
## 115 brown-spot 1 1 2 2 1 3
## 116 brown-spot 1 1 2 1 0 2
## 117 brown-spot 0 1 2 2 1 3
## 118 brown-spot 2 0 2 1 0 2
## 119 brown-spot 1 0 2 1 0 2
## 120 brown-spot 2 1 2 1 0 3
## 121 brown-spot 5 0 2 1 0 2
## 122 brown-spot 1 1 2 1 0 3
## 123 brown-spot 1 0 2 1 0 3
## 124 brown-spot 4 0 2 1 0 1
## 125 brown-spot 1 0 2 1 0 2
## 126 brown-spot 4 1 2 1 0 3
## 127 brown-spot 2 0 2 1 0 3
## 128 brown-spot 0 1 1 1 1 2
## 129 brown-spot 1 1 1 1 1 2
## 130 brown-spot 1 1 2 1 0 1
## 131 brown-spot 1 0 2 1 0 1
## 132 brown-spot 2 0 2 1 0 3
## 133 brown-spot 3 0 2 1 0 2
## 134 brown-spot 2 1 2 2 1 3
## 135 brown-spot 1 0 2 1 0 2
## 136 brown-spot 1 1 2 1 0 2
## 137 brown-spot 5 0 2 1 0 1
## 138 brown-spot 4 1 1 1 1 2
## 139 brown-spot 3 1 2 1 0 1
## 140 brown-spot 1 0 2 1 0 3
## 141 brown-spot 4 0 2 1 0 2
## 142 brown-spot 2 1 2 1 0 2
## 143 brown-spot 2 1 1 1 1 0
## 144 brown-spot 3 1 2 1 0 3
## 145 brown-spot 3 0 2 1 0 3
## 146 brown-spot 2 0 2 1 0 2
## 147 brown-spot 3 0 2 1 0 3
## 148 brown-spot 3 1 2 1 0 3
## 149 brown-spot 2 1 2 1 0 3
## 150 brown-spot 5 1 2 1 0 3
## 151 bacterial-blight 5 0 2 1 1 3
## 152 bacterial-blight 4 0 2 2 1 2
## 153 bacterial-blight 2 0 1 1 0 0
## 154 bacterial-blight 3 0 1 1 0 1
## 155 bacterial-blight 3 0 1 1 0 3
## 156 bacterial-blight 3 0 2 1 1 2
## 157 bacterial-blight 3 0 1 1 0 1
## 158 bacterial-blight 4 0 2 1 1 0
## 159 bacterial-blight 2 0 1 1 0 3
## 160 bacterial-blight 4 1 2 2 1 2
## 161 bacterial-pustule 2 1 1 2 0 2
## 162 bacterial-pustule 3 0 2 0 1 2
## 163 bacterial-pustule 2 0 1 0 0 0
## 164 bacterial-pustule 4 1 2 1 0 3
## 165 bacterial-pustule 3 0 2 1 1 1
## 166 bacterial-pustule 3 1 1 0 0 2
## 167 bacterial-pustule 3 0 1 1 1 2
## 168 bacterial-pustule 3 1 2 1 0 0
## 169 bacterial-pustule 4 0 1 1 1 1
## 170 bacterial-pustule 5 1 1 1 0 2
## 171 purple-seed-stain 6 0 2 0 1 2
## 172 purple-seed-stain 6 0 2 0 0 2
## 173 purple-seed-stain 4 0 2 1 1 1
## 174 purple-seed-stain 4 0 2 1 1 0
## 175 purple-seed-stain 4 0 2 0 0 0
## 176 purple-seed-stain 6 0 2 2 0 2
## 177 purple-seed-stain 3 0 2 0 1 0
## 178 purple-seed-stain 3 0 2 1 1 3
## 179 purple-seed-stain 5 0 2 1 0 1
## 180 purple-seed-stain 4 0 2 1 0 0
## 181 anthracnose 5 1 2 1 0 3
## 182 anthracnose 5 1 2 2 1 2
## 183 anthracnose 6 0 2 1 0 1
## 184 anthracnose 2 1 2 2 1 0
## 185 anthracnose 3 0 2 1 0 3
## 186 anthracnose 4 1 2 2 1 2
## 187 anthracnose 6 0 2 1 0 2
## 188 anthracnose 1 0 2 1 0 1
## 189 anthracnose 6 1 2 1 0 2
## 190 anthracnose 5 0 2 1 0 1
## 191 anthracnose 5 1 2 2 1 3
## 192 anthracnose 0 0 2 1 0 3
## 193 anthracnose 6 0 2 1 0 2
## 194 anthracnose 5 1 2 1 0 1
## 195 anthracnose 5 0 2 1 0 2
## 196 anthracnose 6 1 2 2 1 0
## 197 anthracnose 5 0 2 1 0 1
## 198 anthracnose 6 1 2 2 1 3
## 199 anthracnose 5 1 2 1 0 3
## 200 anthracnose 5 1 2 1 0 2
## 201 phyllosticta-leaf-spot 3 1 1 1 0 0
## 202 phyllosticta-leaf-spot 3 0 0 1 1 0
## 203 phyllosticta-leaf-spot 3 1 1 1 0 0
## 204 phyllosticta-leaf-spot 3 0 0 1 1 2
## 205 phyllosticta-leaf-spot 3 1 1 2 0 3
## 206 phyllosticta-leaf-spot 2 0 0 1 1 0
## 207 phyllosticta-leaf-spot 1 0 0 2 1 3
## 208 phyllosticta-leaf-spot 2 1 1 1 0 2
## 209 phyllosticta-leaf-spot 2 0 0 2 1 3
## 210 phyllosticta-leaf-spot 2 1 1 2 0 3
## 211 alternarialeaf-spot 4 1 2 1 0 1
## 212 alternarialeaf-spot 4 0 1 1 0 3
## 213 alternarialeaf-spot 3 0 2 1 0 0
## 214 alternarialeaf-spot 6 0 2 2 0 3
## 215 alternarialeaf-spot 6 0 1 1 1 2
## 216 alternarialeaf-spot 5 0 2 2 0 3
## 217 alternarialeaf-spot 6 0 1 1 0 3
## 218 alternarialeaf-spot 5 1 2 2 0 3
## 219 alternarialeaf-spot 6 0 2 2 0 3
## 220 alternarialeaf-spot 6 0 2 2 0 3
## 221 alternarialeaf-spot 5 0 2 2 0 2
## 222 alternarialeaf-spot 4 1 2 1 0 3
## 223 alternarialeaf-spot 6 0 2 1 0 1
## 224 alternarialeaf-spot 5 0 2 2 0 2
## 225 alternarialeaf-spot 5 1 2 1 0 0
## 226 alternarialeaf-spot 4 0 2 1 0 2
## 227 alternarialeaf-spot 4 0 2 1 0 1
## 228 alternarialeaf-spot 5 0 2 1 0 2
## 229 alternarialeaf-spot 6 0 2 2 0 3
## 230 alternarialeaf-spot 6 1 2 2 0 1
## 231 alternarialeaf-spot 5 1 2 2 0 3
## 232 alternarialeaf-spot 5 1 2 2 0 3
## 233 alternarialeaf-spot 4 1 2 1 0 2
## 234 alternarialeaf-spot 6 1 1 2 0 2
## 235 alternarialeaf-spot 4 1 2 1 0 1
## 236 alternarialeaf-spot 6 1 2 2 0 2
## 237 alternarialeaf-spot 4 1 2 1 0 0
## 238 alternarialeaf-spot 4 0 2 2 0 3
## 239 alternarialeaf-spot 5 0 2 2 0 2
## 240 alternarialeaf-spot 3 0 2 1 0 0
## 241 alternarialeaf-spot 5 0 2 1 0 1
## 242 alternarialeaf-spot 5 0 2 2 0 1
## 243 alternarialeaf-spot 4 0 2 2 0 1
## 244 alternarialeaf-spot 5 1 2 1 0 3
## 245 alternarialeaf-spot 6 0 2 1 0 2
## 246 alternarialeaf-spot 5 0 2 1 0 0
## 247 alternarialeaf-spot 6 0 2 1 0 0
## 248 alternarialeaf-spot 5 1 2 2 0 2
## 249 alternarialeaf-spot 5 0 2 1 0 3
## 250 alternarialeaf-spot 6 0 2 1 0 1
## 251 frog-eye-leaf-spot 6 0 1 2 0 3
## 252 frog-eye-leaf-spot 4 0 1 2 0 1
## 253 frog-eye-leaf-spot 5 0 1 1 0 2
## 254 frog-eye-leaf-spot 5 1 2 1 0 3
## 255 frog-eye-leaf-spot 6 1 2 2 0 3
## 256 frog-eye-leaf-spot 4 0 1 1 0 3
## 257 frog-eye-leaf-spot 3 0 2 1 0 2
## 258 frog-eye-leaf-spot 5 0 2 2 0 2
## 259 frog-eye-leaf-spot 5 0 2 1 0 1
## 260 frog-eye-leaf-spot 5 0 2 2 0 2
## 261 frog-eye-leaf-spot 5 0 2 1 0 0
## 262 frog-eye-leaf-spot 4 0 2 1 0 2
## 263 frog-eye-leaf-spot 4 0 2 2 0 1
## 264 frog-eye-leaf-spot 4 0 2 1 0 2
## 265 frog-eye-leaf-spot 3 1 2 1 0 3
## 266 frog-eye-leaf-spot 5 0 2 1 0 3
## 267 frog-eye-leaf-spot 5 0 2 2 0 1
## 268 frog-eye-leaf-spot 4 0 2 2 0 1
## 269 frog-eye-leaf-spot 5 0 2 2 0 2
## 270 frog-eye-leaf-spot 5 0 2 1 0 3
## 271 frog-eye-leaf-spot 3 0 2 1 0 1
## 272 frog-eye-leaf-spot 6 0 1 2 0 3
## 273 frog-eye-leaf-spot 5 0 1 1 0 1
## 274 frog-eye-leaf-spot 5 0 2 1 0 3
## 275 frog-eye-leaf-spot 5 1 2 1 0 3
## 276 frog-eye-leaf-spot 3 1 2 1 0 3
## 277 frog-eye-leaf-spot 6 1 2 2 0 3
## 278 frog-eye-leaf-spot 4 0 2 1 0 1
## 279 frog-eye-leaf-spot 4 0 2 2 0 1
## 280 frog-eye-leaf-spot 6 1 2 2 0 3
## 281 frog-eye-leaf-spot 5 1 2 2 0 3
## 282 frog-eye-leaf-spot 4 0 2 1 0 0
## 283 frog-eye-leaf-spot 4 0 2 1 0 2
## 284 frog-eye-leaf-spot 4 1 1 2 0 1
## 285 frog-eye-leaf-spot 4 0 2 1 0 2
## 286 frog-eye-leaf-spot 5 1 2 1 0 1
## 287 frog-eye-leaf-spot 4 0 2 2 0 1
## 288 frog-eye-leaf-spot 5 0 2 1 0 1
## 289 frog-eye-leaf-spot 5 0 2 2 0 2
## 290 frog-eye-leaf-spot 5 1 2 1 0 2
## 291 diaporthe-pod-&-stem-blight 5 0 2 2 <NA> 3
## 292 diaporthe-pod-&-stem-blight 6 0 2 2 <NA> 2
## 293 diaporthe-pod-&-stem-blight 5 0 2 2 <NA> 3
## 294 diaporthe-pod-&-stem-blight 1 1 1 2 <NA> 3
## 295 diaporthe-pod-&-stem-blight 5 <NA> 2 2 <NA> 2
## 296 diaporthe-pod-&-stem-blight 5 0 2 2 <NA> 2
## 297 cyst-nematode 2 <NA> <NA> <NA> <NA> 2
## 298 cyst-nematode 3 <NA> <NA> <NA> <NA> 3
## 299 cyst-nematode 4 <NA> <NA> <NA> <NA> 3
## 300 cyst-nematode 3 <NA> <NA> <NA> <NA> 2
## 301 cyst-nematode 3 <NA> <NA> <NA> <NA> 2
## 302 cyst-nematode 4 <NA> <NA> <NA> <NA> 2
## 303 2-4-d-injury <NA> <NA> <NA> <NA> <NA> <NA>
## 304 herbicide-injury 1 1 <NA> 0 <NA> 1
## 305 herbicide-injury 0 1 <NA> 0 <NA> 0
## 306 herbicide-injury 1 1 <NA> 0 <NA> 0
## 307 herbicide-injury 1 1 <NA> 0 <NA> 1
## 308 diaporthe-stem-canker 6 0 2 1 0 1
## 309 diaporthe-stem-canker 3 0 2 1 0 2
## 310 diaporthe-stem-canker 4 0 2 1 0 3
## 311 diaporthe-stem-canker 5 0 2 1 0 1
## 312 diaporthe-stem-canker 3 0 2 1 0 3
## 313 diaporthe-stem-canker 5 0 2 1 0 2
## 314 diaporthe-stem-canker 5 0 2 1 0 3
## 315 diaporthe-stem-canker 3 0 2 1 0 2
## 316 diaporthe-stem-canker 4 0 2 1 0 3
## 317 diaporthe-stem-canker 6 0 2 1 0 3
## 318 charcoal-rot 4 0 0 1 0 2
## 319 charcoal-rot 5 0 0 2 0 3
## 320 charcoal-rot 4 0 0 2 0 3
## 321 charcoal-rot 5 0 0 2 0 0
## 322 charcoal-rot 5 0 0 2 1 2
## 323 charcoal-rot 3 0 0 2 1 0
## 324 charcoal-rot 4 0 0 2 1 1
## 325 charcoal-rot 5 0 0 2 1 2
## 326 charcoal-rot 6 0 0 2 1 3
## 327 charcoal-rot 6 0 0 2 1 3
## 328 rhizoctonia-root-rot 0 1 2 0 0 0
## 329 rhizoctonia-root-rot 0 1 2 0 0 3
## 330 rhizoctonia-root-rot 0 1 2 0 0 2
## 331 rhizoctonia-root-rot 2 1 2 0 0 0
## 332 rhizoctonia-root-rot 1 1 2 0 0 2
## 333 rhizoctonia-root-rot 2 1 2 0 0 3
## 334 rhizoctonia-root-rot 2 1 2 0 0 2
## 335 rhizoctonia-root-rot 4 0 2 0 1 0
## 336 rhizoctonia-root-rot 0 1 2 0 0 1
## 337 rhizoctonia-root-rot 2 1 2 0 0 3
## 338 phytophthora-rot 2 1 1 0 0 3
## 339 phytophthora-rot 1 1 2 0 0 3
## 340 phytophthora-rot 2 1 2 1 1 3
## 341 phytophthora-rot 1 1 2 1 1 2
## 342 phytophthora-rot 3 1 1 1 <NA> 2
## 343 phytophthora-rot 3 1 1 1 <NA> 3
## 344 phytophthora-rot 0 1 2 2 <NA> 3
## 345 phytophthora-rot 1 1 2 1 <NA> 2
## 346 phytophthora-rot 1 1 2 1 <NA> 0
## 347 phytophthora-rot 4 1 1 2 <NA> 3
## 348 phytophthora-rot 1 1 2 2 <NA> 2
## 349 phytophthora-rot 2 1 2 1 <NA> 3
## 350 phytophthora-rot 3 1 2 2 <NA> 2
## 351 phytophthora-rot 4 1 1 1 <NA> 3
## 352 phytophthora-rot 1 1 2 1 <NA> 2
## 353 phytophthora-rot 1 1 2 1 <NA> 3
## 354 phytophthora-rot 1 1 2 2 <NA> 1
## 355 phytophthora-rot 2 1 1 2 <NA> 2
## 356 phytophthora-rot 3 1 1 1 <NA> 3
## 357 phytophthora-rot 3 1 1 1 <NA> 1
## 358 phytophthora-rot 1 1 2 2 <NA> 1
## 359 phytophthora-rot 2 1 2 2 <NA> 2
## 360 phytophthora-rot 3 1 1 1 <NA> 3
## 361 phytophthora-rot 4 1 1 1 <NA> 2
## 362 phytophthora-rot 1 1 2 2 <NA> 3
## 363 phytophthora-rot 2 1 2 2 <NA> 2
## 364 phytophthora-rot 3 1 1 1 <NA> 3
## 365 phytophthora-rot 4 1 1 1 <NA> 2
## 366 phytophthora-rot 1 1 2 2 <NA> 3
## 367 phytophthora-rot 2 1 2 2 <NA> 2
## 368 phytophthora-rot 3 1 1 1 <NA> 3
## 369 phytophthora-rot 1 1 2 2 <NA> 2
## 370 phytophthora-rot 2 1 2 1 <NA> 3
## 371 phytophthora-rot 3 1 2 1 <NA> 1
## 372 phytophthora-rot 1 1 2 2 <NA> 2
## 373 phytophthora-rot 2 1 2 2 <NA> 3
## 374 phytophthora-rot 3 1 1 1 <NA> 2
## 375 phytophthora-rot 4 1 1 1 <NA> 3
## 376 phytophthora-rot 1 1 2 1 <NA> 2
## 377 phytophthora-rot 2 1 2 1 <NA> 3
## 378 phytophthora-rot 3 1 1 1 <NA> 1
## 379 phytophthora-rot 4 1 1 1 <NA> 1
## 380 phytophthora-rot 1 1 2 2 <NA> 2
## 381 phytophthora-rot 2 1 2 2 <NA> 3
## 382 phytophthora-rot 3 1 1 1 <NA> 2
## 383 phytophthora-rot 2 1 1 1 <NA> 3
## 384 phytophthora-rot 3 1 1 1 <NA> 2
## 385 phytophthora-rot 3 1 1 1 <NA> 3
## 386 brown-stem-rot 3 0 0 0 1 1
## 387 brown-stem-rot 4 0 1 0 1 2
## 388 brown-stem-rot 3 0 0 0 1 3
## 389 brown-stem-rot 5 0 0 1 1 3
## 390 brown-stem-rot 6 0 0 1 1 2
## 391 brown-stem-rot 4 0 1 0 1 3
## 392 brown-stem-rot 5 0 0 2 0 2
## 393 brown-stem-rot 5 0 0 1 0 1
## 394 brown-stem-rot 4 0 0 1 0 3
## 395 brown-stem-rot 5 0 0 1 0 2
## 396 brown-stem-rot 5 0 0 1 0 2
## 397 brown-stem-rot 3 1 1 0 0 2
## 398 brown-stem-rot 5 1 1 1 0 2
## 399 brown-stem-rot 4 1 0 0 0 2
## 400 brown-stem-rot 5 1 1 0 0 3
## 401 brown-stem-rot 4 1 1 0 0 3
## 402 brown-stem-rot 6 1 1 1 0 3
## 403 brown-stem-rot 3 0 0 1 0 2
## 404 brown-stem-rot 5 0 0 2 0 3
## 405 brown-stem-rot 3 0 0 1 0 2
## 406 brown-stem-rot 4 0 0 1 0 1
## 407 brown-stem-rot 5 0 0 2 0 2
## 408 brown-stem-rot 4 0 0 1 0 1
## 409 brown-stem-rot 5 0 0 2 0 3
## 410 powdery-mildew 1 0 0 0 1 0
## 411 powdery-mildew 2 0 1 1 1 1
## 412 powdery-mildew 3 0 2 0 1 2
## 413 powdery-mildew 4 0 0 1 1 3
## 414 powdery-mildew 5 0 1 0 1 0
## 415 powdery-mildew 4 0 1 0 1 2
## 416 powdery-mildew 3 1 0 1 0 3
## 417 powdery-mildew 4 1 1 0 0 0
## 418 powdery-mildew 2 1 1 0 0 0
## 419 powdery-mildew 5 1 0 1 0 3
## 420 downy-mildew 3 0 2 0 1 2
## 421 downy-mildew 4 0 2 1 1 3
## 422 downy-mildew 5 0 2 1 1 1
## 423 downy-mildew 2 0 2 0 1 0
## 424 downy-mildew 3 0 2 1 1 1
## 425 downy-mildew 6 1 2 0 0 1
## 426 downy-mildew 3 1 2 2 0 3
## 427 downy-mildew 5 1 2 1 0 2
## 428 downy-mildew 3 1 2 1 0 1
## 429 downy-mildew 5 1 2 0 0 3
## 430 brown-spot 1 1 2 1 0 3
## 431 brown-spot 2 0 2 1 0 1
## 432 brown-spot 3 0 2 1 0 2
## 433 brown-spot 2 1 2 1 0 3
## 434 brown-spot 2 0 2 1 0 2
## 435 brown-spot 5 0 2 1 0 2
## 436 brown-spot 2 0 2 1 0 3
## 437 brown-spot 1 0 2 1 0 2
## 438 brown-spot 2 1 1 1 1 2
## 439 brown-spot 3 1 2 2 1 1
## 440 brown-spot 0 0 1 1 0 0
## 441 brown-spot 1 0 2 2 0 1
## 442 brown-spot 2 0 1 1 0 2
## 443 brown-spot 3 0 2 2 0 3
## 444 brown-spot 4 0 1 1 0 1
## 445 brown-spot 0 0 2 2 0 2
## 446 brown-spot 1 0 1 1 0 3
## 447 brown-spot 2 0 2 2 0 1
## 448 brown-spot 0 0 1 1 0 2
## 449 brown-spot 1 1 2 2 1 3
## 450 brown-spot 1 0 2 1 0 1
## 451 brown-spot 2 0 2 1 0 2
## 452 brown-spot 3 1 2 1 0 3
## 453 brown-spot 4 0 2 1 0 2
## 454 brown-spot 5 0 2 1 0 3
## 455 brown-spot 1 1 2 1 0 2
## 456 brown-spot 2 0 2 1 0 3
## 457 brown-spot 3 0 2 1 0 2
## 458 brown-spot 1 1 2 1 0 3
## 459 brown-spot 2 0 2 1 0 1
## 460 brown-spot 3 0 2 1 0 2
## 461 brown-spot 1 1 2 1 0 3
## 462 brown-spot 2 0 2 1 0 2
## 463 brown-spot 3 0 2 1 0 3
## 464 brown-spot 1 1 2 1 0 2
## 465 brown-spot 2 0 2 1 0 3
## 466 brown-spot 3 0 2 1 0 2
## 467 brown-spot 4 1 2 1 0 3
## 468 brown-spot 5 0 2 1 0 1
## 469 brown-spot 1 0 2 1 0 2
## 470 brown-spot 2 1 2 1 0 3
## 471 brown-spot 3 0 2 1 0 2
## 472 brown-spot 4 0 2 1 0 3
## 473 brown-spot 5 1 2 1 0 3
## 474 brown-spot 1 0 2 1 0 1
## 475 brown-spot 2 0 2 1 0 2
## 476 brown-spot 3 1 2 1 0 3
## 477 brown-spot 1 0 2 1 0 1
## 478 brown-spot 2 0 2 1 0 2
## 479 brown-spot 3 1 2 1 0 3
## 480 brown-spot 1 0 2 1 0 1
## 481 brown-spot 2 0 2 1 0 2
## 482 bacterial-blight 3 0 2 1 1 1
## 483 bacterial-blight 4 1 1 1 0 2
## 484 bacterial-blight 2 1 1 1 0 1
## 485 bacterial-blight 4 0 1 2 0 3
## 486 bacterial-blight 5 1 2 1 1 1
## 487 bacterial-blight 3 0 1 1 0 2
## 488 bacterial-blight 4 0 2 1 1 3
## 489 bacterial-blight 3 0 2 1 1 1
## 490 bacterial-blight 4 1 1 1 0 2
## 491 bacterial-blight 5 0 2 1 1 3
## 492 bacterial-pustule 3 0 1 0 1 3
## 493 bacterial-pustule 1 1 1 1 0 1
## 494 bacterial-pustule 2 0 1 2 1 2
## 495 bacterial-pustule 3 1 1 1 0 3
## 496 bacterial-pustule 2 0 2 1 1 3
## 497 bacterial-pustule 2 0 2 1 1 1
## 498 bacterial-pustule 1 0 1 1 1 3
## 499 bacterial-pustule 2 1 2 2 0 1
## 500 bacterial-pustule 5 0 1 2 1 0
## 501 bacterial-pustule 2 1 2 0 0 1
## 502 purple-seed-stain 5 0 2 2 1 2
## 503 purple-seed-stain 6 0 2 0 1 3
## 504 purple-seed-stain 5 0 2 2 1 1
## 505 purple-seed-stain 4 0 2 2 1 0
## 506 purple-seed-stain 5 0 2 0 0 1
## 507 purple-seed-stain 6 0 2 1 0 2
## 508 purple-seed-stain 3 0 2 2 0 3
## 509 purple-seed-stain 3 0 2 0 0 3
## 510 purple-seed-stain 5 0 2 2 0 1
## 511 purple-seed-stain 6 0 2 1 0 3
## 512 anthracnose 0 0 2 1 0 0
## 513 anthracnose 2 0 2 1 0 2
## 514 anthracnose 4 0 2 1 0 0
## 515 anthracnose 1 0 2 1 0 0
## 516 anthracnose 4 1 2 2 1 1
## 517 anthracnose 6 0 2 1 0 3
## 518 anthracnose 6 1 2 1 0 1
## 519 anthracnose 6 1 2 1 0 3
## 520 anthracnose 5 1 2 1 0 2
## 521 anthracnose 5 0 2 1 0 3
## 522 anthracnose 4 0 2 1 0 2
## 523 anthracnose 3 1 2 2 1 1
## 524 anthracnose 4 1 2 2 1 1
## 525 anthracnose 5 1 2 2 1 2
## 526 anthracnose 6 1 2 2 1 3
## 527 anthracnose 4 0 2 1 0 1
## 528 anthracnose 5 1 2 1 0 2
## 529 anthracnose 6 0 2 1 0 3
## 530 anthracnose 4 1 2 1 0 1
## 531 anthracnose 5 0 2 1 0 2
## 532 anthracnose 6 1 2 1 0 3
## 533 anthracnose 5 0 2 1 0 3
## 534 anthracnose 5 1 2 1 0 1
## 535 anthracnose 5 0 2 1 0 1
## 536 phyllosticta-leaf-spot 1 0 0 1 1 0
## 537 phyllosticta-leaf-spot 3 0 0 1 1 2
## 538 phyllosticta-leaf-spot 1 1 1 1 0 2
## 539 phyllosticta-leaf-spot 2 1 1 1 0 2
## 540 phyllosticta-leaf-spot 2 0 0 2 1 1
## 541 phyllosticta-leaf-spot 2 0 0 2 1 1
## 542 phyllosticta-leaf-spot 3 1 1 2 0 1
## 543 phyllosticta-leaf-spot 4 1 1 2 0 1
## 544 phyllosticta-leaf-spot 2 1 1 2 0 3
## 545 phyllosticta-leaf-spot 4 1 1 2 0 1
## 546 alternarialeaf-spot 6 0 2 2 0 2
## 547 alternarialeaf-spot 5 0 2 2 0 2
## 548 alternarialeaf-spot 6 1 2 2 0 2
## 549 alternarialeaf-spot 5 1 2 1 0 2
## 550 alternarialeaf-spot 6 0 2 1 0 3
## 551 alternarialeaf-spot 5 0 2 1 0 2
## 552 alternarialeaf-spot 6 0 2 1 0 3
## 553 alternarialeaf-spot 5 0 2 1 0 3
## 554 alternarialeaf-spot 5 1 2 1 1 0
## 555 alternarialeaf-spot 5 1 2 1 1 1
## 556 alternarialeaf-spot 4 0 2 1 1 0
## 557 alternarialeaf-spot 6 1 1 2 1 1
## 558 alternarialeaf-spot 4 1 2 1 0 2
## 559 alternarialeaf-spot 6 0 1 1 1 0
## 560 alternarialeaf-spot 5 0 2 1 1 2
## 561 alternarialeaf-spot 6 0 1 2 1 3
## 562 alternarialeaf-spot 4 1 2 2 0 0
## 563 alternarialeaf-spot 5 1 1 2 1 0
## 564 alternarialeaf-spot 6 0 2 1 0 1
## 565 alternarialeaf-spot 5 1 1 2 1 2
## 566 alternarialeaf-spot 4 0 2 1 0 1
## 567 alternarialeaf-spot 5 0 2 2 0 2
## 568 alternarialeaf-spot 6 1 2 2 0 3
## 569 alternarialeaf-spot 5 0 2 2 0 1
## 570 alternarialeaf-spot 5 0 2 2 0 2
## 571 alternarialeaf-spot 5 1 2 2 0 3
## 572 alternarialeaf-spot 5 0 2 2 0 2
## 573 alternarialeaf-spot 5 1 2 2 0 3
## 574 alternarialeaf-spot 5 0 2 2 0 1
## 575 alternarialeaf-spot 4 0 2 1 0 2
## 576 alternarialeaf-spot 5 1 2 2 0 3
## 577 alternarialeaf-spot 6 0 2 2 0 1
## 578 alternarialeaf-spot 3 0 2 1 0 2
## 579 alternarialeaf-spot 4 1 2 1 0 3
## 580 alternarialeaf-spot 5 0 2 2 0 1
## 581 alternarialeaf-spot 6 0 2 2 0 2
## 582 alternarialeaf-spot 4 1 2 1 0 3
## 583 alternarialeaf-spot 4 0 2 1 0 1
## 584 alternarialeaf-spot 5 0 2 2 0 2
## 585 alternarialeaf-spot 5 1 2 2 0 3
## 586 alternarialeaf-spot 5 0 2 2 0 1
## 587 alternarialeaf-spot 6 0 2 2 0 2
## 588 alternarialeaf-spot 6 1 2 2 0 3
## 589 alternarialeaf-spot 5 0 2 2 0 1
## 590 alternarialeaf-spot 6 0 2 2 0 2
## 591 alternarialeaf-spot 5 1 2 2 0 3
## 592 alternarialeaf-spot 6 0 2 2 0 3
## 593 alternarialeaf-spot 5 0 2 2 0 3
## 594 alternarialeaf-spot 6 1 2 2 0 3
## 595 alternarialeaf-spot 5 0 2 2 0 2
## 596 alternarialeaf-spot 6 0 2 2 0 2
## 597 frog-eye-leaf-spot 4 1 2 1 0 3
## 598 frog-eye-leaf-spot 4 0 2 1 0 2
## 599 frog-eye-leaf-spot 3 0 2 1 0 1
## 600 frog-eye-leaf-spot 4 0 2 1 0 1
## 601 frog-eye-leaf-spot 4 1 2 1 0 3
## 602 frog-eye-leaf-spot 4 1 2 1 0 2
## 603 frog-eye-leaf-spot 4 1 2 1 0 3
## 604 frog-eye-leaf-spot 4 0 1 1 1 3
## 605 frog-eye-leaf-spot 6 0 1 1 0 2
## 606 frog-eye-leaf-spot 5 0 1 1 1 0
## 607 frog-eye-leaf-spot 3 0 2 1 1 0
## 608 frog-eye-leaf-spot 5 0 2 1 1 2
## 609 frog-eye-leaf-spot 3 1 2 1 1 0
## 610 frog-eye-leaf-spot 5 0 2 1 1 2
## 611 frog-eye-leaf-spot 4 0 2 2 1 1
## 612 frog-eye-leaf-spot 4 0 2 2 1 3
## 613 frog-eye-leaf-spot 3 1 2 2 1 2
## 614 frog-eye-leaf-spot 4 1 2 2 1 3
## 615 frog-eye-leaf-spot 3 0 2 2 0 2
## 616 frog-eye-leaf-spot 3 0 2 1 0 1
## 617 frog-eye-leaf-spot 4 0 2 2 0 2
## 618 frog-eye-leaf-spot 5 1 2 1 0 3
## 619 frog-eye-leaf-spot 6 0 2 2 0 1
## 620 frog-eye-leaf-spot 4 0 2 1 0 2
## 621 frog-eye-leaf-spot 5 1 2 2 0 3
## 622 frog-eye-leaf-spot 6 0 2 1 0 1
## 623 frog-eye-leaf-spot 4 0 2 2 0 2
## 624 frog-eye-leaf-spot 5 1 2 1 0 3
## 625 frog-eye-leaf-spot 6 0 2 2 0 1
## 626 frog-eye-leaf-spot 4 0 2 1 0 2
## 627 frog-eye-leaf-spot 5 1 2 2 0 3
## 628 frog-eye-leaf-spot 6 0 2 1 0 1
## 629 frog-eye-leaf-spot 3 0 2 2 0 2
## 630 frog-eye-leaf-spot 4 1 2 1 0 3
## 631 frog-eye-leaf-spot 5 0 2 2 0 1
## 632 frog-eye-leaf-spot 6 0 2 2 0 2
## 633 frog-eye-leaf-spot 3 1 2 1 0 3
## 634 frog-eye-leaf-spot 4 0 2 1 0 1
## 635 frog-eye-leaf-spot 5 0 2 1 0 2
## 636 frog-eye-leaf-spot 6 1 2 2 0 3
## 637 frog-eye-leaf-spot 3 0 2 1 0 1
## 638 frog-eye-leaf-spot 4 0 2 1 0 2
## 639 frog-eye-leaf-spot 5 1 2 2 0 3
## 640 frog-eye-leaf-spot 4 0 2 1 0 1
## 641 frog-eye-leaf-spot 5 0 2 2 0 2
## 642 frog-eye-leaf-spot 6 1 2 1 0 3
## 643 frog-eye-leaf-spot 4 0 2 2 0 1
## 644 frog-eye-leaf-spot 5 0 2 1 0 2
## 645 frog-eye-leaf-spot 6 1 2 2 0 3
## 646 frog-eye-leaf-spot 4 0 2 1 0 1
## 647 frog-eye-leaf-spot 5 0 2 2 0 2
## 648 diaporthe-pod-&-stem-blight 6 <NA> 2 2 <NA> 2
## 649 diaporthe-pod-&-stem-blight 6 <NA> 2 2 <NA> 1
## 650 diaporthe-pod-&-stem-blight 5 <NA> 2 2 <NA> 1
## 651 diaporthe-pod-&-stem-blight 6 <NA> 2 2 <NA> 3
## 652 diaporthe-pod-&-stem-blight 6 <NA> 2 2 <NA> 0
## 653 diaporthe-pod-&-stem-blight 1 1 1 2 <NA> 0
## 654 diaporthe-pod-&-stem-blight 5 0 2 2 <NA> 1
## 655 diaporthe-pod-&-stem-blight 5 0 2 2 <NA> 3
## 656 diaporthe-pod-&-stem-blight 6 0 2 2 <NA> 3
## 657 cyst-nematode 2 <NA> <NA> <NA> <NA> 1
## 658 cyst-nematode 3 <NA> <NA> <NA> <NA> 2
## 659 cyst-nematode 4 <NA> <NA> <NA> <NA> 1
## 660 cyst-nematode 2 <NA> <NA> <NA> <NA> 2
## 661 cyst-nematode 3 <NA> <NA> <NA> <NA> 2
## 662 cyst-nematode 4 <NA> <NA> <NA> <NA> 3
## 663 cyst-nematode 4 <NA> <NA> <NA> <NA> 3
## 664 cyst-nematode 3 <NA> <NA> <NA> <NA> 3
## 665 2-4-d-injury 5 <NA> <NA> <NA> <NA> <NA>
## 666 2-4-d-injury 0 <NA> <NA> <NA> <NA> <NA>
## 667 2-4-d-injury 1 <NA> <NA> <NA> <NA> <NA>
## 668 2-4-d-injury 2 <NA> <NA> <NA> <NA> <NA>
## 669 2-4-d-injury 3 <NA> <NA> <NA> <NA> <NA>
## 670 2-4-d-injury 4 <NA> <NA> <NA> <NA> <NA>
## 671 2-4-d-injury 6 <NA> <NA> <NA> <NA> <NA>
## 672 2-4-d-injury 0 <NA> <NA> <NA> <NA> <NA>
## 673 2-4-d-injury 1 <NA> <NA> <NA> <NA> <NA>
## 674 2-4-d-injury 2 <NA> <NA> <NA> <NA> <NA>
## 675 2-4-d-injury 3 <NA> <NA> <NA> <NA> <NA>
## 676 2-4-d-injury 4 <NA> <NA> <NA> <NA> <NA>
## 677 2-4-d-injury 5 <NA> <NA> <NA> <NA> <NA>
## 678 2-4-d-injury 6 <NA> <NA> <NA> <NA> <NA>
## 679 2-4-d-injury 0 <NA> <NA> <NA> <NA> <NA>
## 680 herbicide-injury 0 1 <NA> 0 <NA> 0
## 681 herbicide-injury 2 1 <NA> 0 <NA> 0
## 682 herbicide-injury 0 1 <NA> 0 <NA> 1
## 683 herbicide-injury 2 1 <NA> 0 <NA> 1
## area.dam sever seed.tmt germ plant.growth leaves leaf.halo leaf.marg
## 1 1 1 0 0 1 1 0 2
## 2 0 2 1 1 1 1 0 2
## 3 0 2 1 2 1 1 0 2
## 4 0 2 0 1 1 1 0 2
## 5 0 1 0 2 1 1 0 2
## 6 0 1 0 1 1 1 0 2
## 7 0 1 1 0 1 1 0 2
## 8 0 1 0 2 1 1 0 2
## 9 0 1 1 1 1 1 0 2
## 10 0 2 0 2 1 1 0 2
## 11 3 1 1 0 1 1 0 2
## 12 3 1 1 1 1 1 0 2
## 13 2 1 0 0 1 1 0 2
## 14 3 1 1 0 1 1 0 2
## 15 3 1 1 1 1 1 0 2
## 16 3 1 1 2 1 1 0 2
## 17 2 1 0 0 1 1 0 2
## 18 2 1 0 1 1 1 0 2
## 19 2 1 0 2 1 1 0 2
## 20 2 1 0 2 1 1 0 2
## 21 1 2 0 2 1 0 0 2
## 22 1 2 0 1 1 0 0 2
## 23 1 2 0 1 1 0 0 2
## 24 1 1 1 2 1 0 0 2
## 25 1 2 1 2 1 0 0 2
## 26 1 2 0 2 1 0 0 2
## 27 1 1 0 1 1 0 0 2
## 28 1 1 0 1 1 0 0 2
## 29 1 2 0 2 1 0 0 2
## 30 1 2 0 2 1 0 0 2
## 31 1 1 0 0 1 1 0 2
## 32 1 <NA> <NA> <NA> 1 1 0 2
## 33 1 <NA> <NA> <NA> 1 1 <NA> <NA>
## 34 1 2 1 1 1 1 0 2
## 35 1 <NA> <NA> <NA> 1 1 <NA> <NA>
## 36 1 <NA> <NA> <NA> 1 1 <NA> <NA>
## 37 1 1 0 0 1 1 0 2
## 38 1 2 1 1 1 1 0 2
## 39 1 <NA> <NA> <NA> 1 1 0 2
## 40 1 2 0 1 1 1 0 2
## 41 1 <NA> <NA> <NA> 1 1 0 2
## 42 1 <NA> <NA> <NA> 1 1 <NA> <NA>
## 43 1 1 0 0 1 1 0 2
## 44 1 2 1 0 1 1 0 2
## 45 1 2 1 0 1 1 0 2
## 46 1 <NA> <NA> <NA> 1 1 <NA> <NA>
## 47 1 1 0 1 1 1 0 2
## 48 1 <NA> <NA> <NA> 1 1 0 2
## 49 1 2 0 2 1 1 0 2
## 50 1 1 0 2 1 1 0 2
## 51 1 2 1 1 1 1 0 2
## 52 1 <NA> <NA> <NA> 1 1 0 2
## 53 1 <NA> <NA> <NA> 1 1 <NA> <NA>
## 54 1 <NA> <NA> <NA> 1 1 0 2
## 55 1 <NA> <NA> <NA> 1 1 <NA> <NA>
## 56 1 2 0 1 1 1 0 2
## 57 1 <NA> <NA> <NA> 1 1 0 2
## 58 1 <NA> <NA> <NA> 1 1 <NA> <NA>
## 59 1 <NA> <NA> <NA> 1 1 0 2
## 60 1 <NA> <NA> <NA> 1 1 <NA> <NA>
## 61 1 <NA> <NA> <NA> 1 1 0 2
## 62 1 <NA> <NA> <NA> 1 1 0 2
## 63 1 2 0 0 1 1 0 2
## 64 1 <NA> <NA> <NA> 1 1 0 2
## 65 1 <NA> <NA> <NA> 1 1 <NA> <NA>
## 66 1 2 1 0 1 1 0 2
## 67 1 <NA> <NA> <NA> 1 1 <NA> <NA>
## 68 1 <NA> <NA> <NA> 1 1 <NA> <NA>
## 69 1 2 1 2 1 1 0 2
## 70 1 <NA> <NA> <NA> 1 1 <NA> <NA>
## 71 3 1 1 2 0 1 0 2
## 72 3 1 1 2 0 1 0 2
## 73 0 1 1 2 1 0 0 2
## 74 3 1 1 2 0 1 0 2
## 75 3 1 1 1 0 1 0 2
## 76 2 1 0 1 0 1 0 2
## 77 3 1 0 2 1 1 2 0
## 78 0 1 1 0 1 0 0 2
## 79 2 1 0 0 1 1 0 2
## 80 3 1 1 0 1 1 2 0
## 81 3 1 1 2 1 0 0 2
## 82 2 1 1 1 1 1 2 0
## 83 0 1 1 0 0 1 0 2
## 84 0 2 0 1 1 1 2 0
## 85 2 1 0 1 0 1 0 2
## 86 3 1 1 0 0 1 0 2
## 87 2 1 0 2 0 1 0 2
## 88 2 1 1 2 0 1 0 2
## 89 2 1 0 0 0 1 0 2
## 90 2 1 0 0 0 1 0 2
## 91 3 1 0 1 0 1 0 2
## 92 0 0 1 2 0 1 0 2
## 93 3 1 2 0 0 1 0 2
## 94 2 0 1 2 0 1 0 2
## 95 2 0 2 0 0 1 0 2
## 96 1 1 0 2 0 1 0 2
## 97 2 0 0 1 0 1 0 2
## 98 1 1 1 2 0 1 0 2
## 99 1 1 0 1 0 1 0 2
## 100 1 1 2 0 0 1 0 2
## 101 1 0 1 2 0 1 2 0
## 102 1 1 1 2 0 1 2 0
## 103 2 1 0 1 0 1 1 0
## 104 2 1 0 1 0 1 1 0
## 105 0 1 0 1 0 1 1 0
## 106 0 1 0 1 0 1 1 0
## 107 0 1 0 1 0 1 2 0
## 108 1 0 1 2 0 1 1 0
## 109 2 1 0 1 0 1 2 0
## 110 2 1 0 1 0 1 1 0
## 111 3 1 0 2 1 1 2 0
## 112 3 1 1 1 0 1 2 0
## 113 3 1 1 0 0 1 2 0
## 114 0 1 2 0 0 1 2 0
## 115 3 1 1 1 1 1 2 0
## 116 3 1 0 2 0 1 2 0
## 117 3 1 2 1 0 1 2 0
## 118 3 1 0 0 0 1 2 0
## 119 3 1 1 1 0 1 2 0
## 120 3 1 0 2 0 1 2 0
## 121 2 1 0 1 0 1 2 0
## 122 3 1 1 2 0 1 2 0
## 123 3 1 2 0 0 1 2 0
## 124 3 1 0 0 0 1 2 0
## 125 3 1 0 1 0 1 2 0
## 126 3 1 0 2 0 1 2 0
## 127 3 1 0 0 0 1 2 0
## 128 2 0 2 1 1 1 2 0
## 129 0 0 0 2 0 1 2 0
## 130 0 1 2 2 0 1 2 0
## 131 3 1 0 0 0 1 2 0
## 132 3 1 1 1 0 1 2 0
## 133 3 2 2 1 0 1 2 0
## 134 1 1 1 0 1 1 2 0
## 135 3 1 2 0 0 1 2 0
## 136 3 1 0 2 0 1 2 0
## 137 3 1 0 0 0 1 2 0
## 138 2 0 0 2 0 1 2 0
## 139 3 1 0 2 0 1 2 0
## 140 3 1 0 0 0 1 2 0
## 141 3 2 1 1 0 1 2 0
## 142 3 1 0 2 0 1 2 0
## 143 0 1 1 0 0 1 2 0
## 144 1 1 0 2 0 1 2 0
## 145 3 2 2 0 0 1 2 0
## 146 2 1 0 1 0 1 2 0
## 147 1 1 0 0 0 1 2 0
## 148 1 1 0 2 0 1 2 0
## 149 3 2 2 2 0 1 2 0
## 150 3 2 0 2 0 1 2 0
## 151 3 1 1 0 0 1 2 0
## 152 3 1 1 1 0 1 2 0
## 153 0 0 0 0 0 1 1 0
## 154 2 0 0 0 0 1 1 0
## 155 2 0 0 0 0 1 1 0
## 156 1 1 1 0 0 1 2 0
## 157 0 0 0 1 0 1 1 0
## 158 3 1 1 1 0 1 2 0
## 159 1 0 0 0 0 1 1 0
## 160 1 1 1 2 0 1 2 0
## 161 2 0 0 2 0 1 1 1
## 162 3 1 1 1 1 1 2 1
## 163 0 0 0 0 0 1 1 1
## 164 0 1 0 2 0 1 1 0
## 165 1 1 0 1 0 1 1 1
## 166 0 0 0 2 0 1 2 1
## 167 3 0 0 1 1 1 1 1
## 168 2 1 0 2 0 1 1 1
## 169 3 0 0 1 0 1 1 1
## 170 0 0 1 2 0 1 1 1
## 171 2 0 0 0 0 0 0 2
## 172 2 0 1 1 0 1 2 0
## 173 1 0 1 2 0 0 0 2
## 174 0 0 0 1 0 1 2 0
## 175 0 0 0 2 0 1 2 0
## 176 2 0 0 1 0 1 2 0
## 177 0 0 0 1 0 0 0 2
## 178 3 0 1 1 0 0 0 2
## 179 1 0 0 0 0 1 2 0
## 180 0 0 1 1 0 0 0 2
## 181 3 1 1 0 0 0 0 2
## 182 2 0 1 2 0 1 0 2
## 183 1 1 1 1 0 0 0 2
## 184 0 1 0 0 1 1 0 2
## 185 3 1 0 0 1 1 0 2
## 186 2 1 0 1 1 1 0 2
## 187 2 1 0 1 0 0 0 2
## 188 1 1 1 1 1 1 0 2
## 189 2 1 1 1 0 0 0 2
## 190 1 1 2 2 1 1 0 2
## 191 3 0 1 2 1 1 0 2
## 192 3 1 1 2 1 1 0 2
## 193 2 0 0 0 1 1 0 2
## 194 1 1 0 1 0 0 0 2
## 195 2 1 0 2 0 0 0 2
## 196 0 1 0 1 0 1 0 2
## 197 1 1 0 0 0 0 0 2
## 198 3 0 2 1 0 1 0 2
## 199 3 1 0 1 0 0 0 2
## 200 2 1 1 1 0 0 0 2
## 201 2 0 0 2 0 1 2 0
## 202 2 0 0 1 0 1 2 0
## 203 0 0 0 0 0 1 2 0
## 204 0 0 0 0 0 1 2 0
## 205 2 0 1 1 0 1 2 0
## 206 3 0 2 2 0 1 2 0
## 207 2 1 1 1 0 1 2 0
## 208 2 1 1 1 0 1 2 0
## 209 0 1 1 0 1 1 2 0
## 210 3 0 2 2 0 1 2 0
## 211 1 1 1 2 0 1 2 0
## 212 3 1 0 1 0 1 2 0
## 213 0 1 0 1 0 1 2 0
## 214 3 0 1 1 0 1 2 0
## 215 2 0 2 2 0 1 2 0
## 216 3 1 0 1 0 1 2 0
## 217 3 0 1 1 0 1 2 0
## 218 1 0 0 2 0 1 2 0
## 219 3 0 1 1 0 1 2 0
## 220 2 1 1 0 0 1 2 0
## 221 3 0 0 1 0 1 2 0
## 222 0 1 1 2 0 1 2 0
## 223 1 0 1 0 0 1 2 0
## 224 2 1 0 0 0 1 2 0
## 225 0 0 0 2 0 1 2 0
## 226 2 0 0 1 0 1 2 0
## 227 1 1 1 1 0 1 2 0
## 228 1 0 0 0 0 1 2 0
## 229 2 0 1 0 0 1 2 0
## 230 1 0 1 2 0 1 2 0
## 231 1 1 0 2 0 1 2 0
## 232 3 1 1 1 0 1 2 0
## 233 1 0 0 2 0 1 2 0
## 234 2 0 2 0 0 1 2 0
## 235 2 1 1 2 0 1 2 0
## 236 1 0 1 2 0 1 2 0
## 237 3 0 0 2 0 1 2 0
## 238 3 1 0 0 0 1 2 0
## 239 3 1 0 1 0 1 2 0
## 240 0 1 0 0 0 1 2 0
## 241 2 0 1 0 0 1 2 0
## 242 1 0 1 1 0 1 2 0
## 243 1 1 0 2 0 1 2 0
## 244 3 0 1 2 0 1 2 0
## 245 1 0 0 1 0 1 2 0
## 246 3 0 0 0 0 1 2 0
## 247 3 0 0 1 0 1 2 0
## 248 1 1 0 2 0 1 2 0
## 249 0 0 1 0 0 1 2 0
## 250 2 0 1 1 0 1 2 0
## 251 3 0 0 0 0 1 2 0
## 252 1 0 1 1 0 1 2 0
## 253 1 0 0 0 0 1 2 0
## 254 2 0 0 2 0 1 2 0
## 255 3 0 1 2 0 1 2 0
## 256 3 1 1 0 0 1 2 0
## 257 3 0 1 1 0 1 2 0
## 258 2 0 0 1 0 1 2 0
## 259 1 1 1 0 0 1 2 0
## 260 3 0 1 1 0 1 2 0
## 261 1 0 1 1 0 1 2 0
## 262 3 0 1 0 0 1 2 0
## 263 1 1 1 0 0 1 2 0
## 264 1 1 1 1 0 1 2 0
## 265 2 1 0 2 0 1 2 0
## 266 0 1 0 1 0 1 2 0
## 267 1 0 1 0 0 1 2 0
## 268 2 1 0 0 0 1 2 0
## 269 1 0 1 1 0 1 2 0
## 270 0 1 0 0 0 1 2 0
## 271 2 1 0 1 0 1 2 0
## 272 3 0 1 0 0 1 2 0
## 273 3 1 2 0 0 1 2 0
## 274 2 1 0 0 0 1 2 0
## 275 3 0 1 2 0 1 2 0
## 276 0 1 0 2 0 1 2 0
## 277 1 0 1 2 0 1 2 0
## 278 2 1 0 1 0 1 2 0
## 279 0 1 0 0 0 1 2 0
## 280 0 0 0 2 0 1 2 0
## 281 3 0 1 2 0 1 2 0
## 282 1 1 1 0 0 1 2 0
## 283 3 1 1 1 0 1 2 0
## 284 1 0 2 2 1 1 2 0
## 285 0 0 0 1 0 1 2 0
## 286 2 1 0 2 0 1 2 0
## 287 3 1 1 0 0 1 2 0
## 288 2 0 0 0 0 1 2 0
## 289 0 0 0 1 0 1 2 0
## 290 3 0 1 2 0 1 2 0
## 291 3 <NA> <NA> 0 0 0 <NA> <NA>
## 292 3 <NA> <NA> 1 0 0 <NA> <NA>
## 293 3 <NA> <NA> 0 0 0 <NA> <NA>
## 294 0 <NA> <NA> 2 0 0 <NA> <NA>
## 295 3 <NA> <NA> <NA> 0 0 <NA> <NA>
## 296 3 <NA> <NA> 0 0 0 <NA> <NA>
## 297 1 <NA> <NA> <NA> 1 1 <NA> <NA>
## 298 2 <NA> <NA> <NA> 1 1 <NA> <NA>
## 299 2 <NA> <NA> <NA> 1 1 <NA> <NA>
## 300 1 <NA> <NA> <NA> 1 1 <NA> <NA>
## 301 1 <NA> <NA> <NA> 1 1 <NA> <NA>
## 302 1 <NA> <NA> <NA> 1 1 <NA> <NA>
## 303 <NA> <NA> <NA> <NA> <NA> 1 0 2
## 304 0 <NA> <NA> <NA> 1 1 2 1
## 305 3 <NA> <NA> <NA> 1 1 0 2
## 306 0 <NA> <NA> <NA> 1 1 0 2
## 307 3 <NA> <NA> <NA> 1 1 2 1
## 308 0 1 0 2 1 1 0 2
## 309 0 2 1 1 1 1 0 2
## 310 0 2 0 2 1 1 0 2
## 311 0 1 0 1 1 1 0 2
## 312 0 1 0 1 1 1 0 2
## 313 0 1 1 0 1 1 0 2
## 314 1 1 1 2 1 1 0 2
## 315 1 1 0 1 1 1 0 2
## 316 0 1 1 2 1 1 0 2
## 317 0 1 1 1 1 1 0 2
## 318 3 1 1 1 1 1 0 2
## 319 2 1 0 2 1 1 0 2
## 320 3 1 1 1 1 1 0 2
## 321 2 1 0 2 1 1 0 2
## 322 2 1 0 2 1 1 0 2
## 323 2 1 0 1 1 1 0 2
## 324 3 1 1 2 1 1 0 2
## 325 2 1 0 0 1 1 0 2
## 326 3 1 1 1 1 1 0 2
## 327 3 1 1 0 1 1 0 2
## 328 1 1 0 1 1 0 0 2
## 329 1 2 0 2 1 0 0 2
## 330 1 1 1 1 1 0 0 2
## 331 1 1 0 1 1 0 0 2
## 332 1 1 0 1 1 0 0 2
## 333 1 2 0 1 1 0 0 2
## 334 1 1 0 2 1 0 0 2
## 335 1 2 0 2 1 1 0 2
## 336 1 1 1 1 1 0 0 2
## 337 1 2 0 2 1 0 0 2
## 338 1 2 0 2 1 1 0 2
## 339 1 1 1 2 1 1 0 2
## 340 1 2 1 2 1 1 0 2
## 341 3 1 1 1 1 1 0 2
## 342 1 <NA> <NA> <NA> 1 1 0 2
## 343 1 <NA> <NA> <NA> 1 1 0 2
## 344 1 <NA> <NA> <NA> 1 1 <NA> <NA>
## 345 1 <NA> <NA> <NA> 1 1 <NA> <NA>
## 346 1 <NA> <NA> <NA> 1 1 <NA> <NA>
## 347 1 <NA> <NA> <NA> 1 1 <NA> <NA>
## 348 1 <NA> <NA> <NA> 1 1 <NA> <NA>
## 349 1 <NA> <NA> <NA> 1 1 <NA> <NA>
## 350 1 <NA> <NA> <NA> 1 1 <NA> <NA>
## 351 1 <NA> <NA> <NA> 1 1 <NA> <NA>
## 352 1 <NA> <NA> <NA> 1 1 <NA> <NA>
## 353 1 <NA> <NA> <NA> 1 1 <NA> <NA>
## 354 1 <NA> <NA> <NA> 1 1 <NA> <NA>
## 355 1 <NA> <NA> <NA> 1 1 <NA> <NA>
## 356 1 <NA> <NA> <NA> 1 1 <NA> <NA>
## 357 1 <NA> <NA> <NA> 1 1 <NA> <NA>
## 358 1 <NA> <NA> <NA> 1 1 <NA> <NA>
## 359 1 <NA> <NA> <NA> 1 1 <NA> <NA>
## 360 1 <NA> <NA> <NA> 1 1 <NA> <NA>
## 361 1 <NA> <NA> <NA> 1 1 <NA> <NA>
## 362 1 <NA> <NA> <NA> 1 1 <NA> <NA>
## 363 1 <NA> <NA> <NA> 1 1 <NA> <NA>
## 364 1 <NA> <NA> <NA> 1 1 <NA> <NA>
## 365 1 <NA> <NA> <NA> 1 1 <NA> <NA>
## 366 1 <NA> <NA> <NA> 1 1 <NA> <NA>
## 367 1 <NA> <NA> <NA> 1 1 <NA> <NA>
## 368 1 <NA> <NA> <NA> 1 1 <NA> <NA>
## 369 1 <NA> <NA> <NA> 1 1 <NA> <NA>
## 370 1 <NA> <NA> <NA> 1 1 <NA> <NA>
## 371 1 <NA> <NA> <NA> 1 1 <NA> <NA>
## 372 1 <NA> <NA> <NA> 1 1 <NA> <NA>
## 373 1 <NA> <NA> <NA> 1 1 <NA> <NA>
## 374 1 <NA> <NA> <NA> 1 1 <NA> <NA>
## 375 1 <NA> <NA> <NA> 1 1 <NA> <NA>
## 376 1 <NA> <NA> <NA> 1 1 <NA> <NA>
## 377 1 <NA> <NA> <NA> 1 1 <NA> <NA>
## 378 1 <NA> <NA> <NA> 1 1 <NA> <NA>
## 379 1 <NA> <NA> <NA> 1 1 <NA> <NA>
## 380 1 <NA> <NA> <NA> 1 1 <NA> <NA>
## 381 1 <NA> <NA> <NA> 1 1 <NA> <NA>
## 382 1 <NA> <NA> <NA> 1 1 <NA> <NA>
## 383 1 <NA> <NA> <NA> 1 1 <NA> <NA>
## 384 1 <NA> <NA> <NA> 1 1 <NA> <NA>
## 385 1 <NA> <NA> <NA> 1 1 <NA> <NA>
## 386 0 2 0 0 1 1 2 0
## 387 2 1 1 1 1 0 0 2
## 388 2 2 0 1 1 1 2 0
## 389 0 1 0 0 1 1 2 0
## 390 1 1 1 1 1 1 2 0
## 391 2 2 0 2 1 0 0 2
## 392 3 1 0 2 0 1 0 2
## 393 0 1 1 0 0 1 0 2
## 394 2 1 0 1 0 1 0 2
## 395 3 1 0 2 0 1 0 2
## 396 2 1 1 1 0 1 0 2
## 397 0 2 0 2 1 0 0 2
## 398 3 2 0 0 1 0 0 2
## 399 2 2 0 1 1 1 2 0
## 400 3 1 1 2 1 0 0 2
## 401 1 1 1 0 1 0 0 2
## 402 3 1 1 1 1 0 0 2
## 403 2 1 0 1 0 1 0 2
## 404 0 1 0 2 0 1 0 2
## 405 2 1 1 1 0 1 0 2
## 406 3 1 0 0 0 1 0 2
## 407 0 1 1 0 0 1 0 2
## 408 0 1 0 0 0 1 0 2
## 409 2 1 1 1 0 1 0 2
## 410 0 0 0 0 0 1 0 2
## 411 1 1 1 1 0 1 0 2
## 412 2 0 0 2 0 1 0 2
## 413 3 1 0 0 0 1 0 2
## 414 0 0 0 1 0 1 0 2
## 415 2 0 1 0 0 1 0 2
## 416 3 1 1 2 0 1 0 2
## 417 0 0 2 0 0 1 0 2
## 418 0 0 0 1 0 1 0 2
## 419 3 1 0 1 0 1 0 2
## 420 2 1 0 1 0 1 1 0
## 421 3 1 1 2 0 1 2 0
## 422 0 1 0 1 0 1 1 0
## 423 3 1 1 2 0 1 2 0
## 424 0 1 0 1 0 1 2 0
## 425 3 0 1 2 0 1 2 0
## 426 1 1 1 2 0 1 1 0
## 427 3 0 1 2 0 1 1 0
## 428 1 0 1 2 0 1 2 0
## 429 3 0 1 2 0 1 2 0
## 430 2 1 0 2 0 1 2 0
## 431 1 1 0 0 0 1 2 0
## 432 3 1 0 1 0 1 2 0
## 433 3 1 0 2 0 1 2 0
## 434 2 1 0 1 0 1 2 0
## 435 3 2 1 1 0 1 2 0
## 436 3 1 1 1 0 1 2 0
## 437 3 1 2 1 0 1 2 0
## 438 2 1 1 2 1 1 2 0
## 439 1 0 2 1 0 1 2 0
## 440 0 0 0 0 0 1 2 0
## 441 1 0 1 1 1 1 2 0
## 442 2 1 2 2 0 1 2 0
## 443 3 0 0 1 1 1 2 0
## 444 0 1 1 2 0 1 2 0
## 445 1 1 2 1 1 1 2 0
## 446 2 0 0 2 0 1 2 0
## 447 3 0 1 1 0 1 2 0
## 448 0 0 2 2 1 1 2 0
## 449 1 0 0 1 0 1 2 0
## 450 1 1 0 0 0 1 2 0
## 451 2 1 0 1 0 1 2 0
## 452 3 1 0 2 0 1 2 0
## 453 1 1 0 0 0 1 2 0
## 454 2 1 0 1 0 1 2 0
## 455 3 1 0 2 0 1 2 0
## 456 3 1 0 0 0 1 2 0
## 457 3 1 0 1 0 1 2 0
## 458 3 1 0 2 0 1 2 0
## 459 1 1 0 0 0 1 2 0
## 460 2 1 0 1 0 1 2 0
## 461 3 1 0 2 0 1 2 0
## 462 3 1 0 0 0 1 2 0
## 463 3 1 0 1 0 1 2 0
## 464 1 1 0 2 0 1 2 0
## 465 2 1 0 0 0 1 2 0
## 466 3 1 0 1 0 1 2 0
## 467 1 1 0 2 0 1 2 0
## 468 2 1 0 0 0 1 2 0
## 469 3 1 0 1 0 1 2 0
## 470 3 1 0 2 0 1 2 0
## 471 1 1 0 0 0 1 2 0
## 472 3 1 0 1 0 1 2 0
## 473 3 1 0 2 0 1 2 0
## 474 1 1 0 0 0 1 2 0
## 475 2 1 0 1 0 1 2 0
## 476 3 1 0 2 0 1 2 0
## 477 1 1 0 0 0 1 2 0
## 478 2 1 0 1 0 1 2 0
## 479 3 1 0 2 0 1 2 0
## 480 3 1 0 0 0 1 2 0
## 481 2 1 0 1 0 1 2 0
## 482 1 1 1 1 0 1 2 0
## 483 2 0 0 2 0 1 1 0
## 484 0 0 0 2 0 1 1 0
## 485 2 0 0 1 0 1 1 0
## 486 3 1 1 2 1 1 2 0
## 487 0 0 0 0 1 1 1 0
## 488 1 1 1 1 0 1 2 0
## 489 2 1 1 1 1 1 2 0
## 490 3 0 0 2 0 1 1 0
## 491 0 1 1 1 1 1 2 0
## 492 3 0 0 1 0 1 1 1
## 493 0 0 1 2 0 1 1 1
## 494 1 0 0 1 0 1 2 1
## 495 2 0 0 2 0 1 2 0
## 496 1 1 1 1 0 1 1 1
## 497 3 1 0 1 0 1 1 1
## 498 1 0 1 1 0 1 1 0
## 499 2 1 1 2 0 1 1 1
## 500 1 0 0 1 1 1 1 1
## 501 2 1 0 2 0 1 1 1
## 502 2 0 0 1 0 1 2 0
## 503 3 0 1 2 0 1 2 0
## 504 1 0 1 2 0 1 2 0
## 505 0 0 0 2 0 1 2 0
## 506 1 0 0 1 0 1 2 0
## 507 2 0 0 2 0 0 0 2
## 508 3 0 0 1 0 0 0 2
## 509 3 0 0 2 0 0 0 2
## 510 1 0 1 2 0 0 0 2
## 511 3 0 1 2 0 1 2 0
## 512 0 0 0 0 0 1 0 2
## 513 2 0 2 2 1 1 0 2
## 514 0 0 1 1 0 1 0 2
## 515 0 0 2 1 1 1 0 2
## 516 1 1 0 0 0 1 0 2
## 517 3 1 0 1 0 0 0 2
## 518 1 1 1 0 0 0 0 2
## 519 3 1 0 0 0 0 0 2
## 520 2 1 0 2 0 0 0 2
## 521 3 1 1 0 0 0 0 2
## 522 2 1 1 2 0 0 0 2
## 523 1 0 1 2 1 1 0 2
## 524 1 0 1 0 1 1 0 2
## 525 2 1 0 1 0 1 0 2
## 526 3 0 1 2 0 1 0 2
## 527 1 2 0 0 0 0 0 2
## 528 2 1 1 1 0 0 0 2
## 529 3 1 0 0 0 0 0 2
## 530 1 2 1 1 0 0 0 2
## 531 2 1 0 0 0 0 0 2
## 532 3 1 1 1 0 0 0 2
## 533 3 1 0 0 0 0 0 2
## 534 1 1 1 1 0 0 0 2
## 535 1 1 0 1 0 0 0 2
## 536 0 1 0 0 0 1 2 0
## 537 3 0 0 2 1 1 2 0
## 538 3 1 0 2 0 1 2 0
## 539 0 1 0 2 0 1 2 0
## 540 2 0 1 1 0 1 2 0
## 541 3 0 0 2 0 1 2 0
## 542 0 0 0 0 1 1 2 0
## 543 2 0 1 1 1 1 2 0
## 544 0 0 1 1 0 1 2 0
## 545 3 0 1 1 0 1 2 0
## 546 2 0 1 0 0 1 2 0
## 547 2 1 0 0 0 1 2 0
## 548 3 1 1 2 0 1 2 0
## 549 2 0 0 2 0 1 2 0
## 550 3 0 1 0 0 1 2 0
## 551 2 0 0 0 0 1 2 0
## 552 3 0 1 1 0 1 2 0
## 553 0 0 1 1 0 1 2 0
## 554 0 1 1 1 0 1 2 0
## 555 1 1 1 1 0 1 2 0
## 556 0 1 0 0 0 1 2 0
## 557 1 0 2 2 0 1 2 0
## 558 2 0 0 0 0 1 2 0
## 559 0 0 2 2 0 1 2 0
## 560 2 1 1 1 0 1 2 0
## 561 3 0 2 0 0 1 2 0
## 562 0 0 0 2 0 1 2 0
## 563 0 1 1 2 0 1 2 0
## 564 1 0 2 0 0 1 2 0
## 565 2 0 0 0 0 1 2 0
## 566 0 1 0 0 0 1 2 0
## 567 1 1 1 1 0 1 2 0
## 568 2 0 0 2 0 1 2 0
## 569 3 0 1 0 0 1 2 0
## 570 0 1 0 1 0 1 2 0
## 571 1 0 1 2 0 1 2 0
## 572 3 0 1 1 0 1 2 0
## 573 0 1 0 2 0 1 2 0
## 574 1 0 1 0 0 1 2 0
## 575 2 1 0 1 0 1 2 0
## 576 3 0 1 2 0 1 2 0
## 577 0 0 0 0 0 1 2 0
## 578 1 1 1 1 0 1 2 0
## 579 2 1 0 2 0 1 2 0
## 580 3 1 1 0 0 1 2 0
## 581 0 0 0 1 0 1 2 0
## 582 1 1 1 2 0 1 2 0
## 583 2 1 0 0 0 1 2 0
## 584 3 0 1 1 0 1 2 0
## 585 0 0 0 2 0 1 2 0
## 586 1 1 1 0 0 1 2 0
## 587 2 0 0 1 0 1 2 0
## 588 3 0 1 2 0 1 2 0
## 589 0 0 0 0 0 1 2 0
## 590 1 1 1 1 0 1 2 0
## 591 2 0 0 2 0 1 2 0
## 592 3 1 1 0 0 1 2 0
## 593 1 0 0 1 0 1 2 0
## 594 2 1 1 2 0 1 2 0
## 595 1 1 0 0 0 1 2 0
## 596 2 0 1 1 0 1 2 0
## 597 0 1 0 2 0 1 2 0
## 598 2 1 0 1 0 1 2 0
## 599 0 0 0 0 0 1 2 0
## 600 3 1 1 0 0 1 2 0
## 601 1 1 1 2 0 1 2 0
## 602 1 0 1 2 0 1 2 0
## 603 0 1 0 2 0 1 2 0
## 604 1 0 0 1 0 1 2 0
## 605 3 0 1 0 0 1 2 0
## 606 1 0 0 0 0 1 2 0
## 607 0 1 0 1 0 1 2 0
## 608 2 0 2 0 0 1 2 0
## 609 0 1 1 2 1 1 2 0
## 610 2 0 0 0 0 1 2 0
## 611 0 1 2 0 0 1 2 0
## 612 2 0 1 0 0 1 2 0
## 613 0 1 0 2 1 1 2 0
## 614 0 1 2 2 1 1 2 0
## 615 2 1 0 1 0 1 2 0
## 616 0 1 0 0 0 1 2 0
## 617 1 1 1 1 0 1 2 0
## 618 2 0 0 2 0 1 2 0
## 619 3 0 1 0 0 1 2 0
## 620 0 1 0 1 0 1 2 0
## 621 1 0 1 2 0 1 2 0
## 622 2 0 0 0 0 1 2 0
## 623 3 1 1 1 0 1 2 0
## 624 0 0 0 2 0 1 2 0
## 625 1 0 1 0 0 1 2 0
## 626 2 1 0 1 0 1 2 0
## 627 3 0 1 2 0 1 2 0
## 628 0 0 0 0 0 1 2 0
## 629 1 1 1 1 0 1 2 0
## 630 2 1 0 2 0 1 2 0
## 631 3 0 1 0 0 1 2 0
## 632 0 0 0 1 0 1 2 0
## 633 1 1 1 2 0 1 2 0
## 634 2 1 0 0 0 1 2 0
## 635 3 0 1 1 0 1 2 0
## 636 0 0 0 2 0 1 2 0
## 637 1 1 1 0 0 1 2 0
## 638 2 1 0 1 0 1 2 0
## 639 3 0 1 2 0 1 2 0
## 640 0 1 0 0 0 1 2 0
## 641 1 0 1 1 0 1 2 0
## 642 2 0 0 2 0 1 2 0
## 643 3 1 1 0 0 1 2 0
## 644 0 0 0 1 0 1 2 0
## 645 1 0 1 2 0 1 2 0
## 646 2 1 0 0 0 1 2 0
## 647 3 0 1 1 0 1 2 0
## 648 3 <NA> <NA> <NA> 0 0 <NA> <NA>
## 649 3 <NA> <NA> <NA> 0 0 <NA> <NA>
## 650 3 <NA> <NA> <NA> 0 0 <NA> <NA>
## 651 3 <NA> <NA> <NA> 0 0 <NA> <NA>
## 652 3 <NA> <NA> <NA> 0 0 <NA> <NA>
## 653 0 <NA> <NA> 2 0 0 <NA> <NA>
## 654 3 <NA> <NA> 0 0 0 <NA> <NA>
## 655 3 <NA> <NA> 0 0 0 <NA> <NA>
## 656 3 <NA> <NA> 1 0 0 <NA> <NA>
## 657 1 <NA> <NA> <NA> 1 1 <NA> <NA>
## 658 2 <NA> <NA> <NA> 1 1 <NA> <NA>
## 659 1 <NA> <NA> <NA> 1 1 <NA> <NA>
## 660 2 <NA> <NA> <NA> 1 1 <NA> <NA>
## 661 1 <NA> <NA> <NA> 1 1 <NA> <NA>
## 662 2 <NA> <NA> <NA> 1 1 <NA> <NA>
## 663 1 <NA> <NA> <NA> 1 1 <NA> <NA>
## 664 2 <NA> <NA> <NA> 1 1 <NA> <NA>
## 665 1 <NA> <NA> <NA> <NA> 1 0 2
## 666 0 <NA> <NA> <NA> <NA> 1 0 2
## 667 1 <NA> <NA> <NA> <NA> 1 0 2
## 668 2 <NA> <NA> <NA> <NA> 1 0 2
## 669 3 <NA> <NA> <NA> <NA> 1 0 2
## 670 0 <NA> <NA> <NA> <NA> 1 0 2
## 671 2 <NA> <NA> <NA> <NA> 1 0 2
## 672 3 <NA> <NA> <NA> <NA> 1 0 2
## 673 0 <NA> <NA> <NA> <NA> 1 0 2
## 674 1 <NA> <NA> <NA> <NA> 1 0 2
## 675 2 <NA> <NA> <NA> <NA> 1 0 2
## 676 3 <NA> <NA> <NA> <NA> 1 0 2
## 677 0 <NA> <NA> <NA> <NA> 1 0 2
## 678 1 <NA> <NA> <NA> <NA> 1 0 2
## 679 2 <NA> <NA> <NA> <NA> 1 0 2
## 680 0 <NA> <NA> <NA> 1 1 0 2
## 681 0 <NA> <NA> <NA> 1 1 0 2
## 682 3 <NA> <NA> <NA> 1 1 2 1
## 683 3 <NA> <NA> <NA> 1 1 2 1
## leaf.size leaf.shread leaf.malf leaf.mild stem lodging stem.cankers
## 1 2 0 0 0 1 1 3
## 2 2 0 0 0 1 0 3
## 3 2 0 0 0 1 0 3
## 4 2 0 0 0 1 0 3
## 5 2 0 0 0 1 0 3
## 6 2 0 0 0 1 0 3
## 7 2 0 0 0 1 1 3
## 8 2 0 0 0 1 0 3
## 9 2 0 0 0 1 0 3
## 10 2 0 0 0 1 0 3
## 11 2 0 0 0 1 0 0
## 12 2 0 0 0 1 1 0
## 13 2 0 0 0 1 0 0
## 14 2 0 0 0 1 0 0
## 15 2 0 0 0 1 0 0
## 16 2 0 0 0 1 0 0
## 17 2 0 0 0 1 1 0
## 18 2 0 0 0 1 0 0
## 19 2 0 0 0 1 0 0
## 20 2 0 0 0 1 0 0
## 21 2 0 0 0 1 0 1
## 22 2 0 0 0 1 0 1
## 23 2 0 0 0 1 1 1
## 24 2 0 0 0 1 0 1
## 25 2 0 0 0 1 0 1
## 26 2 0 0 0 1 0 1
## 27 2 0 0 0 1 0 1
## 28 2 0 0 0 1 0 1
## 29 2 0 0 0 1 0 1
## 30 2 0 0 0 1 0 1
## 31 2 0 0 0 1 0 1
## 32 2 0 0 0 1 <NA> 2
## 33 <NA> <NA> <NA> <NA> 1 <NA> 3
## 34 2 0 0 0 1 0 2
## 35 <NA> <NA> <NA> <NA> 1 <NA> 2
## 36 <NA> <NA> <NA> <NA> 1 <NA> 3
## 37 2 0 0 0 1 0 1
## 38 2 0 0 0 1 0 2
## 39 2 0 0 0 1 <NA> 2
## 40 2 0 0 0 1 0 1
## 41 2 0 0 0 1 <NA> 2
## 42 <NA> <NA> <NA> <NA> 1 <NA> 1
## 43 2 0 0 0 1 0 1
## 44 2 0 0 0 1 1 2
## 45 2 0 0 0 1 0 2
## 46 <NA> <NA> <NA> <NA> 1 <NA> 3
## 47 2 0 0 0 1 0 1
## 48 2 0 0 0 1 <NA> 2
## 49 2 0 0 0 1 0 1
## 50 2 0 0 0 1 0 1
## 51 2 0 0 0 1 0 2
## 52 2 0 0 0 1 <NA> 1
## 53 <NA> <NA> <NA> <NA> 1 <NA> 3
## 54 2 0 0 0 1 <NA> 3
## 55 <NA> <NA> <NA> <NA> 1 <NA> 2
## 56 2 0 0 0 1 1 1
## 57 2 0 0 0 1 <NA> 2
## 58 <NA> <NA> <NA> <NA> 1 <NA> 2
## 59 2 0 0 0 1 <NA> 2
## 60 <NA> <NA> <NA> <NA> 1 <NA> 1
## 61 2 0 0 0 1 <NA> 2
## 62 2 0 0 0 1 <NA> 3
## 63 2 0 0 0 1 0 1
## 64 2 0 0 0 1 <NA> 3
## 65 <NA> <NA> <NA> <NA> 1 <NA> 1
## 66 2 0 0 0 1 0 2
## 67 <NA> <NA> <NA> <NA> 1 <NA> 2
## 68 <NA> <NA> <NA> <NA> 1 <NA> 3
## 69 2 0 0 0 1 0 2
## 70 <NA> <NA> <NA> <NA> 1 <NA> 3
## 71 2 0 0 0 1 0 0
## 72 2 0 0 0 1 0 0
## 73 2 0 0 0 1 0 0
## 74 2 0 0 0 1 0 0
## 75 2 0 0 0 1 0 0
## 76 2 0 0 0 1 0 0
## 77 1 0 0 0 1 1 0
## 78 1 0 0 0 1 1 0
## 79 2 0 0 0 1 1 0
## 80 1 0 0 0 1 1 0
## 81 2 0 0 0 1 1 0
## 82 1 0 0 0 1 1 0
## 83 2 0 0 0 1 0 0
## 84 1 0 0 0 1 0 0
## 85 2 0 0 0 1 0 0
## 86 2 0 0 0 1 0 0
## 87 2 0 0 0 1 0 0
## 88 2 0 0 0 1 0 0
## 89 2 0 0 0 1 0 0
## 90 2 0 0 0 1 0 0
## 91 2 0 0 1 0 0 0
## 92 2 0 0 1 0 0 0
## 93 2 0 0 1 0 0 0
## 94 2 0 0 1 0 0 0
## 95 2 0 0 1 0 0 0
## 96 2 0 0 1 0 0 0
## 97 2 0 0 1 0 0 0
## 98 2 0 0 1 0 0 0
## 99 2 0 0 1 0 0 0
## 100 2 0 0 1 0 0 0
## 101 1 0 1 2 0 0 0
## 102 1 0 1 2 0 0 0
## 103 1 0 0 2 0 0 0
## 104 1 0 1 2 0 0 0
## 105 1 0 0 2 0 0 0
## 106 1 0 0 2 0 0 0
## 107 1 0 0 2 0 0 0
## 108 1 0 0 2 0 0 0
## 109 1 0 0 2 0 0 0
## 110 1 0 0 2 0 0 0
## 111 1 0 0 0 0 0 0
## 112 1 0 0 0 0 0 0
## 113 1 1 0 0 0 0 0
## 114 1 1 0 0 0 0 0
## 115 1 0 0 0 0 0 0
## 116 1 1 0 0 0 0 0
## 117 1 0 0 0 0 0 0
## 118 1 1 0 0 0 0 0
## 119 1 1 0 0 0 0 0
## 120 1 1 0 0 0 0 0
## 121 1 0 0 0 1 0 3
## 122 1 1 0 0 0 0 0
## 123 1 1 0 0 0 0 0
## 124 1 1 0 0 1 0 3
## 125 1 1 0 0 0 0 0
## 126 1 0 0 0 1 0 3
## 127 1 1 0 0 0 0 0
## 128 1 0 0 0 0 0 0
## 129 1 0 0 0 0 0 0
## 130 1 1 0 0 0 0 0
## 131 1 0 0 0 1 0 3
## 132 1 1 0 0 0 0 0
## 133 1 0 0 0 1 0 0
## 134 1 0 0 0 0 0 0
## 135 1 1 0 0 0 0 0
## 136 1 1 0 0 0 0 0
## 137 1 1 0 0 1 0 3
## 138 1 0 0 0 1 0 3
## 139 1 1 0 0 1 0 3
## 140 1 0 0 0 0 0 0
## 141 1 0 0 0 1 0 0
## 142 1 0 0 0 0 0 0
## 143 1 0 0 0 0 0 0
## 144 1 0 0 0 1 0 3
## 145 1 0 0 0 1 0 0
## 146 1 0 0 0 1 0 3
## 147 1 1 0 0 0 0 0
## 148 1 1 0 0 1 0 3
## 149 1 1 0 0 0 0 0
## 150 1 0 0 0 1 0 0
## 151 0 1 0 0 0 0 0
## 152 0 1 0 0 0 0 0
## 153 0 0 0 0 0 0 0
## 154 0 1 0 0 0 0 0
## 155 0 1 1 0 0 0 0
## 156 0 1 0 0 0 0 0
## 157 0 1 0 0 0 0 0
## 158 0 1 0 0 0 0 0
## 159 0 1 0 0 0 0 0
## 160 0 1 0 0 0 0 0
## 161 0 0 0 0 0 0 0
## 162 0 1 0 0 0 0 0
## 163 0 0 0 0 0 0 0
## 164 0 1 1 0 0 0 0
## 165 0 1 0 0 0 0 0
## 166 0 0 0 0 0 0 0
## 167 0 1 0 0 0 0 0
## 168 0 1 0 0 0 0 0
## 169 0 1 0 0 0 0 0
## 170 0 1 0 0 0 0 0
## 171 2 0 0 0 1 1 0
## 172 0 0 0 0 1 0 0
## 173 2 0 0 0 0 0 0
## 174 0 0 0 0 0 1 0
## 175 0 0 0 0 0 0 0
## 176 0 0 0 0 1 0 0
## 177 2 0 0 0 0 1 0
## 178 2 0 0 0 0 0 0
## 179 0 0 0 0 1 0 0
## 180 2 0 0 0 1 0 0
## 181 2 0 0 0 1 0 3
## 182 2 0 0 0 1 0 3
## 183 2 0 0 0 1 0 3
## 184 2 0 0 0 1 0 2
## 185 2 0 0 0 1 0 3
## 186 2 0 0 0 1 0 3
## 187 2 0 0 0 1 0 3
## 188 2 0 0 0 1 0 2
## 189 2 0 0 0 1 0 3
## 190 2 0 0 0 1 0 3
## 191 2 0 0 0 1 1 3
## 192 2 0 0 0 1 0 2
## 193 2 0 0 0 1 0 3
## 194 2 0 0 0 1 0 3
## 195 2 0 0 0 1 0 3
## 196 2 0 0 0 1 0 3
## 197 2 0 0 0 1 0 3
## 198 2 0 0 0 1 1 3
## 199 2 0 0 0 1 0 3
## 200 2 0 0 0 1 0 3
## 201 1 0 0 0 0 0 0
## 202 1 0 1 0 0 0 0
## 203 1 0 0 0 0 0 0
## 204 1 0 0 0 0 0 0
## 205 1 1 1 0 0 0 0
## 206 1 0 0 0 0 0 0
## 207 1 1 1 0 0 0 0
## 208 1 0 1 0 0 0 0
## 209 1 1 0 0 0 0 0
## 210 1 1 0 0 0 0 0
## 211 1 0 0 0 0 0 0
## 212 1 0 0 0 0 0 0
## 213 1 0 0 0 0 0 0
## 214 1 0 0 0 0 0 0
## 215 1 0 0 0 0 0 0
## 216 1 0 0 0 0 0 0
## 217 1 0 0 0 0 0 0
## 218 1 0 0 0 0 0 0
## 219 1 0 0 0 0 0 0
## 220 1 0 0 0 0 0 0
## 221 1 0 0 0 0 0 0
## 222 1 0 0 0 0 0 0
## 223 1 1 0 0 0 0 0
## 224 1 0 0 0 0 0 0
## 225 1 0 0 0 0 0 0
## 226 1 0 0 0 0 0 0
## 227 1 1 0 0 0 0 0
## 228 1 0 0 0 0 0 0
## 229 1 0 0 0 0 0 0
## 230 1 0 0 0 0 0 0
## 231 1 0 0 0 0 0 0
## 232 1 0 0 0 0 0 0
## 233 1 1 0 0 0 0 0
## 234 1 0 0 0 0 0 0
## 235 1 0 0 0 0 0 0
## 236 1 0 0 0 0 0 0
## 237 1 0 0 0 0 0 0
## 238 1 0 0 0 0 0 0
## 239 1 0 0 0 0 0 0
## 240 1 0 0 0 0 0 0
## 241 1 1 0 0 0 0 0
## 242 1 0 0 0 0 0 0
## 243 1 0 0 0 0 0 0
## 244 1 1 0 0 0 0 0
## 245 1 1 0 0 0 0 0
## 246 1 0 0 0 0 0 0
## 247 1 0 0 0 0 0 0
## 248 1 0 0 0 0 0 0
## 249 1 1 0 0 0 0 0
## 250 1 1 0 0 0 0 0
## 251 1 0 0 0 1 0 3
## 252 1 0 0 0 0 0 0
## 253 1 0 0 0 1 0 3
## 254 1 0 0 0 0 0 0
## 255 1 0 0 0 1 0 3
## 256 1 0 0 0 0 0 0
## 257 1 0 0 0 1 0 3
## 258 1 0 0 0 1 0 3
## 259 1 0 0 0 0 0 0
## 260 1 0 0 0 1 0 3
## 261 1 0 0 0 1 0 3
## 262 1 0 0 0 0 0 0
## 263 1 0 0 0 1 0 3
## 264 1 0 0 0 1 0 3
## 265 1 0 0 0 1 0 3
## 266 1 0 0 0 1 0 3
## 267 1 0 0 0 1 0 3
## 268 1 0 0 0 1 0 3
## 269 1 0 0 0 1 0 3
## 270 1 0 0 0 1 0 3
## 271 1 0 0 0 0 0 0
## 272 1 0 0 0 1 0 3
## 273 1 0 0 0 1 0 3
## 274 1 0 0 0 1 0 3
## 275 1 0 0 0 0 0 0
## 276 1 0 0 0 0 0 0
## 277 1 0 0 0 1 0 3
## 278 1 0 0 0 0 0 0
## 279 1 0 0 0 1 0 3
## 280 1 0 0 0 1 0 3
## 281 1 0 0 0 1 0 3
## 282 1 0 0 0 0 0 0
## 283 1 0 0 0 1 0 3
## 284 1 0 0 0 0 0 0
## 285 1 0 0 0 0 0 0
## 286 1 0 0 0 0 0 0
## 287 1 0 0 0 1 0 3
## 288 1 0 0 0 1 0 3
## 289 1 0 0 0 1 0 3
## 290 1 0 0 0 1 0 3
## 291 <NA> <NA> <NA> <NA> 1 <NA> 0
## 292 <NA> <NA> <NA> <NA> 1 <NA> 0
## 293 <NA> <NA> <NA> <NA> 1 <NA> 0
## 294 <NA> <NA> <NA> <NA> 1 <NA> 0
## 295 <NA> <NA> <NA> <NA> 1 <NA> 0
## 296 <NA> <NA> <NA> <NA> 1 <NA> 0
## 297 <NA> <NA> <NA> <NA> 0 <NA> <NA>
## 298 <NA> <NA> <NA> <NA> 0 <NA> <NA>
## 299 <NA> <NA> <NA> <NA> 0 <NA> <NA>
## 300 <NA> <NA> <NA> <NA> 0 <NA> <NA>
## 301 <NA> <NA> <NA> <NA> 0 <NA> <NA>
## 302 <NA> <NA> <NA> <NA> 0 <NA> <NA>
## 303 2 <NA> 1 <NA> <NA> <NA> <NA>
## 304 1 0 1 <NA> 1 <NA> <NA>
## 305 2 0 1 <NA> 1 <NA> <NA>
## 306 2 0 1 <NA> 1 <NA> <NA>
## 307 1 0 1 <NA> 1 <NA> <NA>
## 308 2 0 0 0 1 0 3
## 309 2 0 0 0 1 0 3
## 310 2 0 0 0 1 0 3
## 311 2 0 0 0 1 0 3
## 312 2 0 0 0 1 0 3
## 313 2 0 0 0 1 0 3
## 314 2 0 0 0 1 1 3
## 315 2 0 0 0 1 1 3
## 316 2 0 0 0 1 1 3
## 317 2 0 0 0 1 1 3
## 318 2 0 0 0 1 0 0
## 319 2 0 0 0 1 0 0
## 320 2 0 0 0 1 0 0
## 321 2 0 0 0 1 0 0
## 322 2 0 0 0 1 1 0
## 323 2 0 0 0 1 0 0
## 324 2 0 0 0 1 0 0
## 325 2 0 0 0 1 0 0
## 326 2 0 0 0 1 0 0
## 327 2 0 0 0 1 0 0
## 328 2 0 0 0 1 0 1
## 329 2 0 0 0 1 0 1
## 330 2 0 0 0 1 0 1
## 331 2 0 0 0 1 0 1
## 332 2 0 0 0 1 0 1
## 333 2 0 0 0 1 0 1
## 334 2 0 0 0 1 0 1
## 335 2 0 0 0 1 1 1
## 336 2 0 0 0 1 0 1
## 337 2 0 0 0 1 0 1
## 338 2 0 0 0 1 0 1
## 339 2 0 0 0 1 0 2
## 340 2 0 0 0 1 0 2
## 341 2 0 0 0 1 0 2
## 342 2 0 0 0 1 <NA> 3
## 343 2 0 0 0 1 <NA> 2
## 344 <NA> <NA> <NA> <NA> 1 <NA> 3
## 345 <NA> <NA> <NA> <NA> 1 <NA> 1
## 346 <NA> <NA> <NA> <NA> 1 <NA> 0
## 347 <NA> <NA> <NA> <NA> 1 <NA> 3
## 348 <NA> <NA> <NA> <NA> 1 <NA> 1
## 349 <NA> <NA> <NA> <NA> 1 <NA> 1
## 350 <NA> <NA> <NA> <NA> 1 <NA> 3
## 351 <NA> <NA> <NA> <NA> 1 <NA> 3
## 352 <NA> <NA> <NA> <NA> 1 <NA> 1
## 353 <NA> <NA> <NA> <NA> 1 <NA> 3
## 354 <NA> <NA> <NA> <NA> 1 <NA> 3
## 355 <NA> <NA> <NA> <NA> 1 <NA> 1
## 356 <NA> <NA> <NA> <NA> 1 <NA> 2
## 357 <NA> <NA> <NA> <NA> 1 <NA> 3
## 358 <NA> <NA> <NA> <NA> 1 <NA> 0
## 359 <NA> <NA> <NA> <NA> 1 <NA> 2
## 360 <NA> <NA> <NA> <NA> 1 <NA> 3
## 361 <NA> <NA> <NA> <NA> 1 <NA> 3
## 362 <NA> <NA> <NA> <NA> 1 <NA> 0
## 363 <NA> <NA> <NA> <NA> 1 <NA> 2
## 364 <NA> <NA> <NA> <NA> 1 <NA> 3
## 365 <NA> <NA> <NA> <NA> 1 <NA> 3
## 366 <NA> <NA> <NA> <NA> 1 <NA> 0
## 367 <NA> <NA> <NA> <NA> 1 <NA> 2
## 368 <NA> <NA> <NA> <NA> 1 <NA> 3
## 369 <NA> <NA> <NA> <NA> 1 <NA> 0
## 370 <NA> <NA> <NA> <NA> 1 <NA> 2
## 371 <NA> <NA> <NA> <NA> 1 <NA> 3
## 372 <NA> <NA> <NA> <NA> 1 <NA> 0
## 373 <NA> <NA> <NA> <NA> 1 <NA> 2
## 374 <NA> <NA> <NA> <NA> 1 <NA> 3
## 375 <NA> <NA> <NA> <NA> 1 <NA> 3
## 376 <NA> <NA> <NA> <NA> 1 <NA> 2
## 377 <NA> <NA> <NA> <NA> 1 <NA> 3
## 378 <NA> <NA> <NA> <NA> 1 <NA> 3
## 379 <NA> <NA> <NA> <NA> 1 <NA> 3
## 380 <NA> <NA> <NA> <NA> 1 <NA> 2
## 381 <NA> <NA> <NA> <NA> 1 <NA> 3
## 382 <NA> <NA> <NA> <NA> 1 <NA> 3
## 383 <NA> <NA> <NA> <NA> 1 <NA> 3
## 384 <NA> <NA> <NA> <NA> 1 <NA> 3
## 385 <NA> <NA> <NA> <NA> 1 <NA> 3
## 386 1 0 0 0 1 1 0
## 387 2 0 0 0 1 1 0
## 388 1 0 0 0 1 1 0
## 389 2 0 0 0 1 1 0
## 390 1 0 0 0 1 1 0
## 391 2 0 0 0 1 1 0
## 392 2 0 0 0 1 0 0
## 393 2 0 0 0 1 0 0
## 394 2 0 0 0 1 0 0
## 395 2 0 0 0 1 0 0
## 396 2 0 0 0 1 0 0
## 397 2 0 0 0 1 1 0
## 398 2 0 0 0 1 1 0
## 399 1 0 0 0 1 0 0
## 400 2 0 0 0 1 1 0
## 401 2 0 0 0 1 0 0
## 402 2 0 0 0 1 1 0
## 403 2 0 0 0 1 0 0
## 404 2 0 0 0 1 0 0
## 405 2 0 0 0 1 0 0
## 406 2 0 0 0 1 0 0
## 407 2 0 0 0 1 0 0
## 408 2 0 0 0 1 0 0
## 409 2 0 0 0 1 0 0
## 410 2 0 0 1 0 0 0
## 411 2 0 0 1 0 0 0
## 412 2 0 0 1 0 0 0
## 413 2 0 0 1 0 0 0
## 414 2 0 0 1 0 0 0
## 415 2 0 0 1 0 0 0
## 416 2 0 0 1 0 0 0
## 417 2 0 0 1 0 0 0
## 418 2 0 0 1 0 0 0
## 419 2 0 0 1 0 0 0
## 420 1 0 0 2 0 0 0
## 421 1 0 1 2 0 0 0
## 422 1 0 0 2 0 0 0
## 423 1 0 0 2 0 0 0
## 424 1 0 1 2 0 0 0
## 425 1 0 1 2 0 0 0
## 426 1 0 0 2 0 0 0
## 427 1 0 0 2 0 0 0
## 428 1 0 0 2 0 0 0
## 429 1 0 0 2 0 0 0
## 430 1 0 0 0 1 0 3
## 431 1 1 0 0 0 0 0
## 432 1 0 0 0 0 0 0
## 433 1 1 0 0 0 0 0
## 434 1 1 0 0 1 0 3
## 435 1 0 0 0 1 0 0
## 436 1 1 0 0 0 0 0
## 437 1 1 0 0 0 0 0
## 438 1 0 0 0 0 0 0
## 439 1 0 0 0 1 0 3
## 440 1 0 0 0 0 0 0
## 441 1 0 0 0 0 0 0
## 442 1 0 0 0 0 0 0
## 443 1 0 0 0 1 0 3
## 444 1 0 0 0 1 0 3
## 445 1 0 0 0 0 0 0
## 446 1 0 0 0 0 0 0
## 447 1 0 0 0 0 0 0
## 448 1 0 0 0 0 0 0
## 449 1 0 0 0 0 0 0
## 450 1 0 0 0 0 0 0
## 451 1 1 0 0 0 0 0
## 452 1 0 0 0 1 0 3
## 453 1 1 0 0 1 0 3
## 454 1 0 0 0 1 0 3
## 455 1 1 0 0 0 0 0
## 456 1 1 0 0 0 0 0
## 457 1 0 0 0 1 0 3
## 458 1 1 0 0 0 0 0
## 459 1 1 0 0 0 0 0
## 460 1 0 0 0 1 0 3
## 461 1 1 0 0 0 0 0
## 462 1 1 0 0 0 0 0
## 463 1 1 0 0 1 0 3
## 464 1 1 0 0 0 0 0
## 465 1 1 0 0 0 0 0
## 466 1 0 0 0 1 0 3
## 467 1 0 0 0 1 0 3
## 468 1 0 0 0 1 0 3
## 469 1 1 0 0 0 0 0
## 470 1 1 0 0 0 0 0
## 471 1 0 0 0 1 0 3
## 472 1 0 0 0 1 0 3
## 473 1 0 0 0 1 0 3
## 474 1 0 0 0 0 0 0
## 475 1 0 0 0 0 0 0
## 476 1 1 0 0 1 0 3
## 477 1 1 0 0 1 0 3
## 478 1 1 0 0 1 0 3
## 479 1 1 0 0 1 0 3
## 480 1 1 0 0 1 0 3
## 481 1 1 0 0 1 0 3
## 482 0 1 0 0 0 0 0
## 483 0 1 0 0 0 0 0
## 484 0 0 0 0 0 0 0
## 485 0 1 0 0 0 0 0
## 486 0 1 0 0 0 0 0
## 487 0 1 0 0 0 0 0
## 488 0 0 1 0 0 0 0
## 489 0 1 0 0 0 0 0
## 490 0 1 0 0 0 0 0
## 491 0 1 0 0 0 0 0
## 492 0 0 0 0 0 0 0
## 493 0 1 0 0 0 0 0
## 494 0 1 0 0 0 0 0
## 495 0 0 0 0 0 0 0
## 496 0 1 0 0 0 0 0
## 497 0 1 0 0 0 0 0
## 498 0 1 0 0 0 0 0
## 499 0 1 0 0 0 0 0
## 500 0 0 1 0 0 0 0
## 501 0 1 1 0 0 0 0
## 502 0 0 0 0 0 1 0
## 503 0 0 0 0 1 0 0
## 504 0 0 0 0 0 0 0
## 505 0 0 0 0 0 1 0
## 506 0 0 0 0 1 0 0
## 507 2 0 0 0 1 0 0
## 508 2 0 0 0 0 0 0
## 509 2 0 0 0 0 0 0
## 510 2 0 0 0 0 0 0
## 511 0 0 0 0 1 0 0
## 512 2 0 0 0 1 0 2
## 513 2 0 0 0 1 0 3
## 514 2 0 0 0 1 0 3
## 515 2 0 0 0 1 0 2
## 516 2 0 0 0 1 1 3
## 517 2 0 0 0 1 0 3
## 518 2 0 0 0 1 0 3
## 519 2 0 0 0 1 0 3
## 520 2 0 0 0 1 0 3
## 521 2 0 0 0 1 0 3
## 522 2 0 0 0 1 0 3
## 523 2 0 0 0 1 1 3
## 524 2 0 0 0 1 1 3
## 525 2 0 0 0 1 0 3
## 526 2 0 0 0 1 0 3
## 527 2 0 0 0 1 0 3
## 528 2 0 0 0 1 0 3
## 529 2 0 0 0 1 0 3
## 530 2 0 0 0 1 0 3
## 531 2 0 0 0 1 0 3
## 532 2 0 0 0 1 0 3
## 533 2 0 0 0 1 0 3
## 534 2 0 0 0 1 0 3
## 535 2 0 0 0 1 0 3
## 536 1 0 1 0 0 0 0
## 537 1 0 1 0 0 0 0
## 538 1 0 0 0 0 0 0
## 539 1 0 0 0 0 0 0
## 540 1 1 0 0 0 0 0
## 541 1 1 0 0 0 0 0
## 542 1 1 1 0 0 0 0
## 543 1 1 1 0 0 0 0
## 544 1 1 1 0 0 0 0
## 545 1 1 1 0 0 0 0
## 546 1 0 0 0 0 0 0
## 547 1 0 0 0 0 0 0
## 548 1 0 0 0 0 0 0
## 549 1 0 0 0 0 0 0
## 550 1 0 0 0 0 0 0
## 551 1 1 0 0 0 0 0
## 552 1 1 0 0 0 0 0
## 553 1 1 0 0 0 0 0
## 554 1 0 0 0 0 0 0
## 555 1 0 0 0 0 0 0
## 556 1 0 0 0 0 0 0
## 557 1 0 0 0 0 0 0
## 558 1 0 0 0 0 0 0
## 559 1 0 0 0 0 0 0
## 560 1 0 0 0 0 0 0
## 561 1 0 0 0 0 0 0
## 562 1 0 0 0 0 0 0
## 563 1 0 0 0 0 0 0
## 564 1 0 0 0 0 0 0
## 565 1 0 0 0 0 0 0
## 566 1 0 0 0 0 0 0
## 567 1 0 0 0 0 0 0
## 568 1 0 0 0 0 0 0
## 569 1 0 0 0 0 0 0
## 570 1 0 0 0 0 0 0
## 571 1 0 0 0 0 0 0
## 572 1 0 0 0 0 0 0
## 573 1 0 0 0 0 0 0
## 574 1 0 0 0 0 0 0
## 575 1 0 0 0 0 0 0
## 576 1 0 0 0 0 0 0
## 577 1 0 0 0 0 0 0
## 578 1 0 0 0 0 0 0
## 579 1 0 0 0 0 0 0
## 580 1 0 0 0 0 0 0
## 581 1 0 0 0 0 0 0
## 582 1 0 0 0 0 0 0
## 583 1 0 0 0 0 0 0
## 584 1 0 0 0 0 0 0
## 585 1 0 0 0 0 0 0
## 586 1 0 0 0 0 0 0
## 587 1 0 0 0 0 0 0
## 588 1 0 0 0 0 0 0
## 589 1 0 0 0 0 0 0
## 590 1 0 0 0 0 0 0
## 591 1 0 0 0 0 0 0
## 592 1 0 0 0 0 0 0
## 593 1 0 0 0 0 0 0
## 594 1 0 0 0 0 0 0
## 595 1 0 0 0 0 0 0
## 596 1 0 0 0 0 0 0
## 597 1 0 0 0 1 0 3
## 598 1 0 0 0 1 0 3
## 599 1 0 0 0 0 0 0
## 600 1 0 0 0 0 0 0
## 601 1 0 0 0 0 0 0
## 602 1 0 0 0 1 0 3
## 603 1 0 0 0 0 0 0
## 604 1 0 0 0 0 0 0
## 605 1 0 0 0 0 0 0
## 606 1 0 0 0 1 0 3
## 607 1 0 0 0 0 0 0
## 608 1 0 0 0 1 1 3
## 609 1 0 0 0 0 1 2
## 610 1 0 0 0 1 0 3
## 611 1 0 0 0 0 0 0
## 612 1 0 0 0 0 0 0
## 613 1 0 0 0 0 0 0
## 614 1 0 0 0 0 1 3
## 615 1 0 0 0 0 0 0
## 616 1 0 0 0 1 0 3
## 617 1 0 0 0 1 0 3
## 618 1 0 0 0 1 0 3
## 619 1 0 0 0 1 0 3
## 620 1 0 0 0 1 0 3
## 621 1 0 0 0 1 0 3
## 622 1 0 0 0 1 0 3
## 623 1 0 0 0 1 0 3
## 624 1 0 0 0 1 0 3
## 625 1 0 0 0 1 0 3
## 626 1 0 0 0 1 0 3
## 627 1 0 0 0 1 0 3
## 628 1 0 0 0 1 0 3
## 629 1 0 0 0 1 0 3
## 630 1 0 0 0 1 0 3
## 631 1 0 0 0 1 0 3
## 632 1 0 0 0 1 0 3
## 633 1 0 0 0 1 0 3
## 634 1 0 0 0 1 0 3
## 635 1 0 0 0 1 0 3
## 636 1 0 0 0 1 0 3
## 637 1 0 0 0 1 0 3
## 638 1 0 0 0 1 0 3
## 639 1 0 0 0 1 0 3
## 640 1 0 0 0 1 0 3
## 641 1 0 0 0 1 0 3
## 642 1 0 0 0 1 0 3
## 643 1 0 0 0 1 0 3
## 644 1 0 0 0 1 0 3
## 645 1 0 0 0 1 0 3
## 646 1 0 0 0 1 0 3
## 647 1 0 0 0 1 0 3
## 648 <NA> <NA> <NA> <NA> 1 <NA> 0
## 649 <NA> <NA> <NA> <NA> 1 <NA> 0
## 650 <NA> <NA> <NA> <NA> 1 <NA> 0
## 651 <NA> <NA> <NA> <NA> 1 <NA> 0
## 652 <NA> <NA> <NA> <NA> 1 <NA> 0
## 653 <NA> <NA> <NA> <NA> 1 <NA> 0
## 654 <NA> <NA> <NA> <NA> 1 <NA> 0
## 655 <NA> <NA> <NA> <NA> 1 <NA> 0
## 656 <NA> <NA> <NA> <NA> 1 <NA> 0
## 657 <NA> <NA> <NA> <NA> 0 <NA> <NA>
## 658 <NA> <NA> <NA> <NA> 0 <NA> <NA>
## 659 <NA> <NA> <NA> <NA> 0 <NA> <NA>
## 660 <NA> <NA> <NA> <NA> 0 <NA> <NA>
## 661 <NA> <NA> <NA> <NA> 0 <NA> <NA>
## 662 <NA> <NA> <NA> <NA> 0 <NA> <NA>
## 663 <NA> <NA> <NA> <NA> 0 <NA> <NA>
## 664 <NA> <NA> <NA> <NA> 0 <NA> <NA>
## 665 2 <NA> 1 <NA> <NA> <NA> <NA>
## 666 2 <NA> 1 <NA> <NA> <NA> <NA>
## 667 2 <NA> 1 <NA> <NA> <NA> <NA>
## 668 2 <NA> 1 <NA> <NA> <NA> <NA>
## 669 2 <NA> 1 <NA> <NA> <NA> <NA>
## 670 2 <NA> 1 <NA> <NA> <NA> <NA>
## 671 2 <NA> 1 <NA> <NA> <NA> <NA>
## 672 2 <NA> 1 <NA> <NA> <NA> <NA>
## 673 2 <NA> 1 <NA> <NA> <NA> <NA>
## 674 2 <NA> 1 <NA> <NA> <NA> <NA>
## 675 2 <NA> 1 <NA> <NA> <NA> <NA>
## 676 2 <NA> 1 <NA> <NA> <NA> <NA>
## 677 2 <NA> 1 <NA> <NA> <NA> <NA>
## 678 2 <NA> 1 <NA> <NA> <NA> <NA>
## 679 2 <NA> 1 <NA> <NA> <NA> <NA>
## 680 2 0 1 <NA> 1 <NA> <NA>
## 681 2 0 1 <NA> 1 <NA> <NA>
## 682 1 0 1 <NA> 1 <NA> <NA>
## 683 1 0 1 <NA> 1 <NA> <NA>
## canker.lesion fruiting.bodies ext.decay mycelium int.discolor sclerotia
## 1 1 1 1 0 0 0
## 2 1 1 1 0 0 0
## 3 0 1 1 0 0 0
## 4 0 1 1 0 0 0
## 5 1 1 1 0 0 0
## 6 0 1 1 0 0 0
## 7 1 1 1 0 0 0
## 8 1 1 1 0 0 0
## 9 1 1 1 0 0 0
## 10 1 1 1 0 0 0
## 11 3 0 0 0 2 1
## 12 3 0 0 0 2 1
## 13 3 0 0 0 2 1
## 14 3 0 0 0 2 1
## 15 3 0 0 0 2 1
## 16 3 0 0 0 2 1
## 17 3 0 0 0 2 1
## 18 3 0 0 0 2 1
## 19 3 0 0 0 2 1
## 20 3 0 0 0 2 1
## 21 1 0 1 1 0 0
## 22 1 0 1 0 0 0
## 23 1 0 1 1 0 0
## 24 1 0 1 0 0 0
## 25 1 0 1 0 0 0
## 26 1 0 1 0 0 0
## 27 1 0 1 0 0 0
## 28 1 0 1 0 0 0
## 29 1 0 1 0 0 0
## 30 1 0 1 0 0 0
## 31 2 0 1 0 0 0
## 32 2 <NA> 0 0 0 0
## 33 2 <NA> 0 0 0 0
## 34 2 0 0 0 0 0
## 35 2 <NA> 0 0 0 0
## 36 2 <NA> 0 0 0 0
## 37 2 0 0 0 0 0
## 38 2 0 0 0 0 0
## 39 2 <NA> 0 0 0 0
## 40 2 0 0 0 0 0
## 41 2 <NA> 0 0 0 0
## 42 2 <NA> 0 0 0 0
## 43 2 0 0 0 0 0
## 44 2 0 1 0 0 0
## 45 2 0 0 0 0 0
## 46 2 <NA> 0 0 0 0
## 47 2 0 0 0 0 0
## 48 2 <NA> 0 0 0 0
## 49 2 0 1 0 0 0
## 50 2 0 0 0 0 0
## 51 2 0 0 0 0 0
## 52 2 <NA> 0 0 0 0
## 53 2 <NA> 0 0 0 0
## 54 2 <NA> 0 0 0 0
## 55 2 <NA> 0 0 0 0
## 56 2 0 1 0 0 0
## 57 2 <NA> 0 0 0 0
## 58 2 <NA> 0 0 0 0
## 59 2 <NA> 0 0 0 0
## 60 2 <NA> 0 0 0 0
## 61 2 <NA> 0 0 0 0
## 62 2 <NA> 0 0 0 0
## 63 2 0 0 0 0 0
## 64 2 <NA> 0 0 0 0
## 65 2 <NA> 0 0 0 0
## 66 2 0 0 0 0 0
## 67 2 <NA> 0 0 0 0
## 68 2 <NA> 0 0 0 0
## 69 2 0 0 0 0 0
## 70 2 <NA> 0 0 0 0
## 71 0 0 0 0 1 0
## 72 0 0 0 0 1 0
## 73 3 0 0 0 1 0
## 74 0 0 0 0 1 0
## 75 0 0 0 0 1 0
## 76 0 0 0 0 1 0
## 77 3 0 0 0 1 0
## 78 3 0 0 0 1 0
## 79 3 0 0 0 1 0
## 80 3 0 0 0 1 0
## 81 3 0 0 0 1 0
## 82 3 0 0 0 1 0
## 83 0 0 0 0 1 0
## 84 3 0 0 0 1 0
## 85 0 0 0 0 1 0
## 86 0 0 0 0 1 0
## 87 0 0 0 0 1 0
## 88 0 0 0 0 1 0
## 89 0 0 0 0 1 0
## 90 0 0 0 0 1 0
## 91 0 0 0 0 0 0
## 92 0 0 0 0 0 0
## 93 0 0 0 0 0 0
## 94 0 0 0 0 0 0
## 95 0 0 0 0 0 0
## 96 0 0 0 0 0 0
## 97 0 0 0 0 0 0
## 98 0 0 0 0 0 0
## 99 0 0 0 0 0 0
## 100 0 0 0 0 0 0
## 101 0 0 0 0 0 0
## 102 0 0 0 0 0 0
## 103 0 0 0 0 0 0
## 104 0 0 0 0 0 0
## 105 0 0 0 0 0 0
## 106 0 0 0 0 0 0
## 107 0 0 0 0 0 0
## 108 0 0 0 0 0 0
## 109 0 0 0 0 0 0
## 110 0 0 0 0 0 0
## 111 0 0 0 0 0 0
## 112 0 0 0 0 0 0
## 113 0 0 0 0 0 0
## 114 0 0 0 0 0 0
## 115 0 0 0 0 0 0
## 116 0 0 0 0 0 0
## 117 0 0 0 0 0 0
## 118 0 0 0 0 0 0
## 119 0 0 0 0 0 0
## 120 0 0 0 0 0 0
## 121 1 1 0 0 0 0
## 122 0 0 0 0 0 0
## 123 0 0 0 0 0 0
## 124 1 1 0 0 0 0
## 125 0 0 0 0 0 0
## 126 1 1 0 0 0 0
## 127 0 0 0 0 0 0
## 128 0 0 0 0 0 0
## 129 0 0 0 0 0 0
## 130 0 0 0 0 0 0
## 131 1 1 0 0 0 0
## 132 0 0 0 0 0 0
## 133 3 1 1 0 0 0
## 134 0 0 0 0 0 0
## 135 0 0 0 0 0 0
## 136 0 0 0 0 0 0
## 137 1 1 0 0 0 0
## 138 1 1 0 0 0 0
## 139 1 1 0 0 0 0
## 140 0 0 0 0 0 0
## 141 3 1 1 0 0 0
## 142 0 0 0 0 0 0
## 143 0 0 0 0 0 0
## 144 1 1 0 0 0 0
## 145 3 1 1 0 0 0
## 146 1 1 0 0 0 0
## 147 0 0 0 0 0 0
## 148 1 1 0 0 0 0
## 149 0 0 0 0 0 0
## 150 3 1 1 0 0 0
## 151 0 0 0 0 0 0
## 152 0 0 0 0 0 0
## 153 0 0 0 0 0 0
## 154 0 0 0 0 0 0
## 155 0 0 0 0 0 0
## 156 0 0 0 0 0 0
## 157 0 0 0 0 0 0
## 158 0 0 0 0 0 0
## 159 0 0 0 0 0 0
## 160 0 0 0 0 0 0
## 161 0 0 0 0 0 0
## 162 0 0 0 0 0 0
## 163 0 0 0 0 0 0
## 164 0 0 0 0 0 0
## 165 0 0 0 0 0 0
## 166 0 0 0 0 0 0
## 167 0 0 0 0 0 0
## 168 0 0 0 0 0 0
## 169 0 0 0 0 0 0
## 170 0 0 0 0 0 0
## 171 3 0 0 0 0 0
## 172 3 0 0 0 0 0
## 173 3 0 0 0 0 0
## 174 3 0 0 0 0 0
## 175 3 0 0 0 0 0
## 176 3 0 0 0 0 0
## 177 3 0 0 0 0 0
## 178 3 0 0 0 0 0
## 179 3 0 0 0 0 0
## 180 3 0 0 0 0 0
## 181 2 0 0 0 0 0
## 182 1 1 1 0 0 0
## 183 2 1 0 0 0 0
## 184 1 0 1 0 0 0
## 185 2 1 1 0 0 0
## 186 1 1 1 0 0 0
## 187 2 1 0 0 0 0
## 188 2 0 1 0 0 0
## 189 2 1 0 0 0 0
## 190 2 1 1 0 0 0
## 191 2 1 1 0 0 0
## 192 2 0 1 0 0 0
## 193 1 1 1 0 0 0
## 194 2 0 0 0 0 0
## 195 2 1 0 0 0 0
## 196 1 1 1 0 0 0
## 197 2 1 0 0 0 0
## 198 2 1 1 0 0 0
## 199 2 0 0 0 0 0
## 200 2 0 0 0 0 0
## 201 0 0 0 0 0 0
## 202 0 0 0 0 0 0
## 203 0 0 0 0 0 0
## 204 0 0 0 0 0 0
## 205 0 0 0 0 0 0
## 206 0 0 0 0 0 0
## 207 0 0 0 0 0 0
## 208 0 0 0 0 0 0
## 209 0 0 0 0 0 0
## 210 0 0 0 0 0 0
## 211 0 0 0 0 0 0
## 212 0 0 0 0 0 0
## 213 0 0 0 0 0 0
## 214 0 0 0 0 0 0
## 215 0 0 0 0 0 0
## 216 0 0 0 0 0 0
## 217 0 0 0 0 0 0
## 218 0 0 0 0 0 0
## 219 0 0 0 0 0 0
## 220 0 0 0 0 0 0
## 221 0 0 0 0 0 0
## 222 0 0 0 0 0 0
## 223 0 0 0 0 0 0
## 224 0 0 0 0 0 0
## 225 0 0 0 0 0 0
## 226 0 0 0 0 0 0
## 227 0 0 0 0 0 0
## 228 0 0 0 0 0 0
## 229 0 0 0 0 0 0
## 230 0 0 0 0 0 0
## 231 0 0 0 0 0 0
## 232 0 0 0 0 0 0
## 233 0 0 0 0 0 0
## 234 0 0 0 0 0 0
## 235 0 0 0 0 0 0
## 236 0 0 0 0 0 0
## 237 0 0 0 0 0 0
## 238 0 0 0 0 0 0
## 239 0 0 0 0 0 0
## 240 0 0 0 0 0 0
## 241 0 0 0 0 0 0
## 242 0 0 0 0 0 0
## 243 0 0 0 0 0 0
## 244 0 0 0 0 0 0
## 245 0 0 0 0 0 0
## 246 0 0 0 0 0 0
## 247 0 0 0 0 0 0
## 248 0 0 0 0 0 0
## 249 0 0 0 0 0 0
## 250 0 0 0 0 0 0
## 251 2 1 1 0 0 0
## 252 0 0 0 0 0 0
## 253 1 0 1 0 0 0
## 254 0 0 0 0 0 0
## 255 2 0 1 0 0 0
## 256 0 0 0 0 0 0
## 257 2 0 1 0 0 0
## 258 2 0 1 0 0 0
## 259 0 0 0 0 0 0
## 260 2 0 1 0 0 0
## 261 2 0 1 0 0 0
## 262 0 0 0 0 0 0
## 263 2 0 1 0 0 0
## 264 1 0 1 0 0 0
## 265 2 0 1 0 0 0
## 266 1 0 1 0 0 0
## 267 2 0 1 0 0 0
## 268 2 0 1 0 0 0
## 269 2 0 1 0 0 0
## 270 1 0 1 0 0 0
## 271 0 0 0 0 0 0
## 272 2 1 0 0 0 0
## 273 0 1 0 0 0 0
## 274 1 0 1 0 0 0
## 275 0 0 0 0 0 0
## 276 0 0 0 0 0 0
## 277 2 0 1 0 0 0
## 278 0 0 0 0 0 0
## 279 2 0 1 0 0 0
## 280 2 0 1 0 0 0
## 281 2 0 1 0 0 0
## 282 0 0 0 0 0 0
## 283 1 0 1 0 0 0
## 284 0 0 0 0 0 0
## 285 0 0 0 0 0 0
## 286 0 0 0 0 0 0
## 287 2 0 1 0 0 0
## 288 2 0 1 0 0 0
## 289 2 0 1 0 0 0
## 290 2 0 1 0 0 0
## 291 0 1 0 0 0 0
## 292 0 1 0 0 0 0
## 293 0 1 0 0 0 0
## 294 0 1 0 0 0 0
## 295 0 1 0 0 0 0
## 296 0 1 0 0 0 0
## 297 <NA> <NA> <NA> <NA> <NA> <NA>
## 298 <NA> <NA> <NA> <NA> <NA> <NA>
## 299 <NA> <NA> <NA> <NA> <NA> <NA>
## 300 <NA> <NA> <NA> <NA> <NA> <NA>
## 301 <NA> <NA> <NA> <NA> <NA> <NA>
## 302 <NA> <NA> <NA> <NA> <NA> <NA>
## 303 <NA> <NA> <NA> <NA> <NA> <NA>
## 304 <NA> <NA> <NA> <NA> <NA> <NA>
## 305 <NA> <NA> <NA> <NA> <NA> <NA>
## 306 <NA> <NA> <NA> <NA> <NA> <NA>
## 307 <NA> <NA> <NA> <NA> <NA> <NA>
## 308 1 1 1 0 0 0
## 309 0 1 1 0 0 0
## 310 1 1 1 0 0 0
## 311 0 1 1 0 0 0
## 312 0 1 1 0 0 0
## 313 0 1 1 0 0 0
## 314 0 1 1 0 0 0
## 315 0 1 1 0 0 0
## 316 0 1 1 0 0 0
## 317 1 1 1 0 0 0
## 318 3 0 0 0 2 1
## 319 3 0 0 0 2 1
## 320 3 0 0 0 2 1
## 321 3 0 0 0 2 1
## 322 3 0 0 0 2 1
## 323 3 0 0 0 2 1
## 324 3 0 0 0 2 1
## 325 3 0 0 0 2 1
## 326 3 0 0 0 2 1
## 327 3 0 0 0 2 1
## 328 1 0 1 0 0 0
## 329 1 0 1 0 0 0
## 330 1 0 1 0 0 0
## 331 1 0 1 0 0 0
## 332 1 0 1 0 0 0
## 333 1 0 1 0 0 0
## 334 1 0 1 1 0 0
## 335 1 0 1 1 0 0
## 336 1 0 1 1 0 0
## 337 1 0 1 1 0 0
## 338 2 0 0 0 0 0
## 339 2 0 0 0 0 0
## 340 2 0 1 0 0 0
## 341 2 0 1 0 0 0
## 342 2 <NA> 0 0 0 0
## 343 2 <NA> 0 0 0 0
## 344 2 <NA> 0 0 0 0
## 345 2 <NA> 0 0 0 0
## 346 2 <NA> 2 0 0 0
## 347 2 <NA> 0 0 0 0
## 348 2 <NA> 2 0 0 0
## 349 2 <NA> 0 0 0 0
## 350 2 <NA> 0 0 0 0
## 351 2 <NA> 0 0 0 0
## 352 2 <NA> 2 0 0 0
## 353 2 <NA> 2 0 0 0
## 354 2 <NA> 2 0 0 0
## 355 2 <NA> 2 0 0 0
## 356 2 <NA> 0 0 0 0
## 357 2 <NA> 0 0 0 0
## 358 2 <NA> 2 0 0 0
## 359 2 <NA> 0 0 0 0
## 360 2 <NA> 0 0 0 0
## 361 2 <NA> 0 0 0 0
## 362 2 <NA> 2 0 0 0
## 363 2 <NA> 0 0 0 0
## 364 2 <NA> 0 0 0 0
## 365 2 <NA> 0 0 0 0
## 366 2 <NA> 2 0 0 0
## 367 2 <NA> 0 0 0 0
## 368 2 <NA> 0 0 0 0
## 369 2 <NA> 2 0 0 0
## 370 2 <NA> 0 0 0 0
## 371 2 <NA> 0 0 0 0
## 372 2 <NA> 2 0 0 0
## 373 2 <NA> 0 0 0 0
## 374 2 <NA> 0 0 0 0
## 375 2 <NA> 0 0 0 0
## 376 2 <NA> 2 0 0 0
## 377 2 <NA> 0 0 0 0
## 378 2 <NA> 0 0 0 0
## 379 2 <NA> 0 0 0 0
## 380 2 <NA> 2 0 0 0
## 381 2 <NA> 0 0 0 0
## 382 2 <NA> 0 0 0 0
## 383 2 <NA> 0 0 0 0
## 384 2 <NA> 0 0 0 0
## 385 2 <NA> 0 0 0 0
## 386 3 0 0 0 1 0
## 387 3 0 0 0 1 0
## 388 3 0 0 0 1 0
## 389 3 0 0 0 1 0
## 390 3 0 0 0 1 0
## 391 3 0 0 0 1 0
## 392 0 0 0 0 1 0
## 393 0 0 0 0 1 0
## 394 0 0 0 0 1 0
## 395 0 0 0 0 1 0
## 396 0 0 0 0 1 0
## 397 3 0 0 0 1 0
## 398 3 0 0 0 1 0
## 399 3 0 0 0 1 0
## 400 3 0 0 0 1 0
## 401 3 0 0 0 1 0
## 402 3 0 0 0 1 0
## 403 0 0 0 0 1 0
## 404 0 0 0 0 1 0
## 405 0 0 0 0 1 0
## 406 0 0 0 0 1 0
## 407 0 0 0 0 1 0
## 408 0 0 0 0 1 0
## 409 0 0 0 0 1 0
## 410 0 0 0 0 0 0
## 411 0 0 0 0 0 0
## 412 0 0 0 0 0 0
## 413 0 0 0 0 0 0
## 414 0 0 0 0 0 0
## 415 0 0 0 0 0 0
## 416 0 0 0 0 0 0
## 417 0 0 0 0 0 0
## 418 0 0 0 0 0 0
## 419 0 0 0 0 0 0
## 420 0 0 0 0 0 0
## 421 0 0 0 0 0 0
## 422 0 0 0 0 0 0
## 423 0 0 0 0 0 0
## 424 0 0 0 0 0 0
## 425 0 0 0 0 0 0
## 426 0 0 0 0 0 0
## 427 0 0 0 0 0 0
## 428 0 0 0 0 0 0
## 429 0 0 0 0 0 0
## 430 1 1 0 0 0 0
## 431 0 0 0 0 0 0
## 432 0 0 0 0 0 0
## 433 0 0 0 0 0 0
## 434 1 1 0 0 0 0
## 435 3 1 1 0 0 0
## 436 0 0 0 0 0 0
## 437 0 0 0 0 0 0
## 438 0 0 0 0 0 0
## 439 1 0 0 0 0 0
## 440 0 0 0 0 0 0
## 441 0 0 0 0 0 0
## 442 0 0 0 0 0 0
## 443 1 0 0 0 0 0
## 444 1 1 0 0 0 0
## 445 0 0 0 0 0 0
## 446 0 0 0 0 0 0
## 447 0 0 0 0 0 0
## 448 0 0 0 0 0 0
## 449 0 0 0 0 0 0
## 450 0 0 0 0 0 0
## 451 0 0 0 0 0 0
## 452 1 1 0 0 0 0
## 453 1 1 0 0 0 0
## 454 1 1 0 0 0 0
## 455 0 0 0 0 0 0
## 456 0 0 0 0 0 0
## 457 1 1 0 0 0 0
## 458 0 0 0 0 0 0
## 459 0 0 0 0 0 0
## 460 1 1 0 0 0 0
## 461 0 0 0 0 0 0
## 462 0 0 0 0 0 0
## 463 1 1 0 0 0 0
## 464 0 0 0 0 0 0
## 465 0 0 0 0 0 0
## 466 1 1 0 0 0 0
## 467 1 1 0 0 0 0
## 468 1 1 0 0 0 0
## 469 0 0 0 0 0 0
## 470 0 0 0 0 0 0
## 471 1 1 0 0 0 0
## 472 1 1 0 0 0 0
## 473 1 1 0 0 0 0
## 474 0 0 0 0 0 0
## 475 0 0 0 0 0 0
## 476 1 1 0 0 0 0
## 477 1 1 0 0 0 0
## 478 1 1 0 0 0 0
## 479 1 1 0 0 0 0
## 480 1 1 0 0 0 0
## 481 1 1 0 0 0 0
## 482 0 0 0 0 0 0
## 483 0 0 0 0 0 0
## 484 0 0 0 0 0 0
## 485 0 0 0 0 0 0
## 486 0 0 0 0 0 0
## 487 0 0 0 0 0 0
## 488 0 0 0 0 0 0
## 489 0 0 0 0 0 0
## 490 0 0 0 0 0 0
## 491 0 0 0 0 0 0
## 492 0 0 0 0 0 0
## 493 0 0 0 0 0 0
## 494 0 0 0 0 0 0
## 495 0 0 0 0 0 0
## 496 0 0 0 0 0 0
## 497 0 0 0 0 0 0
## 498 0 0 0 0 0 0
## 499 0 0 0 0 0 0
## 500 0 0 0 0 0 0
## 501 0 0 0 0 0 0
## 502 3 0 0 0 0 0
## 503 3 0 0 0 0 0
## 504 3 0 0 0 0 0
## 505 3 0 0 0 0 0
## 506 3 0 0 0 0 0
## 507 3 0 0 0 0 0
## 508 3 0 0 0 0 0
## 509 3 0 0 0 0 0
## 510 3 0 0 0 0 0
## 511 3 0 0 0 0 0
## 512 1 0 1 0 0 0
## 513 1 0 1 0 0 0
## 514 1 1 1 0 0 0
## 515 1 0 1 0 0 0
## 516 2 1 1 0 0 0
## 517 2 1 0 0 0 0
## 518 2 1 0 0 0 0
## 519 2 1 0 0 0 0
## 520 2 1 0 0 0 0
## 521 2 1 0 0 0 0
## 522 2 0 0 0 0 0
## 523 2 1 1 0 0 0
## 524 2 1 1 0 0 0
## 525 1 1 1 0 0 0
## 526 2 1 1 0 0 0
## 527 2 0 0 0 0 0
## 528 2 1 0 0 0 0
## 529 2 1 0 0 0 0
## 530 2 0 0 0 0 0
## 531 2 1 0 0 0 0
## 532 2 1 0 0 0 0
## 533 2 1 0 0 0 0
## 534 2 0 0 0 0 0
## 535 2 1 0 0 0 0
## 536 0 0 0 0 0 0
## 537 0 0 0 0 0 0
## 538 0 0 0 0 0 0
## 539 0 0 0 0 0 0
## 540 0 0 0 0 0 0
## 541 0 0 0 0 0 0
## 542 0 0 0 0 0 0
## 543 0 0 0 0 0 0
## 544 0 0 0 0 0 0
## 545 0 0 0 0 0 0
## 546 0 0 0 0 0 0
## 547 0 0 0 0 0 0
## 548 0 0 0 0 0 0
## 549 0 0 0 0 0 0
## 550 0 0 0 0 0 0
## 551 0 0 0 0 0 0
## 552 0 0 0 0 0 0
## 553 0 0 0 0 0 0
## 554 0 0 0 0 0 0
## 555 0 0 0 0 0 0
## 556 0 0 0 0 0 0
## 557 0 0 0 0 0 0
## 558 0 0 0 0 0 0
## 559 0 0 0 0 0 0
## 560 0 0 0 0 0 0
## 561 0 0 0 0 0 0
## 562 0 0 0 0 0 0
## 563 0 0 0 0 0 0
## 564 0 0 0 0 0 0
## 565 0 0 0 0 0 0
## 566 0 0 0 0 0 0
## 567 0 0 0 0 0 0
## 568 0 0 0 0 0 0
## 569 0 0 0 0 0 0
## 570 0 0 0 0 0 0
## 571 0 0 0 0 0 0
## 572 0 0 0 0 0 0
## 573 0 0 0 0 0 0
## 574 0 0 0 0 0 0
## 575 0 0 0 0 0 0
## 576 0 0 0 0 0 0
## 577 0 0 0 0 0 0
## 578 0 0 0 0 0 0
## 579 0 0 0 0 0 0
## 580 0 0 0 0 0 0
## 581 0 0 0 0 0 0
## 582 0 0 0 0 0 0
## 583 0 0 0 0 0 0
## 584 0 0 0 0 0 0
## 585 0 0 0 0 0 0
## 586 0 0 0 0 0 0
## 587 0 0 0 0 0 0
## 588 0 0 0 0 0 0
## 589 0 0 0 0 0 0
## 590 0 0 0 0 0 0
## 591 0 0 0 0 0 0
## 592 0 0 0 0 0 0
## 593 0 0 0 0 0 0
## 594 0 0 0 0 0 0
## 595 0 0 0 0 0 0
## 596 0 0 0 0 0 0
## 597 2 0 1 0 0 0
## 598 2 0 1 0 0 0
## 599 0 0 0 0 0 0
## 600 0 0 0 0 0 0
## 601 0 0 0 0 0 0
## 602 2 0 1 0 0 0
## 603 0 0 0 0 0 0
## 604 0 0 0 0 0 0
## 605 0 0 0 0 0 0
## 606 0 0 1 0 0 0
## 607 0 0 0 0 0 0
## 608 1 0 0 0 0 0
## 609 1 0 1 0 0 0
## 610 1 0 1 0 0 0
## 611 0 0 0 0 0 0
## 612 0 0 0 0 0 0
## 613 0 0 0 0 0 0
## 614 1 0 1 0 0 0
## 615 0 0 0 0 0 0
## 616 2 0 1 0 0 0
## 617 2 0 1 0 0 0
## 618 2 0 1 0 0 0
## 619 2 0 1 0 0 0
## 620 2 0 1 0 0 0
## 621 2 0 1 0 0 0
## 622 2 0 1 0 0 0
## 623 2 0 1 0 0 0
## 624 2 0 1 0 0 0
## 625 2 0 1 0 0 0
## 626 2 0 1 0 0 0
## 627 2 0 1 0 0 0
## 628 2 0 1 0 0 0
## 629 2 0 1 0 0 0
## 630 2 0 1 0 0 0
## 631 2 0 1 0 0 0
## 632 2 0 1 0 0 0
## 633 2 0 1 0 0 0
## 634 2 0 1 0 0 0
## 635 2 0 1 0 0 0
## 636 2 0 1 0 0 0
## 637 2 0 1 0 0 0
## 638 2 0 1 0 0 0
## 639 2 0 1 0 0 0
## 640 2 0 1 0 0 0
## 641 2 0 1 0 0 0
## 642 2 0 1 0 0 0
## 643 2 0 1 0 0 0
## 644 2 0 1 0 0 0
## 645 2 0 1 0 0 0
## 646 2 0 1 0 0 0
## 647 2 0 1 0 0 0
## 648 0 1 0 0 0 0
## 649 0 1 0 0 0 0
## 650 0 1 0 0 0 0
## 651 0 1 0 0 0 0
## 652 0 1 0 0 0 0
## 653 0 1 0 0 0 0
## 654 0 1 0 0 0 0
## 655 0 1 0 0 0 0
## 656 0 1 0 0 0 0
## 657 <NA> <NA> <NA> <NA> <NA> <NA>
## 658 <NA> <NA> <NA> <NA> <NA> <NA>
## 659 <NA> <NA> <NA> <NA> <NA> <NA>
## 660 <NA> <NA> <NA> <NA> <NA> <NA>
## 661 <NA> <NA> <NA> <NA> <NA> <NA>
## 662 <NA> <NA> <NA> <NA> <NA> <NA>
## 663 <NA> <NA> <NA> <NA> <NA> <NA>
## 664 <NA> <NA> <NA> <NA> <NA> <NA>
## 665 <NA> <NA> <NA> <NA> <NA> <NA>
## 666 <NA> <NA> <NA> <NA> <NA> <NA>
## 667 <NA> <NA> <NA> <NA> <NA> <NA>
## 668 <NA> <NA> <NA> <NA> <NA> <NA>
## 669 <NA> <NA> <NA> <NA> <NA> <NA>
## 670 <NA> <NA> <NA> <NA> <NA> <NA>
## 671 <NA> <NA> <NA> <NA> <NA> <NA>
## 672 <NA> <NA> <NA> <NA> <NA> <NA>
## 673 <NA> <NA> <NA> <NA> <NA> <NA>
## 674 <NA> <NA> <NA> <NA> <NA> <NA>
## 675 <NA> <NA> <NA> <NA> <NA> <NA>
## 676 <NA> <NA> <NA> <NA> <NA> <NA>
## 677 <NA> <NA> <NA> <NA> <NA> <NA>
## 678 <NA> <NA> <NA> <NA> <NA> <NA>
## 679 <NA> <NA> <NA> <NA> <NA> <NA>
## 680 <NA> <NA> <NA> <NA> <NA> <NA>
## 681 <NA> <NA> <NA> <NA> <NA> <NA>
## 682 <NA> <NA> <NA> <NA> <NA> <NA>
## 683 <NA> <NA> <NA> <NA> <NA> <NA>
## fruit.pods fruit.spots seed mold.growth seed.discolor seed.size shriveling
## 1 0 4 0 0 0 0 0
## 2 0 4 0 0 0 0 0
## 3 0 4 0 0 0 0 0
## 4 0 4 0 0 0 0 0
## 5 0 4 0 0 0 0 0
## 6 0 4 0 0 0 0 0
## 7 0 4 0 0 0 0 0
## 8 0 4 0 0 0 0 0
## 9 0 4 0 0 0 0 0
## 10 0 4 0 0 0 0 0
## 11 0 4 0 0 0 0 0
## 12 0 4 0 0 0 0 0
## 13 0 4 0 0 0 0 0
## 14 0 4 0 0 0 0 0
## 15 0 4 0 0 0 0 0
## 16 0 4 0 0 0 0 0
## 17 0 4 0 0 0 0 0
## 18 0 4 0 0 0 0 0
## 19 0 4 0 0 0 0 0
## 20 0 4 0 0 0 0 0
## 21 3 4 0 0 0 0 0
## 22 3 4 0 0 0 0 0
## 23 3 4 0 0 0 0 0
## 24 3 4 0 0 0 0 0
## 25 3 4 0 0 0 0 0
## 26 3 4 0 0 0 0 0
## 27 3 4 0 0 0 0 0
## 28 3 4 0 0 0 0 0
## 29 3 4 0 0 0 0 0
## 30 3 4 0 0 0 0 0
## 31 3 4 0 0 0 0 0
## 32 <NA> <NA> <NA> <NA> <NA> <NA> <NA>
## 33 <NA> <NA> <NA> <NA> <NA> <NA> <NA>
## 34 3 4 0 0 0 0 0
## 35 <NA> <NA> <NA> <NA> <NA> <NA> <NA>
## 36 <NA> <NA> <NA> <NA> <NA> <NA> <NA>
## 37 3 4 0 0 0 0 0
## 38 3 4 0 0 0 0 0
## 39 <NA> <NA> <NA> <NA> <NA> <NA> <NA>
## 40 3 4 0 0 0 0 0
## 41 <NA> <NA> <NA> <NA> <NA> <NA> <NA>
## 42 <NA> <NA> <NA> <NA> <NA> <NA> <NA>
## 43 3 4 0 0 0 0 0
## 44 3 4 0 0 0 0 0
## 45 3 4 0 0 0 0 0
## 46 <NA> <NA> <NA> <NA> <NA> <NA> <NA>
## 47 3 4 0 0 0 0 0
## 48 <NA> <NA> <NA> <NA> <NA> <NA> <NA>
## 49 3 4 0 0 0 0 0
## 50 3 4 0 0 0 0 0
## 51 3 4 0 0 0 0 0
## 52 <NA> <NA> <NA> <NA> <NA> <NA> <NA>
## 53 <NA> <NA> <NA> <NA> <NA> <NA> <NA>
## 54 <NA> <NA> <NA> <NA> <NA> <NA> <NA>
## 55 <NA> <NA> <NA> <NA> <NA> <NA> <NA>
## 56 3 4 0 0 0 0 0
## 57 <NA> <NA> <NA> <NA> <NA> <NA> <NA>
## 58 <NA> <NA> <NA> <NA> <NA> <NA> <NA>
## 59 <NA> <NA> <NA> <NA> <NA> <NA> <NA>
## 60 <NA> <NA> <NA> <NA> <NA> <NA> <NA>
## 61 <NA> <NA> <NA> <NA> <NA> <NA> <NA>
## 62 <NA> <NA> <NA> <NA> <NA> <NA> <NA>
## 63 3 4 0 0 0 0 0
## 64 <NA> <NA> <NA> <NA> <NA> <NA> <NA>
## 65 <NA> <NA> <NA> <NA> <NA> <NA> <NA>
## 66 3 4 0 0 0 0 0
## 67 <NA> <NA> <NA> <NA> <NA> <NA> <NA>
## 68 <NA> <NA> <NA> <NA> <NA> <NA> <NA>
## 69 3 4 0 0 0 0 0
## 70 <NA> <NA> <NA> <NA> <NA> <NA> <NA>
## 71 0 0 0 0 0 0 0
## 72 0 0 0 0 0 0 0
## 73 0 4 0 0 0 0 0
## 74 0 0 0 0 0 0 0
## 75 0 0 0 0 0 0 0
## 76 0 0 0 0 0 0 0
## 77 0 4 0 0 0 0 0
## 78 0 4 0 0 0 0 0
## 79 0 4 0 0 0 0 0
## 80 0 4 0 0 0 0 0
## 81 0 4 0 0 0 0 0
## 82 0 4 0 0 0 0 0
## 83 0 0 0 0 0 0 0
## 84 0 4 0 0 0 0 0
## 85 0 0 0 0 0 0 0
## 86 0 0 0 0 0 0 0
## 87 0 0 0 0 0 0 0
## 88 0 0 0 0 0 0 0
## 89 0 0 0 0 0 0 0
## 90 0 0 0 0 0 0 0
## 91 0 0 0 0 0 0 0
## 92 0 0 0 0 0 0 0
## 93 0 0 0 0 0 0 0
## 94 0 0 0 0 0 0 0
## 95 0 0 0 0 0 0 0
## 96 0 0 0 0 0 0 0
## 97 0 0 0 0 0 0 0
## 98 0 0 0 0 0 0 0
## 99 0 0 0 0 0 0 0
## 100 0 0 0 0 0 0 0
## 101 0 0 1 1 0 0 0
## 102 0 0 1 1 0 0 0
## 103 0 0 1 1 0 0 0
## 104 0 0 1 1 0 0 0
## 105 0 0 1 1 0 0 0
## 106 0 0 1 1 0 0 0
## 107 0 0 1 1 0 0 0
## 108 0 0 1 1 0 0 0
## 109 0 0 1 1 0 0 0
## 110 0 0 1 1 0 0 0
## 111 0 0 0 0 0 0 0
## 112 0 0 0 0 0 0 0
## 113 0 0 0 0 0 0 0
## 114 0 0 0 0 0 0 0
## 115 0 0 0 0 0 0 0
## 116 0 0 0 0 0 0 0
## 117 0 0 0 0 0 0 0
## 118 0 0 0 0 0 0 0
## 119 0 0 0 0 0 0 0
## 120 0 0 0 0 0 0 0
## 121 0 0 0 0 0 0 0
## 122 0 0 0 0 0 0 0
## 123 0 0 0 0 0 0 0
## 124 0 0 0 0 0 0 0
## 125 0 0 0 0 0 0 0
## 126 0 0 0 0 0 0 0
## 127 0 0 0 0 0 0 0
## 128 0 0 0 0 0 0 0
## 129 0 0 0 0 0 0 0
## 130 0 0 0 0 0 0 0
## 131 0 0 0 0 0 0 0
## 132 0 0 0 0 0 0 0
## 133 0 0 0 0 0 0 0
## 134 0 0 0 0 0 0 0
## 135 0 0 0 0 0 0 0
## 136 0 0 0 0 0 0 0
## 137 0 0 0 0 0 0 0
## 138 0 1 0 0 0 0 0
## 139 0 0 0 0 0 0 0
## 140 0 0 0 0 0 0 0
## 141 0 0 0 0 0 0 0
## 142 0 0 0 0 0 0 0
## 143 0 0 0 0 0 0 0
## 144 0 0 0 0 0 0 0
## 145 0 0 0 0 0 0 0
## 146 0 0 0 0 0 0 0
## 147 0 0 0 0 0 0 0
## 148 0 0 0 0 0 0 0
## 149 0 0 0 0 0 0 0
## 150 0 0 0 0 0 0 0
## 151 0 0 0 0 0 0 0
## 152 0 0 0 0 0 0 0
## 153 0 0 0 0 0 0 0
## 154 0 0 0 0 0 0 0
## 155 0 0 0 0 0 0 0
## 156 0 0 0 0 0 0 0
## 157 0 0 0 0 0 0 0
## 158 0 0 0 0 0 0 0
## 159 0 0 0 0 0 0 0
## 160 0 0 0 0 0 0 0
## 161 0 0 0 0 0 0 0
## 162 0 0 1 1 1 0 0
## 163 0 0 0 0 0 0 0
## 164 0 0 0 0 0 1 0
## 165 0 0 1 1 1 1 0
## 166 0 0 0 0 0 0 0
## 167 0 0 1 1 1 1 0
## 168 0 0 0 0 0 1 0
## 169 0 0 1 1 1 1 0
## 170 0 0 0 0 0 0 0
## 171 1 1 1 0 1 0 0
## 172 1 1 1 0 1 0 0
## 173 0 0 1 0 1 0 0
## 174 0 0 1 0 1 0 0
## 175 0 0 1 0 1 0 0
## 176 1 1 1 0 1 0 0
## 177 0 0 1 0 1 0 0
## 178 0 0 1 0 1 0 0
## 179 1 1 1 0 1 0 0
## 180 0 0 1 0 1 0 0
## 181 1 2 0 0 0 0 0
## 182 1 2 1 1 1 0 1
## 183 1 2 1 1 0 1 1
## 184 0 0 0 0 0 0 0
## 185 1 2 1 1 1 0 0
## 186 1 2 0 0 0 0 0
## 187 1 2 1 1 0 1 1
## 188 0 0 1 0 1 0 0
## 189 1 2 1 1 0 1 1
## 190 1 2 1 1 1 0 0
## 191 1 2 0 0 0 0 0
## 192 0 0 1 1 0 1 0
## 193 1 2 1 0 1 1 1
## 194 1 2 1 1 0 1 1
## 195 1 2 0 0 0 0 0
## 196 1 2 0 0 0 0 0
## 197 1 2 1 1 0 1 1
## 198 1 2 0 0 0 0 0
## 199 1 2 1 1 0 1 1
## 200 1 2 1 1 0 1 1
## 201 0 0 0 0 0 0 0
## 202 0 0 0 0 0 0 0
## 203 0 0 0 0 0 0 0
## 204 0 0 0 0 0 0 0
## 205 0 0 0 0 0 0 0
## 206 0 0 0 0 0 0 0
## 207 0 0 0 0 0 0 0
## 208 0 0 0 0 0 0 0
## 209 0 0 0 0 0 0 0
## 210 0 0 0 0 0 0 0
## 211 0 0 0 0 0 0 0
## 212 0 0 0 0 0 0 0
## 213 0 0 0 0 0 0 0
## 214 0 0 0 0 0 0 0
## 215 0 0 1 0 1 0 0
## 216 0 0 0 0 0 0 0
## 217 0 0 0 0 0 0 0
## 218 0 0 0 0 0 0 0
## 219 0 0 0 0 0 0 0
## 220 0 0 0 0 0 0 0
## 221 0 0 0 0 0 0 0
## 222 0 0 0 0 0 0 0
## 223 0 0 0 0 0 0 0
## 224 0 0 0 0 0 0 0
## 225 0 0 0 0 0 0 0
## 226 0 0 0 0 0 0 0
## 227 0 0 0 0 0 0 0
## 228 0 0 0 0 0 0 0
## 229 0 0 0 0 0 0 0
## 230 0 0 0 0 0 0 0
## 231 0 0 0 0 0 0 0
## 232 0 0 0 0 0 0 0
## 233 0 0 0 0 0 0 0
## 234 0 0 1 0 1 0 0
## 235 0 0 0 0 0 0 0
## 236 0 0 0 0 0 0 0
## 237 0 0 0 0 0 0 0
## 238 0 0 0 0 0 0 0
## 239 0 0 0 0 0 0 0
## 240 0 0 0 0 0 0 0
## 241 0 0 0 0 0 0 0
## 242 0 0 0 0 0 0 0
## 243 0 0 0 0 0 0 0
## 244 0 0 0 0 0 0 0
## 245 0 0 0 0 0 0 0
## 246 0 0 0 0 0 0 0
## 247 0 0 0 0 0 0 0
## 248 0 0 0 0 0 0 0
## 249 0 0 0 0 0 0 0
## 250 0 0 0 0 0 0 0
## 251 1 2 1 0 0 0 0
## 252 0 0 0 0 0 0 0
## 253 0 0 0 0 0 0 0
## 254 0 0 0 0 0 0 0
## 255 1 1 0 0 0 0 0
## 256 0 0 0 0 0 0 0
## 257 1 1 0 0 0 0 0
## 258 1 1 0 0 0 0 0
## 259 0 0 0 0 0 0 0
## 260 1 1 0 0 0 0 0
## 261 1 1 0 0 0 0 0
## 262 0 0 0 0 0 0 0
## 263 1 1 0 0 0 0 0
## 264 1 1 0 0 0 0 0
## 265 1 1 0 0 0 0 0
## 266 1 1 0 0 0 0 0
## 267 1 1 0 0 0 0 0
## 268 1 1 0 0 0 0 0
## 269 1 1 0 0 0 0 0
## 270 1 1 0 0 0 0 0
## 271 0 0 0 0 0 0 0
## 272 1 2 1 0 1 1 1
## 273 1 1 0 0 0 0 0
## 274 1 1 0 0 0 0 0
## 275 0 0 0 0 0 0 0
## 276 0 0 0 0 0 0 0
## 277 1 1 0 0 0 0 0
## 278 0 0 0 0 0 0 0
## 279 1 1 0 0 0 0 0
## 280 1 1 0 0 0 0 0
## 281 1 1 0 0 0 0 0
## 282 0 0 0 0 0 0 0
## 283 1 1 0 0 0 0 0
## 284 0 0 0 0 0 0 0
## 285 0 0 0 0 0 0 0
## 286 0 0 0 0 0 0 0
## 287 1 1 0 0 0 0 0
## 288 1 1 0 0 0 0 0
## 289 1 1 0 0 0 0 0
## 290 1 1 0 0 0 0 0
## 291 1 2 0 1 1 1 1
## 292 1 2 1 1 1 1 1
## 293 1 2 1 1 1 1 1
## 294 1 2 0 1 1 1 1
## 295 1 2 1 1 1 1 1
## 296 1 2 1 1 1 1 1
## 297 2 <NA> 1 0 <NA> 1 <NA>
## 298 2 <NA> 1 0 <NA> 1 <NA>
## 299 2 <NA> 1 0 <NA> 1 <NA>
## 300 2 <NA> 1 0 <NA> 1 <NA>
## 301 2 <NA> 1 0 <NA> 1 <NA>
## 302 2 <NA> 1 0 <NA> 1 <NA>
## 303 <NA> <NA> <NA> <NA> <NA> <NA> <NA>
## 304 3 <NA> <NA> <NA> <NA> <NA> <NA>
## 305 3 <NA> <NA> <NA> <NA> <NA> <NA>
## 306 3 <NA> <NA> <NA> <NA> <NA> <NA>
## 307 3 <NA> <NA> <NA> <NA> <NA> <NA>
## 308 0 4 0 0 0 0 0
## 309 0 4 0 0 0 0 0
## 310 0 4 0 0 0 0 0
## 311 0 4 0 0 0 0 0
## 312 0 4 0 0 0 0 0
## 313 0 4 0 0 0 0 0
## 314 0 4 0 0 0 0 0
## 315 0 4 0 0 0 0 0
## 316 0 4 0 0 0 0 0
## 317 0 4 0 0 0 0 0
## 318 0 4 0 0 0 0 0
## 319 0 4 0 0 0 0 0
## 320 0 4 0 0 0 0 0
## 321 0 4 0 0 0 0 0
## 322 0 4 0 0 0 0 0
## 323 0 4 0 0 0 0 0
## 324 0 4 0 0 0 0 0
## 325 0 4 0 0 0 0 0
## 326 0 4 0 0 0 0 0
## 327 0 4 0 0 0 0 0
## 328 3 4 0 0 0 0 0
## 329 3 4 0 0 0 0 0
## 330 3 4 0 0 0 0 0
## 331 3 4 0 0 0 0 0
## 332 3 4 0 0 0 0 0
## 333 3 4 0 0 0 0 0
## 334 3 4 0 0 0 0 0
## 335 3 4 0 0 0 0 0
## 336 3 4 0 0 0 0 0
## 337 3 4 0 0 0 0 0
## 338 3 4 0 0 0 0 0
## 339 3 4 0 0 0 0 0
## 340 3 4 0 0 0 0 0
## 341 3 4 0 0 0 0 0
## 342 <NA> <NA> <NA> <NA> <NA> <NA> <NA>
## 343 <NA> <NA> <NA> <NA> <NA> <NA> <NA>
## 344 <NA> <NA> <NA> <NA> <NA> <NA> <NA>
## 345 <NA> <NA> <NA> <NA> <NA> <NA> <NA>
## 346 <NA> <NA> <NA> <NA> <NA> <NA> <NA>
## 347 <NA> <NA> <NA> <NA> <NA> <NA> <NA>
## 348 <NA> <NA> <NA> <NA> <NA> <NA> <NA>
## 349 <NA> <NA> <NA> <NA> <NA> <NA> <NA>
## 350 <NA> <NA> <NA> <NA> <NA> <NA> <NA>
## 351 <NA> <NA> <NA> <NA> <NA> <NA> <NA>
## 352 <NA> <NA> <NA> <NA> <NA> <NA> <NA>
## 353 <NA> <NA> <NA> <NA> <NA> <NA> <NA>
## 354 <NA> <NA> <NA> <NA> <NA> <NA> <NA>
## 355 <NA> <NA> <NA> <NA> <NA> <NA> <NA>
## 356 <NA> <NA> <NA> <NA> <NA> <NA> <NA>
## 357 <NA> <NA> <NA> <NA> <NA> <NA> <NA>
## 358 <NA> <NA> <NA> <NA> <NA> <NA> <NA>
## 359 <NA> <NA> <NA> <NA> <NA> <NA> <NA>
## 360 <NA> <NA> <NA> <NA> <NA> <NA> <NA>
## 361 <NA> <NA> <NA> <NA> <NA> <NA> <NA>
## 362 <NA> <NA> <NA> <NA> <NA> <NA> <NA>
## 363 <NA> <NA> <NA> <NA> <NA> <NA> <NA>
## 364 <NA> <NA> <NA> <NA> <NA> <NA> <NA>
## 365 <NA> <NA> <NA> <NA> <NA> <NA> <NA>
## 366 <NA> <NA> <NA> <NA> <NA> <NA> <NA>
## 367 <NA> <NA> <NA> <NA> <NA> <NA> <NA>
## 368 <NA> <NA> <NA> <NA> <NA> <NA> <NA>
## 369 <NA> <NA> <NA> <NA> <NA> <NA> <NA>
## 370 <NA> <NA> <NA> <NA> <NA> <NA> <NA>
## 371 <NA> <NA> <NA> <NA> <NA> <NA> <NA>
## 372 <NA> <NA> <NA> <NA> <NA> <NA> <NA>
## 373 <NA> <NA> <NA> <NA> <NA> <NA> <NA>
## 374 <NA> <NA> <NA> <NA> <NA> <NA> <NA>
## 375 <NA> <NA> <NA> <NA> <NA> <NA> <NA>
## 376 <NA> <NA> <NA> <NA> <NA> <NA> <NA>
## 377 <NA> <NA> <NA> <NA> <NA> <NA> <NA>
## 378 <NA> <NA> <NA> <NA> <NA> <NA> <NA>
## 379 <NA> <NA> <NA> <NA> <NA> <NA> <NA>
## 380 <NA> <NA> <NA> <NA> <NA> <NA> <NA>
## 381 <NA> <NA> <NA> <NA> <NA> <NA> <NA>
## 382 <NA> <NA> <NA> <NA> <NA> <NA> <NA>
## 383 <NA> <NA> <NA> <NA> <NA> <NA> <NA>
## 384 <NA> <NA> <NA> <NA> <NA> <NA> <NA>
## 385 <NA> <NA> <NA> <NA> <NA> <NA> <NA>
## 386 0 4 0 0 0 0 0
## 387 0 4 0 0 0 0 0
## 388 0 4 0 0 0 0 0
## 389 0 4 0 0 0 0 0
## 390 0 4 0 0 0 0 0
## 391 0 4 0 0 0 0 0
## 392 0 0 0 0 0 0 0
## 393 0 0 0 0 0 0 0
## 394 0 0 0 0 0 0 0
## 395 0 0 0 0 0 0 0
## 396 0 0 0 0 0 0 0
## 397 0 4 0 0 0 0 0
## 398 0 4 0 0 0 0 0
## 399 0 4 0 0 0 0 0
## 400 0 4 0 0 0 0 0
## 401 0 4 0 0 0 0 0
## 402 0 4 0 0 0 0 0
## 403 0 0 0 0 0 0 0
## 404 0 0 0 0 0 0 0
## 405 0 0 0 0 0 0 0
## 406 0 0 0 0 0 0 0
## 407 0 0 0 0 0 0 0
## 408 0 0 0 0 0 0 0
## 409 0 0 0 0 0 0 0
## 410 0 0 0 0 0 0 0
## 411 0 0 0 0 0 0 0
## 412 0 0 0 0 0 0 0
## 413 0 0 0 0 0 0 0
## 414 0 0 0 0 0 0 0
## 415 0 0 0 0 0 0 0
## 416 0 0 0 0 0 0 0
## 417 0 0 0 0 0 0 0
## 418 0 0 0 0 0 0 0
## 419 0 0 0 0 0 0 0
## 420 0 0 1 1 0 0 0
## 421 0 0 1 1 0 0 0
## 422 0 0 1 1 0 0 0
## 423 0 0 1 1 0 0 0
## 424 0 0 1 1 0 0 0
## 425 0 0 1 1 0 0 0
## 426 0 0 1 1 0 0 0
## 427 0 0 1 1 0 0 0
## 428 0 0 1 1 0 0 0
## 429 0 0 1 1 0 0 0
## 430 0 0 0 0 0 0 0
## 431 0 0 0 0 0 0 0
## 432 0 0 0 0 0 0 0
## 433 0 0 0 0 0 0 0
## 434 0 0 0 0 0 0 0
## 435 0 0 0 0 0 0 0
## 436 0 0 0 0 0 0 0
## 437 0 0 0 0 0 0 0
## 438 0 0 0 0 0 0 0
## 439 1 2 0 0 0 0 0
## 440 0 0 0 0 0 0 0
## 441 0 0 0 0 0 0 0
## 442 0 0 0 0 0 0 0
## 443 0 1 0 0 0 0 0
## 444 1 2 0 0 0 0 0
## 445 0 0 0 0 0 0 0
## 446 0 0 0 0 0 0 0
## 447 0 0 0 0 0 0 0
## 448 0 0 0 0 0 0 0
## 449 0 0 0 0 0 0 0
## 450 0 0 0 0 0 0 0
## 451 0 0 0 0 0 0 0
## 452 0 0 0 0 0 0 0
## 453 0 0 0 0 0 0 0
## 454 0 0 0 0 0 0 0
## 455 0 0 0 0 0 0 0
## 456 0 0 0 0 0 0 0
## 457 0 0 0 0 0 0 0
## 458 0 0 0 0 0 0 0
## 459 0 0 0 0 0 0 0
## 460 0 0 0 0 0 0 0
## 461 0 0 0 0 0 0 0
## 462 0 0 0 0 0 0 0
## 463 0 0 0 0 0 0 0
## 464 0 0 0 0 0 0 0
## 465 0 0 0 0 0 0 0
## 466 0 0 0 0 0 0 0
## 467 0 0 0 0 0 0 0
## 468 0 0 0 0 0 0 0
## 469 0 0 0 0 0 0 0
## 470 0 0 0 0 0 0 0
## 471 0 0 0 0 0 0 0
## 472 0 0 0 0 0 0 0
## 473 0 0 0 0 0 0 0
## 474 0 0 0 0 0 0 0
## 475 0 0 0 0 0 0 0
## 476 0 0 0 0 0 0 0
## 477 0 0 0 0 0 0 0
## 478 0 0 0 0 0 0 0
## 479 0 0 0 0 0 0 0
## 480 0 0 0 0 0 0 0
## 481 0 0 0 0 0 0 0
## 482 0 0 0 0 0 0 0
## 483 0 0 0 0 0 0 0
## 484 0 0 0 0 0 0 0
## 485 0 0 0 0 0 0 0
## 486 0 0 0 0 0 0 0
## 487 0 0 0 0 0 0 0
## 488 0 0 0 0 0 0 0
## 489 0 0 0 0 0 0 0
## 490 0 0 0 0 0 0 0
## 491 0 0 0 0 0 0 0
## 492 0 0 1 1 1 0 0
## 493 0 0 0 0 0 1 0
## 494 0 0 1 1 1 0 0
## 495 0 0 0 0 0 0 0
## 496 0 0 1 1 1 0 0
## 497 0 0 1 1 1 0 0
## 498 0 0 1 1 1 1 0
## 499 0 0 0 0 0 0 0
## 500 0 0 1 1 1 0 0
## 501 0 0 0 0 0 0 0
## 502 1 1 1 0 1 0 0
## 503 1 1 1 0 1 0 0
## 504 1 1 1 0 1 0 0
## 505 1 1 1 0 1 0 0
## 506 1 1 1 0 1 0 0
## 507 1 1 1 0 1 0 0
## 508 0 0 1 0 1 0 0
## 509 0 0 1 0 1 0 0
## 510 0 0 1 0 1 0 0
## 511 1 1 1 0 1 0 0
## 512 0 0 1 0 1 1 1
## 513 0 0 1 0 1 1 1
## 514 1 2 1 1 0 1 1
## 515 0 0 1 0 1 0 1
## 516 1 2 1 1 0 1 0
## 517 1 2 1 1 0 1 1
## 518 1 2 1 1 0 1 1
## 519 1 2 1 1 0 1 1
## 520 1 2 1 1 0 1 1
## 521 1 2 1 1 0 1 1
## 522 1 2 0 0 0 0 0
## 523 1 2 0 0 0 0 0
## 524 1 2 0 0 0 0 0
## 525 1 2 0 0 0 0 0
## 526 1 2 0 0 0 0 0
## 527 1 2 0 0 0 0 0
## 528 1 2 1 1 0 1 1
## 529 1 2 1 1 0 1 1
## 530 1 2 0 0 0 0 0
## 531 1 2 1 1 0 1 1
## 532 1 2 1 1 0 1 1
## 533 1 2 0 0 0 0 0
## 534 1 2 0 0 0 0 0
## 535 1 2 0 0 0 0 0
## 536 0 0 0 0 0 0 0
## 537 0 0 0 0 0 0 0
## 538 0 0 0 0 0 0 0
## 539 0 0 0 0 0 0 0
## 540 0 0 0 0 0 0 0
## 541 0 0 0 0 0 0 0
## 542 0 0 0 0 0 0 0
## 543 0 0 0 0 0 0 0
## 544 0 0 0 0 0 0 0
## 545 0 0 0 0 0 0 0
## 546 0 0 0 0 0 0 0
## 547 0 0 0 0 0 0 0
## 548 0 0 0 0 0 0 0
## 549 0 0 0 0 0 0 0
## 550 0 0 0 0 0 0 0
## 551 0 0 0 0 0 0 0
## 552 0 0 0 0 0 0 0
## 553 0 0 0 0 0 0 0
## 554 0 0 1 0 1 0 0
## 555 0 0 0 0 0 0 0
## 556 0 0 1 0 1 0 0
## 557 0 0 0 0 0 0 0
## 558 0 0 1 0 0 0 0
## 559 0 0 1 0 1 0 0
## 560 0 0 1 0 1 0 0
## 561 0 0 0 0 1 0 0
## 562 0 0 1 0 1 0 0
## 563 0 0 1 0 1 0 0
## 564 0 0 0 0 0 0 0
## 565 0 0 1 0 1 0 0
## 566 0 0 0 0 0 0 0
## 567 0 0 0 0 0 0 0
## 568 0 0 0 0 0 0 0
## 569 0 0 0 0 0 0 0
## 570 0 0 0 0 0 0 0
## 571 0 0 0 0 0 0 0
## 572 0 0 0 0 0 0 0
## 573 0 0 0 0 0 0 0
## 574 0 0 0 0 0 0 0
## 575 0 0 0 0 0 0 0
## 576 0 0 0 0 0 0 0
## 577 0 0 0 0 0 0 0
## 578 0 0 0 0 0 0 0
## 579 0 0 0 0 0 0 0
## 580 0 0 0 0 0 0 0
## 581 0 0 0 0 0 0 0
## 582 0 0 0 0 0 0 0
## 583 0 0 0 0 0 0 0
## 584 0 0 0 0 0 0 0
## 585 0 0 0 0 0 0 0
## 586 0 0 0 0 0 0 0
## 587 0 0 0 0 0 0 0
## 588 0 0 0 0 0 0 0
## 589 0 0 0 0 0 0 0
## 590 0 0 0 0 0 0 0
## 591 0 0 0 0 0 0 0
## 592 0 0 0 0 0 0 0
## 593 0 0 0 0 0 0 0
## 594 0 0 0 0 0 0 0
## 595 0 0 0 0 0 0 0
## 596 0 0 0 0 0 0 0
## 597 1 1 0 0 0 0 0
## 598 1 1 0 0 0 0 0
## 599 0 0 0 0 0 0 0
## 600 0 0 0 0 0 0 0
## 601 0 0 0 0 0 0 0
## 602 1 1 0 0 0 0 0
## 603 0 0 0 0 0 0 0
## 604 0 0 0 0 0 0 0
## 605 0 0 0 0 0 0 0
## 606 1 1 0 0 0 0 0
## 607 0 0 0 0 0 0 0
## 608 0 0 0 0 0 0 0
## 609 1 1 0 0 0 0 0
## 610 1 1 0 0 0 0 0
## 611 0 0 0 0 0 0 0
## 612 0 0 0 0 0 0 0
## 613 0 0 0 0 0 0 0
## 614 0 0 0 0 0 0 0
## 615 0 0 0 0 0 0 0
## 616 1 1 0 0 0 0 0
## 617 1 1 0 0 0 0 0
## 618 1 1 0 0 0 0 0
## 619 1 1 0 0 0 0 0
## 620 1 1 0 0 0 0 0
## 621 1 1 0 0 0 0 0
## 622 1 1 0 0 0 0 0
## 623 1 1 0 0 0 0 0
## 624 1 1 0 0 0 0 0
## 625 1 1 0 0 0 0 0
## 626 1 1 0 0 0 0 0
## 627 1 1 0 0 0 0 0
## 628 1 1 0 0 0 0 0
## 629 1 1 0 0 0 0 0
## 630 1 1 0 0 0 0 0
## 631 1 1 0 0 0 0 0
## 632 1 1 0 0 0 0 0
## 633 1 1 0 0 0 0 0
## 634 1 1 0 0 0 0 0
## 635 1 1 0 0 0 0 0
## 636 1 1 0 0 0 0 0
## 637 1 1 0 0 0 0 0
## 638 1 1 0 0 0 0 0
## 639 1 1 0 0 0 0 0
## 640 1 1 0 0 0 0 0
## 641 1 1 0 0 0 0 0
## 642 1 1 0 0 0 0 0
## 643 1 1 0 0 0 0 0
## 644 1 1 0 0 0 0 0
## 645 1 1 0 0 0 0 0
## 646 1 1 0 0 0 0 0
## 647 1 1 0 0 0 0 0
## 648 1 2 1 1 1 1 1
## 649 1 2 1 1 1 1 1
## 650 1 2 1 1 1 1 1
## 651 1 2 1 1 1 1 1
## 652 1 2 1 1 1 1 1
## 653 1 2 0 1 1 1 1
## 654 1 2 1 1 1 1 1
## 655 1 2 1 1 1 1 1
## 656 1 2 1 1 1 1 1
## 657 2 <NA> 1 0 <NA> 1 <NA>
## 658 2 <NA> 1 0 <NA> 1 <NA>
## 659 2 <NA> 1 0 <NA> 1 <NA>
## 660 2 <NA> 1 0 <NA> 1 <NA>
## 661 2 <NA> 1 0 <NA> 1 <NA>
## 662 2 <NA> 1 0 <NA> 1 <NA>
## 663 2 <NA> 1 0 <NA> 1 <NA>
## 664 2 <NA> 1 0 <NA> 1 <NA>
## 665 <NA> <NA> <NA> <NA> <NA> <NA> <NA>
## 666 <NA> <NA> <NA> <NA> <NA> <NA> <NA>
## 667 <NA> <NA> <NA> <NA> <NA> <NA> <NA>
## 668 <NA> <NA> <NA> <NA> <NA> <NA> <NA>
## 669 <NA> <NA> <NA> <NA> <NA> <NA> <NA>
## 670 <NA> <NA> <NA> <NA> <NA> <NA> <NA>
## 671 <NA> <NA> <NA> <NA> <NA> <NA> <NA>
## 672 <NA> <NA> <NA> <NA> <NA> <NA> <NA>
## 673 <NA> <NA> <NA> <NA> <NA> <NA> <NA>
## 674 <NA> <NA> <NA> <NA> <NA> <NA> <NA>
## 675 <NA> <NA> <NA> <NA> <NA> <NA> <NA>
## 676 <NA> <NA> <NA> <NA> <NA> <NA> <NA>
## 677 <NA> <NA> <NA> <NA> <NA> <NA> <NA>
## 678 <NA> <NA> <NA> <NA> <NA> <NA> <NA>
## 679 <NA> <NA> <NA> <NA> <NA> <NA> <NA>
## 680 3 <NA> <NA> <NA> <NA> <NA> <NA>
## 681 3 <NA> <NA> <NA> <NA> <NA> <NA>
## 682 3 <NA> <NA> <NA> <NA> <NA> <NA>
## 683 3 <NA> <NA> <NA> <NA> <NA> <NA>
## roots
## 1 0
## 2 0
## 3 0
## 4 0
## 5 0
## 6 0
## 7 0
## 8 0
## 9 0
## 10 0
## 11 0
## 12 0
## 13 0
## 14 0
## 15 0
## 16 0
## 17 0
## 18 0
## 19 0
## 20 0
## 21 0
## 22 0
## 23 0
## 24 0
## 25 0
## 26 0
## 27 0
## 28 0
## 29 0
## 30 0
## 31 0
## 32 1
## 33 1
## 34 0
## 35 1
## 36 1
## 37 0
## 38 0
## 39 1
## 40 0
## 41 1
## 42 1
## 43 0
## 44 0
## 45 0
## 46 1
## 47 0
## 48 1
## 49 0
## 50 0
## 51 0
## 52 1
## 53 1
## 54 1
## 55 1
## 56 0
## 57 1
## 58 1
## 59 1
## 60 1
## 61 1
## 62 1
## 63 0
## 64 1
## 65 1
## 66 0
## 67 1
## 68 1
## 69 0
## 70 1
## 71 0
## 72 0
## 73 0
## 74 0
## 75 0
## 76 0
## 77 0
## 78 0
## 79 0
## 80 0
## 81 0
## 82 0
## 83 0
## 84 0
## 85 0
## 86 0
## 87 0
## 88 0
## 89 0
## 90 0
## 91 0
## 92 0
## 93 0
## 94 0
## 95 0
## 96 0
## 97 0
## 98 0
## 99 0
## 100 0
## 101 0
## 102 0
## 103 0
## 104 0
## 105 0
## 106 0
## 107 0
## 108 0
## 109 0
## 110 0
## 111 0
## 112 0
## 113 0
## 114 0
## 115 0
## 116 0
## 117 0
## 118 0
## 119 0
## 120 0
## 121 0
## 122 0
## 123 0
## 124 0
## 125 0
## 126 0
## 127 0
## 128 0
## 129 0
## 130 0
## 131 0
## 132 0
## 133 0
## 134 0
## 135 0
## 136 0
## 137 0
## 138 0
## 139 0
## 140 0
## 141 0
## 142 0
## 143 0
## 144 0
## 145 0
## 146 0
## 147 0
## 148 0
## 149 0
## 150 0
## 151 0
## 152 0
## 153 0
## 154 0
## 155 0
## 156 0
## 157 0
## 158 0
## 159 0
## 160 0
## 161 2
## 162 0
## 163 0
## 164 1
## 165 1
## 166 1
## 167 0
## 168 1
## 169 0
## 170 1
## 171 0
## 172 0
## 173 0
## 174 0
## 175 0
## 176 0
## 177 0
## 178 0
## 179 0
## 180 0
## 181 0
## 182 0
## 183 0
## 184 0
## 185 0
## 186 0
## 187 0
## 188 0
## 189 0
## 190 0
## 191 0
## 192 0
## 193 0
## 194 0
## 195 0
## 196 0
## 197 0
## 198 0
## 199 0
## 200 0
## 201 0
## 202 0
## 203 0
## 204 0
## 205 0
## 206 0
## 207 0
## 208 0
## 209 0
## 210 0
## 211 0
## 212 0
## 213 0
## 214 0
## 215 0
## 216 0
## 217 0
## 218 0
## 219 0
## 220 0
## 221 0
## 222 0
## 223 0
## 224 0
## 225 0
## 226 0
## 227 0
## 228 0
## 229 0
## 230 0
## 231 0
## 232 0
## 233 0
## 234 0
## 235 0
## 236 0
## 237 0
## 238 0
## 239 0
## 240 0
## 241 0
## 242 0
## 243 0
## 244 0
## 245 0
## 246 0
## 247 0
## 248 0
## 249 0
## 250 0
## 251 0
## 252 0
## 253 0
## 254 0
## 255 0
## 256 0
## 257 0
## 258 0
## 259 0
## 260 0
## 261 0
## 262 0
## 263 0
## 264 0
## 265 0
## 266 0
## 267 0
## 268 0
## 269 0
## 270 0
## 271 0
## 272 0
## 273 0
## 274 0
## 275 0
## 276 0
## 277 0
## 278 0
## 279 0
## 280 0
## 281 0
## 282 0
## 283 0
## 284 0
## 285 0
## 286 0
## 287 0
## 288 0
## 289 0
## 290 0
## 291 <NA>
## 292 <NA>
## 293 <NA>
## 294 <NA>
## 295 <NA>
## 296 <NA>
## 297 2
## 298 2
## 299 2
## 300 2
## 301 2
## 302 2
## 303 <NA>
## 304 1
## 305 1
## 306 1
## 307 1
## 308 0
## 309 0
## 310 0
## 311 0
## 312 0
## 313 0
## 314 0
## 315 0
## 316 0
## 317 0
## 318 0
## 319 0
## 320 0
## 321 0
## 322 0
## 323 0
## 324 0
## 325 0
## 326 0
## 327 0
## 328 1
## 329 0
## 330 0
## 331 0
## 332 0
## 333 0
## 334 0
## 335 0
## 336 0
## 337 0
## 338 0
## 339 0
## 340 0
## 341 0
## 342 1
## 343 1
## 344 1
## 345 1
## 346 1
## 347 1
## 348 1
## 349 1
## 350 1
## 351 1
## 352 1
## 353 1
## 354 1
## 355 1
## 356 1
## 357 1
## 358 1
## 359 1
## 360 1
## 361 1
## 362 1
## 363 1
## 364 1
## 365 1
## 366 1
## 367 1
## 368 1
## 369 1
## 370 1
## 371 1
## 372 1
## 373 1
## 374 1
## 375 1
## 376 1
## 377 1
## 378 1
## 379 1
## 380 1
## 381 1
## 382 1
## 383 1
## 384 1
## 385 1
## 386 0
## 387 0
## 388 0
## 389 0
## 390 0
## 391 0
## 392 0
## 393 0
## 394 0
## 395 0
## 396 0
## 397 0
## 398 0
## 399 0
## 400 0
## 401 0
## 402 0
## 403 0
## 404 0
## 405 0
## 406 0
## 407 0
## 408 0
## 409 0
## 410 0
## 411 0
## 412 0
## 413 0
## 414 0
## 415 0
## 416 0
## 417 0
## 418 0
## 419 0
## 420 0
## 421 0
## 422 0
## 423 0
## 424 0
## 425 0
## 426 0
## 427 0
## 428 0
## 429 0
## 430 0
## 431 0
## 432 0
## 433 0
## 434 0
## 435 0
## 436 0
## 437 0
## 438 0
## 439 0
## 440 0
## 441 0
## 442 0
## 443 0
## 444 0
## 445 0
## 446 0
## 447 0
## 448 0
## 449 0
## 450 0
## 451 0
## 452 0
## 453 0
## 454 0
## 455 0
## 456 0
## 457 0
## 458 0
## 459 0
## 460 0
## 461 0
## 462 0
## 463 0
## 464 0
## 465 0
## 466 0
## 467 0
## 468 0
## 469 0
## 470 0
## 471 0
## 472 0
## 473 0
## 474 0
## 475 0
## 476 0
## 477 0
## 478 0
## 479 0
## 480 0
## 481 0
## 482 0
## 483 0
## 484 0
## 485 0
## 486 0
## 487 0
## 488 0
## 489 0
## 490 0
## 491 0
## 492 0
## 493 1
## 494 0
## 495 1
## 496 0
## 497 0
## 498 0
## 499 1
## 500 0
## 501 1
## 502 0
## 503 0
## 504 0
## 505 0
## 506 0
## 507 0
## 508 0
## 509 0
## 510 0
## 511 0
## 512 0
## 513 0
## 514 0
## 515 0
## 516 0
## 517 0
## 518 0
## 519 0
## 520 0
## 521 0
## 522 0
## 523 0
## 524 0
## 525 0
## 526 0
## 527 0
## 528 0
## 529 0
## 530 0
## 531 0
## 532 0
## 533 0
## 534 0
## 535 0
## 536 0
## 537 0
## 538 0
## 539 0
## 540 0
## 541 0
## 542 0
## 543 0
## 544 0
## 545 0
## 546 0
## 547 0
## 548 0
## 549 0
## 550 0
## 551 0
## 552 0
## 553 0
## 554 0
## 555 0
## 556 0
## 557 0
## 558 0
## 559 0
## 560 0
## 561 0
## 562 0
## 563 0
## 564 0
## 565 0
## 566 0
## 567 0
## 568 0
## 569 0
## 570 0
## 571 0
## 572 0
## 573 0
## 574 0
## 575 0
## 576 0
## 577 0
## 578 0
## 579 0
## 580 0
## 581 0
## 582 0
## 583 0
## 584 0
## 585 0
## 586 0
## 587 0
## 588 0
## 589 0
## 590 0
## 591 0
## 592 0
## 593 0
## 594 0
## 595 0
## 596 0
## 597 0
## 598 0
## 599 0
## 600 0
## 601 0
## 602 0
## 603 0
## 604 0
## 605 0
## 606 0
## 607 0
## 608 0
## 609 0
## 610 0
## 611 0
## 612 0
## 613 0
## 614 0
## 615 0
## 616 0
## 617 0
## 618 0
## 619 0
## 620 0
## 621 0
## 622 0
## 623 0
## 624 0
## 625 0
## 626 0
## 627 0
## 628 0
## 629 0
## 630 0
## 631 0
## 632 0
## 633 0
## 634 0
## 635 0
## 636 0
## 637 0
## 638 0
## 639 0
## 640 0
## 641 0
## 642 0
## 643 0
## 644 0
## 645 0
## 646 0
## 647 0
## 648 <NA>
## 649 <NA>
## 650 <NA>
## 651 <NA>
## 652 <NA>
## 653 <NA>
## 654 <NA>
## 655 <NA>
## 656 <NA>
## 657 2
## 658 2
## 659 2
## 660 2
## 661 2
## 662 2
## 663 2
## 664 2
## 665 <NA>
## 666 <NA>
## 667 <NA>
## 668 <NA>
## 669 <NA>
## 670 <NA>
## 671 <NA>
## 672 <NA>
## 673 <NA>
## 674 <NA>
## 675 <NA>
## 676 <NA>
## 677 <NA>
## 678 <NA>
## 679 <NA>
## 680 1
## 681 1
## 682 1
## 683 1
# Create a binary missing data indicator for each predictor
missing_indicators <- soybean_data %>%
mutate(across(everything(), ~ as.numeric(is.na(.))))
# Combine missing indicators with the class variable (rename to TempClass temporarily)
missing_with_class <- cbind(missing_indicators, TempClass = soybean_data$Class)
# Now, check for relationships between missing data and TempClass
missing_class_summary <- missing_with_class %>%
group_by(TempClass) %>%
summarise(across(everything(), mean))
# Rename TempClass back to Class in the output data frame
colnames(missing_class_summary)[colnames(missing_class_summary) == "TempClass"] <- "Class"
# View the summary of missing data by class with a scrollable table
missing_class_summary %>%
kbl() %>%
kable_styling(bootstrap_options = c("striped", "hover", "condensed"), full_width = F) %>%
scroll_box(width = "100%", height = "400px")
Class | Class | date | plant.stand | precip | temp | hail | crop.hist | area.dam | sever | seed.tmt | germ | plant.growth | leaves | leaf.halo | leaf.marg | leaf.size | leaf.shread | leaf.malf | leaf.mild | stem | lodging | stem.cankers | canker.lesion | fruiting.bodies | ext.decay | mycelium | int.discolor | sclerotia | fruit.pods | fruit.spots | seed | mold.growth | seed.discolor | seed.size | shriveling | roots |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2-4-d-injury | 0 | 0.0625 | 1.0 | 1 | 1 | 1.0000000 | 1 | 0.0625 | 1.0000000 | 1.0000000 | 1.0000000 | 1 | 0 | 0.000 | 0.000 | 0.000 | 1.000 | 0.000 | 1.000 | 1 | 1.0000000 | 1 | 1 | 1.0000000 | 1 | 1 | 1 | 1 | 1.0000000 | 1.0000000 | 1.0000000 | 1.0000000 | 1.0000000 | 1.0000000 | 1.0000000 | 1 |
alternarialeaf-spot | 0 | 0.0000 | 0.0 | 0 | 0 | 0.0000000 | 0 | 0.0000 | 0.0000000 | 0.0000000 | 0.0000000 | 0 | 0 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0 | 0.0000000 | 0 | 0 | 0.0000000 | 0 | 0 | 0 | 0 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0 |
anthracnose | 0 | 0.0000 | 0.0 | 0 | 0 | 0.0000000 | 0 | 0.0000 | 0.0000000 | 0.0000000 | 0.0000000 | 0 | 0 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0 | 0.0000000 | 0 | 0 | 0.0000000 | 0 | 0 | 0 | 0 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0 |
bacterial-blight | 0 | 0.0000 | 0.0 | 0 | 0 | 0.0000000 | 0 | 0.0000 | 0.0000000 | 0.0000000 | 0.0000000 | 0 | 0 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0 | 0.0000000 | 0 | 0 | 0.0000000 | 0 | 0 | 0 | 0 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0 |
bacterial-pustule | 0 | 0.0000 | 0.0 | 0 | 0 | 0.0000000 | 0 | 0.0000 | 0.0000000 | 0.0000000 | 0.0000000 | 0 | 0 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0 | 0.0000000 | 0 | 0 | 0.0000000 | 0 | 0 | 0 | 0 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0 |
brown-spot | 0 | 0.0000 | 0.0 | 0 | 0 | 0.0000000 | 0 | 0.0000 | 0.0000000 | 0.0000000 | 0.0000000 | 0 | 0 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0 | 0.0000000 | 0 | 0 | 0.0000000 | 0 | 0 | 0 | 0 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0 |
brown-stem-rot | 0 | 0.0000 | 0.0 | 0 | 0 | 0.0000000 | 0 | 0.0000 | 0.0000000 | 0.0000000 | 0.0000000 | 0 | 0 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0 | 0.0000000 | 0 | 0 | 0.0000000 | 0 | 0 | 0 | 0 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0 |
charcoal-rot | 0 | 0.0000 | 0.0 | 0 | 0 | 0.0000000 | 0 | 0.0000 | 0.0000000 | 0.0000000 | 0.0000000 | 0 | 0 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0 | 0.0000000 | 0 | 0 | 0.0000000 | 0 | 0 | 0 | 0 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0 |
cyst-nematode | 0 | 0.0000 | 1.0 | 1 | 1 | 1.0000000 | 0 | 0.0000 | 1.0000000 | 1.0000000 | 1.0000000 | 0 | 0 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0 | 1.0000000 | 1 | 1 | 1.0000000 | 1 | 1 | 1 | 1 | 0.0000000 | 1.0000000 | 0.0000000 | 0.0000000 | 1.0000000 | 0.0000000 | 1.0000000 | 0 |
diaporthe-pod-&-stem-blight | 0 | 0.0000 | 0.4 | 0 | 0 | 1.0000000 | 0 | 0.0000 | 1.0000000 | 1.0000000 | 0.4000000 | 0 | 0 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0 | 1.0000000 | 0 | 0 | 0.0000000 | 0 | 0 | 0 | 0 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 1 |
diaporthe-stem-canker | 0 | 0.0000 | 0.0 | 0 | 0 | 0.0000000 | 0 | 0.0000 | 0.0000000 | 0.0000000 | 0.0000000 | 0 | 0 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0 | 0.0000000 | 0 | 0 | 0.0000000 | 0 | 0 | 0 | 0 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0 |
downy-mildew | 0 | 0.0000 | 0.0 | 0 | 0 | 0.0000000 | 0 | 0.0000 | 0.0000000 | 0.0000000 | 0.0000000 | 0 | 0 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0 | 0.0000000 | 0 | 0 | 0.0000000 | 0 | 0 | 0 | 0 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0 |
frog-eye-leaf-spot | 0 | 0.0000 | 0.0 | 0 | 0 | 0.0000000 | 0 | 0.0000 | 0.0000000 | 0.0000000 | 0.0000000 | 0 | 0 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0 | 0.0000000 | 0 | 0 | 0.0000000 | 0 | 0 | 0 | 0 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0 |
herbicide-injury | 0 | 0.0000 | 0.0 | 1 | 0 | 1.0000000 | 0 | 0.0000 | 1.0000000 | 1.0000000 | 1.0000000 | 0 | 0 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 1.000 | 0 | 1.0000000 | 1 | 1 | 1.0000000 | 1 | 1 | 1 | 1 | 0.0000000 | 1.0000000 | 1.0000000 | 1.0000000 | 1.0000000 | 1.0000000 | 1.0000000 | 0 |
phyllosticta-leaf-spot | 0 | 0.0000 | 0.0 | 0 | 0 | 0.0000000 | 0 | 0.0000 | 0.0000000 | 0.0000000 | 0.0000000 | 0 | 0 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0 | 0.0000000 | 0 | 0 | 0.0000000 | 0 | 0 | 0 | 0 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0 |
phytophthora-rot | 0 | 0.0000 | 0.0 | 0 | 0 | 0.7727273 | 0 | 0.0000 | 0.7727273 | 0.7727273 | 0.7727273 | 0 | 0 | 0.625 | 0.625 | 0.625 | 0.625 | 0.625 | 0.625 | 0 | 0.7727273 | 0 | 0 | 0.7727273 | 0 | 0 | 0 | 0 | 0.7727273 | 0.7727273 | 0.7727273 | 0.7727273 | 0.7727273 | 0.7727273 | 0.7727273 | 0 |
powdery-mildew | 0 | 0.0000 | 0.0 | 0 | 0 | 0.0000000 | 0 | 0.0000 | 0.0000000 | 0.0000000 | 0.0000000 | 0 | 0 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0 | 0.0000000 | 0 | 0 | 0.0000000 | 0 | 0 | 0 | 0 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0 |
purple-seed-stain | 0 | 0.0000 | 0.0 | 0 | 0 | 0.0000000 | 0 | 0.0000 | 0.0000000 | 0.0000000 | 0.0000000 | 0 | 0 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0 | 0.0000000 | 0 | 0 | 0.0000000 | 0 | 0 | 0 | 0 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0 |
rhizoctonia-root-rot | 0 | 0.0000 | 0.0 | 0 | 0 | 0.0000000 | 0 | 0.0000 | 0.0000000 | 0.0000000 | 0.0000000 | 0 | 0 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0 | 0.0000000 | 0 | 0 | 0.0000000 | 0 | 0 | 0 | 0 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0 |
The data presented shows that the pattern of missing data does indeed vary across different classes. For instance: - In the class 2-4-d-injury, there are missing values in variables such as hail, area.dam, and sever. However, for other classes like anthracnose, most predictors do not show missing values. - Some predictors, such as germ and leaf.shread, have missing data in some classes but not others, which might indicate that the missing data pattern is related to the specific classes.
This variation in missing data across different classes indicates that the missingness is not completely random. Instead, it may be associated with the specific class labels, which could suggest informative missingness.
To handle missing data, follow these strategies based on the book:
# Load necessary library
library(dplyr)
# Define a threshold for missing data (e.g., 50% missing data)
missing_threshold <- 0.5 # 50%
# Calculate the percentage of missing values for each predictor
missing_data_percentage <- colSums(is.na(soybean_data)) / nrow(soybean_data)
# Remove predictors with missing data above the threshold
soybean_data_cleaned <- soybean_data %>%
select(which(missing_data_percentage <= missing_threshold))
# Check the resulting dataset to ensure columns are removed
colSums(is.na(soybean_data_cleaned))
## Class date plant.stand precip temp
## 0 1 36 38 30
## hail crop.hist area.dam sever seed.tmt
## 121 16 1 121 121
## germ plant.growth leaves leaf.halo leaf.marg
## 112 16 0 84 84
## leaf.size leaf.shread leaf.malf leaf.mild stem
## 84 100 84 108 16
## lodging stem.cankers canker.lesion fruiting.bodies ext.decay
## 121 38 38 106 38
## mycelium int.discolor sclerotia fruit.pods fruit.spots
## 38 38 38 84 106
## seed mold.growth seed.discolor seed.size shriveling
## 92 92 106 92 106
## roots
## 31
# View the first few rows of the cleaned dataset
head(soybean_data_cleaned)
## Class date plant.stand precip temp hail crop.hist area.dam
## 1 diaporthe-stem-canker 6 0 2 1 0 1 1
## 2 diaporthe-stem-canker 4 0 2 1 0 2 0
## 3 diaporthe-stem-canker 3 0 2 1 0 1 0
## 4 diaporthe-stem-canker 3 0 2 1 0 1 0
## 5 diaporthe-stem-canker 6 0 2 1 0 2 0
## 6 diaporthe-stem-canker 5 0 2 1 0 3 0
## sever seed.tmt germ plant.growth leaves leaf.halo leaf.marg leaf.size
## 1 1 0 0 1 1 0 2 2
## 2 2 1 1 1 1 0 2 2
## 3 2 1 2 1 1 0 2 2
## 4 2 0 1 1 1 0 2 2
## 5 1 0 2 1 1 0 2 2
## 6 1 0 1 1 1 0 2 2
## leaf.shread leaf.malf leaf.mild stem lodging stem.cankers canker.lesion
## 1 0 0 0 1 1 3 1
## 2 0 0 0 1 0 3 1
## 3 0 0 0 1 0 3 0
## 4 0 0 0 1 0 3 0
## 5 0 0 0 1 0 3 1
## 6 0 0 0 1 0 3 0
## fruiting.bodies ext.decay mycelium int.discolor sclerotia fruit.pods
## 1 1 1 0 0 0 0
## 2 1 1 0 0 0 0
## 3 1 1 0 0 0 0
## 4 1 1 0 0 0 0
## 5 1 1 0 0 0 0
## 6 1 1 0 0 0 0
## fruit.spots seed mold.growth seed.discolor seed.size shriveling roots
## 1 4 0 0 0 0 0 0
## 2 4 0 0 0 0 0 0
## 3 4 0 0 0 0 0 0
## 4 4 0 0 0 0 0 0
## 5 4 0 0 0 0 0 0
## 6 4 0 0 0 0 0 0
# Load necessary library
library(VIM)
## Loading required package: colorspace
## Loading required package: grid
## VIM is ready to use.
## Suggestions and bug-reports can be submitted at: https://github.com/statistikat/VIM/issues
##
## Attaching package: 'VIM'
## The following object is masked from 'package:datasets':
##
## sleep
# Apply KNN imputation to the dataset
soybean_data_knn <- kNN(soybean_data, k = 5)
# Check for missing values after imputation
# colSums(is.na()) checks for missing values column-wise
colSums(is.na(soybean_data_knn))
## Class date plant.stand precip
## 0 0 0 0
## temp hail crop.hist area.dam
## 0 0 0 0
## sever seed.tmt germ plant.growth
## 0 0 0 0
## leaves leaf.halo leaf.marg leaf.size
## 0 0 0 0
## leaf.shread leaf.malf leaf.mild stem
## 0 0 0 0
## lodging stem.cankers canker.lesion fruiting.bodies
## 0 0 0 0
## ext.decay mycelium int.discolor sclerotia
## 0 0 0 0
## fruit.pods fruit.spots seed mold.growth
## 0 0 0 0
## seed.discolor seed.size shriveling roots
## 0 0 0 0
## Class_imp date_imp plant.stand_imp precip_imp
## 0 0 0 0
## temp_imp hail_imp crop.hist_imp area.dam_imp
## 0 0 0 0
## sever_imp seed.tmt_imp germ_imp plant.growth_imp
## 0 0 0 0
## leaves_imp leaf.halo_imp leaf.marg_imp leaf.size_imp
## 0 0 0 0
## leaf.shread_imp leaf.malf_imp leaf.mild_imp stem_imp
## 0 0 0 0
## lodging_imp stem.cankers_imp canker.lesion_imp fruiting.bodies_imp
## 0 0 0 0
## ext.decay_imp mycelium_imp int.discolor_imp sclerotia_imp
## 0 0 0 0
## fruit.pods_imp fruit.spots_imp seed_imp mold.growth_imp
## 0 0 0 0
## seed.discolor_imp seed.size_imp shriveling_imp roots_imp
## 0 0 0 0
# View the first few rows of the imputed dataset
head(soybean_data_knn)
## Class date plant.stand precip temp hail crop.hist area.dam
## 1 diaporthe-stem-canker 6 0 2 1 0 1 1
## 2 diaporthe-stem-canker 4 0 2 1 0 2 0
## 3 diaporthe-stem-canker 3 0 2 1 0 1 0
## 4 diaporthe-stem-canker 3 0 2 1 0 1 0
## 5 diaporthe-stem-canker 6 0 2 1 0 2 0
## 6 diaporthe-stem-canker 5 0 2 1 0 3 0
## sever seed.tmt germ plant.growth leaves leaf.halo leaf.marg leaf.size
## 1 1 0 0 1 1 0 2 2
## 2 2 1 1 1 1 0 2 2
## 3 2 1 2 1 1 0 2 2
## 4 2 0 1 1 1 0 2 2
## 5 1 0 2 1 1 0 2 2
## 6 1 0 1 1 1 0 2 2
## leaf.shread leaf.malf leaf.mild stem lodging stem.cankers canker.lesion
## 1 0 0 0 1 1 3 1
## 2 0 0 0 1 0 3 1
## 3 0 0 0 1 0 3 0
## 4 0 0 0 1 0 3 0
## 5 0 0 0 1 0 3 1
## 6 0 0 0 1 0 3 0
## fruiting.bodies ext.decay mycelium int.discolor sclerotia fruit.pods
## 1 1 1 0 0 0 0
## 2 1 1 0 0 0 0
## 3 1 1 0 0 0 0
## 4 1 1 0 0 0 0
## 5 1 1 0 0 0 0
## 6 1 1 0 0 0 0
## fruit.spots seed mold.growth seed.discolor seed.size shriveling roots
## 1 4 0 0 0 0 0 0
## 2 4 0 0 0 0 0 0
## 3 4 0 0 0 0 0 0
## 4 4 0 0 0 0 0 0
## 5 4 0 0 0 0 0 0
## 6 4 0 0 0 0 0 0
## Class_imp date_imp plant.stand_imp precip_imp temp_imp hail_imp crop.hist_imp
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 2 FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 3 FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 4 FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 5 FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 6 FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## area.dam_imp sever_imp seed.tmt_imp germ_imp plant.growth_imp leaves_imp
## 1 FALSE FALSE FALSE FALSE FALSE FALSE
## 2 FALSE FALSE FALSE FALSE FALSE FALSE
## 3 FALSE FALSE FALSE FALSE FALSE FALSE
## 4 FALSE FALSE FALSE FALSE FALSE FALSE
## 5 FALSE FALSE FALSE FALSE FALSE FALSE
## 6 FALSE FALSE FALSE FALSE FALSE FALSE
## leaf.halo_imp leaf.marg_imp leaf.size_imp leaf.shread_imp leaf.malf_imp
## 1 FALSE FALSE FALSE FALSE FALSE
## 2 FALSE FALSE FALSE FALSE FALSE
## 3 FALSE FALSE FALSE FALSE FALSE
## 4 FALSE FALSE FALSE FALSE FALSE
## 5 FALSE FALSE FALSE FALSE FALSE
## 6 FALSE FALSE FALSE FALSE FALSE
## leaf.mild_imp stem_imp lodging_imp stem.cankers_imp canker.lesion_imp
## 1 FALSE FALSE FALSE FALSE FALSE
## 2 FALSE FALSE FALSE FALSE FALSE
## 3 FALSE FALSE FALSE FALSE FALSE
## 4 FALSE FALSE FALSE FALSE FALSE
## 5 FALSE FALSE FALSE FALSE FALSE
## 6 FALSE FALSE FALSE FALSE FALSE
## fruiting.bodies_imp ext.decay_imp mycelium_imp int.discolor_imp sclerotia_imp
## 1 FALSE FALSE FALSE FALSE FALSE
## 2 FALSE FALSE FALSE FALSE FALSE
## 3 FALSE FALSE FALSE FALSE FALSE
## 4 FALSE FALSE FALSE FALSE FALSE
## 5 FALSE FALSE FALSE FALSE FALSE
## 6 FALSE FALSE FALSE FALSE FALSE
## fruit.pods_imp fruit.spots_imp seed_imp mold.growth_imp seed.discolor_imp
## 1 FALSE FALSE FALSE FALSE FALSE
## 2 FALSE FALSE FALSE FALSE FALSE
## 3 FALSE FALSE FALSE FALSE FALSE
## 4 FALSE FALSE FALSE FALSE FALSE
## 5 FALSE FALSE FALSE FALSE FALSE
## 6 FALSE FALSE FALSE FALSE FALSE
## seed.size_imp shriveling_imp roots_imp
## 1 FALSE FALSE FALSE
## 2 FALSE FALSE FALSE
## 3 FALSE FALSE FALSE
## 4 FALSE FALSE FALSE
## 5 FALSE FALSE FALSE
## 6 FALSE FALSE FALSE
The missForest package is ideal for tree-based methods like Random Forest, which can handle missing data natively. It predicts missing values by training a random forest model on observed data.
# Load necessary library
library(missForest)
##
## Attaching package: 'missForest'
## The following object is masked from 'package:VIM':
##
## nrmse
# Apply random forest imputation
soybean_data_forest <- missForest(soybean_data)
# Extract the imputed data
soybean_data_forest_imputed <- soybean_data_forest$ximp
# Check for missing values after imputation
colSums(is.na(soybean_data_forest_imputed))
## Class date plant.stand precip temp
## 0 0 0 0 0
## hail crop.hist area.dam sever seed.tmt
## 0 0 0 0 0
## germ plant.growth leaves leaf.halo leaf.marg
## 0 0 0 0 0
## leaf.size leaf.shread leaf.malf leaf.mild stem
## 0 0 0 0 0
## lodging stem.cankers canker.lesion fruiting.bodies ext.decay
## 0 0 0 0 0
## mycelium int.discolor sclerotia fruit.pods fruit.spots
## 0 0 0 0 0
## seed mold.growth seed.discolor seed.size shriveling
## 0 0 0 0 0
## roots
## 0
# Summarize if there are any columns with missing data
if (any(is.na(soybean_data_forest_imputed))) {
print("There are still missing values in the dataset.")
} else {
print("No missing values in the dataset.")
}
## [1] "No missing values in the dataset."
# View the first few rows of the imputed dataset to inspect
head(soybean_data_forest_imputed)
## Class date plant.stand precip temp hail crop.hist area.dam
## 1 diaporthe-stem-canker 6 0 2 1 0 1 1
## 2 diaporthe-stem-canker 4 0 2 1 0 2 0
## 3 diaporthe-stem-canker 3 0 2 1 0 1 0
## 4 diaporthe-stem-canker 3 0 2 1 0 1 0
## 5 diaporthe-stem-canker 6 0 2 1 0 2 0
## 6 diaporthe-stem-canker 5 0 2 1 0 3 0
## sever seed.tmt germ plant.growth leaves leaf.halo leaf.marg leaf.size
## 1 1 0 0 1 1 0 2 2
## 2 2 1 1 1 1 0 2 2
## 3 2 1 2 1 1 0 2 2
## 4 2 0 1 1 1 0 2 2
## 5 1 0 2 1 1 0 2 2
## 6 1 0 1 1 1 0 2 2
## leaf.shread leaf.malf leaf.mild stem lodging stem.cankers canker.lesion
## 1 0 0 0 1 1 3 1
## 2 0 0 0 1 0 3 1
## 3 0 0 0 1 0 3 0
## 4 0 0 0 1 0 3 0
## 5 0 0 0 1 0 3 1
## 6 0 0 0 1 0 3 0
## fruiting.bodies ext.decay mycelium int.discolor sclerotia fruit.pods
## 1 1 1 0 0 0 0
## 2 1 1 0 0 0 0
## 3 1 1 0 0 0 0
## 4 1 1 0 0 0 0
## 5 1 1 0 0 0 0
## 6 1 1 0 0 0 0
## fruit.spots seed mold.growth seed.discolor seed.size shriveling roots
## 1 4 0 0 0 0 0 0
## 2 4 0 0 0 0 0 0
## 3 4 0 0 0 0 0 0
## 4 4 0 0 0 0 0 0
## 5 4 0 0 0 0 0 0
## 6 4 0 0 0 0 0 0
# Load necessary libraries
library(caret)
library(VIM) # For KNN imputation
library(mice) # For Regression imputation
##
## Attaching package: 'mice'
## The following object is masked from 'package:stats':
##
## filter
## The following objects are masked from 'package:base':
##
## cbind, rbind
library(missForest) # For Random Forest imputation
library(randomForest) # For Random Forest model
## randomForest 4.7-1.2
## Type rfNews() to see new features/changes/bug fixes.
##
## Attaching package: 'randomForest'
## The following object is masked from 'package:seasonal':
##
## outlier
## The following object is masked from 'package:ggplot2':
##
## margin
## The following object is masked from 'package:dplyr':
##
## combine
# Define the control for cross-validation
folds <- createFolds(soybean_data$Class, k = 5, list = TRUE)
# Initialize an empty list to store performance metrics
results <- list()
# Custom function to train and evaluate models using KNN imputation
knn_imputation_cv <- function(train_data, test_data) {
# Impute missing values in the training data using KNN
train_imputed <- kNN(train_data, k = 5)
# Fit the model (Random Forest in this case)
model <- randomForest(Class ~ ., data = train_imputed)
# Impute the missing values in the test data
test_imputed <- kNN(test_data, k = 5)
# Make predictions on the test data
predictions <- predict(model, test_imputed)
# Evaluate accuracy
accuracy <- mean(predictions == test_imputed$Class)
return(accuracy)
}
# Perform Cross-Validation with Imputation
for (i in 1:length(folds)) {
# Split the data into training and validation sets
train_idx <- folds[[i]]
train_data <- soybean_data[train_idx, ]
test_data <- soybean_data[-train_idx, ]
# Apply KNN Imputation and train the model
fold_result <- knn_imputation_cv(train_data, test_data)
# Store the result
results[[i]] <- fold_result
}
# Print the average accuracy across folds
mean(unlist(results))
## [1] 0.9022625
# Adding missingness indicators to the dataset
add_missing_indicators <- function(data) {
for (col in colnames(data)) {
# Check for missing values
if (any(is.na(data[[col]]))) {
# Create a new binary column to indicate missingness
data[[paste0(col, "_missing")]] <- ifelse(is.na(data[[col]]), 1, 0)
}
}
return(data)
}
# Apply the function to the dataset to add missingness indicators
soybean_data_with_indicators <- add_missing_indicators(soybean_data)
head(soybean_data_with_indicators)
## Class date plant.stand precip temp hail crop.hist area.dam
## 1 diaporthe-stem-canker 6 0 2 1 0 1 1
## 2 diaporthe-stem-canker 4 0 2 1 0 2 0
## 3 diaporthe-stem-canker 3 0 2 1 0 1 0
## 4 diaporthe-stem-canker 3 0 2 1 0 1 0
## 5 diaporthe-stem-canker 6 0 2 1 0 2 0
## 6 diaporthe-stem-canker 5 0 2 1 0 3 0
## sever seed.tmt germ plant.growth leaves leaf.halo leaf.marg leaf.size
## 1 1 0 0 1 1 0 2 2
## 2 2 1 1 1 1 0 2 2
## 3 2 1 2 1 1 0 2 2
## 4 2 0 1 1 1 0 2 2
## 5 1 0 2 1 1 0 2 2
## 6 1 0 1 1 1 0 2 2
## leaf.shread leaf.malf leaf.mild stem lodging stem.cankers canker.lesion
## 1 0 0 0 1 1 3 1
## 2 0 0 0 1 0 3 1
## 3 0 0 0 1 0 3 0
## 4 0 0 0 1 0 3 0
## 5 0 0 0 1 0 3 1
## 6 0 0 0 1 0 3 0
## fruiting.bodies ext.decay mycelium int.discolor sclerotia fruit.pods
## 1 1 1 0 0 0 0
## 2 1 1 0 0 0 0
## 3 1 1 0 0 0 0
## 4 1 1 0 0 0 0
## 5 1 1 0 0 0 0
## 6 1 1 0 0 0 0
## fruit.spots seed mold.growth seed.discolor seed.size shriveling roots
## 1 4 0 0 0 0 0 0
## 2 4 0 0 0 0 0 0
## 3 4 0 0 0 0 0 0
## 4 4 0 0 0 0 0 0
## 5 4 0 0 0 0 0 0
## 6 4 0 0 0 0 0 0
## date_missing plant.stand_missing precip_missing temp_missing hail_missing
## 1 0 0 0 0 0
## 2 0 0 0 0 0
## 3 0 0 0 0 0
## 4 0 0 0 0 0
## 5 0 0 0 0 0
## 6 0 0 0 0 0
## crop.hist_missing area.dam_missing sever_missing seed.tmt_missing
## 1 0 0 0 0
## 2 0 0 0 0
## 3 0 0 0 0
## 4 0 0 0 0
## 5 0 0 0 0
## 6 0 0 0 0
## germ_missing plant.growth_missing leaf.halo_missing leaf.marg_missing
## 1 0 0 0 0
## 2 0 0 0 0
## 3 0 0 0 0
## 4 0 0 0 0
## 5 0 0 0 0
## 6 0 0 0 0
## leaf.size_missing leaf.shread_missing leaf.malf_missing leaf.mild_missing
## 1 0 0 0 0
## 2 0 0 0 0
## 3 0 0 0 0
## 4 0 0 0 0
## 5 0 0 0 0
## 6 0 0 0 0
## stem_missing lodging_missing stem.cankers_missing canker.lesion_missing
## 1 0 0 0 0
## 2 0 0 0 0
## 3 0 0 0 0
## 4 0 0 0 0
## 5 0 0 0 0
## 6 0 0 0 0
## fruiting.bodies_missing ext.decay_missing mycelium_missing
## 1 0 0 0
## 2 0 0 0
## 3 0 0 0
## 4 0 0 0
## 5 0 0 0
## 6 0 0 0
## int.discolor_missing sclerotia_missing fruit.pods_missing fruit.spots_missing
## 1 0 0 0 0
## 2 0 0 0 0
## 3 0 0 0 0
## 4 0 0 0 0
## 5 0 0 0 0
## 6 0 0 0 0
## seed_missing mold.growth_missing seed.discolor_missing seed.size_missing
## 1 0 0 0 0
## 2 0 0 0 0
## 3 0 0 0 0
## 4 0 0 0 0
## 5 0 0 0 0
## 6 0 0 0 0
## shriveling_missing roots_missing
## 1 0 0
## 2 0 0
## 3 0 0
## 4 0 0
## 5 0 0
## 6 0 0