Resultados globales medidas precisión y exactitud cada método

library(readxl)
SUMMARY <- read_excel("SUMMARY.xlsx")
df_global <- data.frame(
  Metodo = c("PA", "MAP", "EGA", "KP_mc", "KP_mcm", "KP"),
  mPC = numeric(6),   
  mMBE = numeric(6),  
  mMAE = numeric(6)   
)

df_global[1, 2] <- mean(c(SUMMARY$PC_pasp, SUMMARY$PC_pasp))
df_global[2, 2] <- mean(c(SUMMARY$PC_mapp, SUMMARY$PC_mapsp))
df_global[3, 2] <- mean(c(SUMMARY$PC_egap, SUMMARY$PC_egasp))
df_global[4, 2] <- mean(c(SUMMARY$PC_kpp, SUMMARY$PC_kpsp))
df_global[5, 2] <- mean(c(SUMMARY$PC_kppm, SUMMARY$PC_kpspm))
df_global[6, 2] <- mean(c(SUMMARY$PC_kpd))

df_global[1, 3] <- mean(c(SUMMARY$MBE_pasp, SUMMARY$MBE_pasp))
df_global[2, 3] <- mean(c(SUMMARY$MBE_mapp, SUMMARY$MBE_mapsp))
df_global[3, 3] <- mean(c(SUMMARY$MBE_egap, SUMMARY$MBE_egasp))
df_global[4, 3] <- mean(c(SUMMARY$MBE_kpp, SUMMARY$MBE_kpsp))
df_global[5, 3] <- mean(c(SUMMARY$MBE_kppm, SUMMARY$MBE_kpspm))
df_global[6, 3] <- mean(c(SUMMARY$MBE_kpd))

df_global[1, 4] <- mean(c(SUMMARY$MAE_pasp, SUMMARY$MAE_pasp))
df_global[2, 4] <- mean(c(SUMMARY$MAE_mapp, SUMMARY$MAE_mapsp))
df_global[3, 4] <- mean(c(SUMMARY$MAE_egap, SUMMARY$MAE_egasp))
df_global[4, 4] <- mean(c(SUMMARY$MAE_kpp, SUMMARY$MAE_kpsp))
df_global[5, 4] <- mean(c(SUMMARY$MAE_kppm, SUMMARY$MAE_kpspm))
df_global[6, 4] <- mean(c(SUMMARY$MAE_kpd))

library(knitr)
library(kableExtra)

kable(df_global, format = "html", table.attr = "class='table table-striped'") %>%
  kable_styling(full_width = FALSE)
Metodo mPC mMBE mMAE
PA 0.1895250 -2.3405292 2.405379
MAP 0.1766250 2.2611521 2.288340
EGA 0.4800833 0.5948854 1.215235
KP_mc 0.3176354 -0.4221125 1.208187
KP_mcm 0.0527167 -3.3981375 3.417075
KP 0.1317542 -3.7780458 3.779104

*PA = AnÔlisis paralelo, MAP = Mínimo promedio parcial, EGA = AnÔlisis exploratorio grÔfico, KP_mc = Kaiser-Princals usando la matriz de correlación, KP_mcm = Kaiser princals usando la matriz de correlación ajustando el nivel métrico, KP = Kaiser Princals aplicado a la base de datos de tipo ordinal

library(dplyr)
## 
## Adjuntando el paquete: 'dplyr'
## The following object is masked from 'package:kableExtra':
## 
##     group_rows
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union
HFL_O <- SUMMARY %>% filter(Loading == "HighFL_O")
LFL_O <- SUMMARY %>% filter(Loading == "LowFL_O")
HFL_03 <- SUMMARY %>% filter(Loading == "HighFL_cor03")
LFL_03 <- SUMMARY %>% filter(Loading == "LowFL_cor03")
HFL_05 <- SUMMARY %>% filter(Loading == "HighFL_cor05")
LFL_05 <- SUMMARY %>% filter(Loading == "LowFL_cor05")


df_load_corf <- data.frame(
  Metodo = c(rep("PA",6), rep("MAP",6), rep("EGA", 6), rep("KP_mc",6), rep("KP_mcm", 6), rep("KP",6)),
  Carga_corf = c("HFL_O", "LFL_O", "HFL_03", "LFL_03", "HFL_05", "LFL_05", "HFL_O", "LFL_O", "HFL_03", "LFL_03", "HFL_05", "LFL_05", "HFL_O", "LFL_O", "HFL_03", "LFL_03", "HFL_05", "LFL_05", "HFL_O", "LFL_O", "HFL_03", "LFL_03", "HFL_05", "LFL_05", "HFL_O", "LFL_O", "HFL_03", "LFL_03", "HFL_05", "LFL_05", "HFL_O", "LFL_O", "HFL_03", "LFL_03", "HFL_05", "LFL_05"),
  mPC = numeric(36),   
  mMBE = numeric(36),  
  mMAE = numeric(36)   
)

df_load_corf[1, 3] <- mean(c(HFL_O$PC_pasp, HFL_O$PC_pasp))
df_load_corf[2, 3] <- mean(c(LFL_O$PC_pasp, HFL_O$PC_pasp))
df_load_corf[3, 3] <- mean(c(HFL_03$PC_pasp, HFL_03$PC_pasp))
df_load_corf[4, 3] <- mean(c(LFL_03$PC_pasp, LFL_03$PC_pasp))
df_load_corf[5, 3] <- mean(c(HFL_05$PC_pasp, HFL_05$PC_pasp))
df_load_corf[6, 3] <- mean(c(LFL_05$PC_pasp, LFL_05$PC_pasp))
df_load_corf[7, 3] <- mean(c(HFL_O$PC_mapp, HFL_O$PC_mapsp))
df_load_corf[8, 3] <- mean(c(LFL_O$PC_mapp, LFL_O$PC_mapsp))
df_load_corf[9, 3] <- mean(c(HFL_03$PC_mapp, HFL_03$PC_mapsp))
df_load_corf[10, 3] <- mean(c(LFL_03$PC_mapp, LFL_03$PC_mapsp))
df_load_corf[11, 3] <- mean(c(HFL_05$PC_mapp, HFL_05$PC_mapsp))
df_load_corf[12, 3] <- mean(c(LFL_05$PC_mapp, LFL_05$PC_mapsp))
df_load_corf[13, 3] <- mean(c(HFL_O$PC_egap, HFL_O$PC_egasp))
df_load_corf[14, 3] <- mean(c(LFL_O$PC_egap, LFL_O$PC_egasp))
df_load_corf[15, 3] <- mean(c(HFL_03$PC_egap, HFL_03$PC_egasp))
df_load_corf[16, 3] <- mean(c(LFL_03$PC_egap, LFL_03$PC_egasp))
df_load_corf[17, 3] <- mean(c(HFL_05$PC_egap, HFL_05$PC_egasp))
df_load_corf[18, 3] <- mean(c(LFL_05$PC_egap, LFL_05$PC_egasp))
df_load_corf[19, 3] <- mean(c(HFL_O$PC_kpp, HFL_O$PC_kpsp))
df_load_corf[20, 3] <- mean(c(LFL_O$PC_kpp, LFL_O$PC_kpsp))
df_load_corf[21, 3] <- mean(c(HFL_03$PC_kpp, HFL_03$PC_kpsp))
df_load_corf[22, 3] <- mean(c(LFL_03$PC_kpp, LFL_03$PC_kpsp))
df_load_corf[23, 3] <- mean(c(HFL_05$PC_kpp, HFL_05$PC_kpsp))
df_load_corf[24, 3] <- mean(c(LFL_05$PC_kpp, LFL_05$PC_kpsp))
df_load_corf[25, 3] <- mean(c(HFL_O$PC_kppm, HFL_O$PC_kpspm))
df_load_corf[26, 3] <- mean(c(LFL_O$PC_kppm, LFL_O$PC_kpspm))
df_load_corf[27, 3] <- mean(c(HFL_03$PC_kppm, HFL_03$PC_kpspm))
df_load_corf[28, 3] <- mean(c(LFL_03$PC_kppm, LFL_03$PC_kpspm))
df_load_corf[29, 3] <- mean(c(HFL_05$PC_kppm, HFL_05$PC_kpspm))
df_load_corf[30, 3] <- mean(c(LFL_05$PC_kpd))
df_load_corf[31, 3] <- mean(c(HFL_O$PC_kpd))
df_load_corf[32, 3] <- mean(c(LFL_O$PC_kpd))
df_load_corf[33, 3] <- mean(c(HFL_03$PC_kpd))
df_load_corf[34, 3] <- mean(c(LFL_03$PC_kpd))
df_load_corf[35, 3] <- mean(c(HFL_05$PC_kpd))
df_load_corf[36, 3] <- mean(c(LFL_05$PC_kpd))

df_load_corf[1, 4] <- mean(c(HFL_O$MBE_pasp, HFL_O$MBE_pasp))
df_load_corf[2, 4] <- mean(c(LFL_O$MBE_pasp, HFL_O$MBE_pasp))
df_load_corf[3, 4] <- mean(c(HFL_03$MBE_pasp, HFL_03$MBE_pasp))
df_load_corf[4, 4] <- mean(c(LFL_03$MBE_pasp, LFL_03$MBE_pasp))
df_load_corf[5, 4] <- mean(c(HFL_05$MBE_pasp, HFL_05$MBE_pasp))
df_load_corf[6, 4] <- mean(c(LFL_05$MBE_pasp, LFL_05$MBE_pasp))
df_load_corf[7, 4] <- mean(c(HFL_O$MBE_mapp, HFL_O$MBE_mapsp))
df_load_corf[8, 4] <- mean(c(LFL_O$MBE_mapp, LFL_O$MBE_mapsp))
df_load_corf[9, 4] <- mean(c(HFL_03$MBE_mapp, HFL_03$MBE_mapsp))
df_load_corf[10, 4] <- mean(c(LFL_03$MBE_mapp, LFL_03$MBE_mapsp))
df_load_corf[11, 4] <- mean(c(HFL_05$MBE_mapp, HFL_05$MBE_mapsp))
df_load_corf[12, 4] <- mean(c(LFL_05$MBE_mapp, LFL_05$MBE_mapsp))
df_load_corf[13, 4] <- mean(c(HFL_O$MBE_egap, HFL_O$MBE_egasp))
df_load_corf[14, 4] <- mean(c(LFL_O$MBE_egap, LFL_O$MBE_egasp))
df_load_corf[15, 4] <- mean(c(HFL_03$MBE_egap, HFL_03$MBE_egasp))
df_load_corf[16, 4] <- mean(c(LFL_03$MBE_egap, LFL_03$MBE_egasp))
df_load_corf[17, 4] <- mean(c(HFL_05$MBE_egap, HFL_05$MBE_egasp))
df_load_corf[18, 4] <- mean(c(LFL_05$MBE_egap, LFL_05$MBE_egasp))
df_load_corf[19, 4] <- mean(c(HFL_O$MBE_kpp, HFL_O$MBE_kpsp))
df_load_corf[20, 4] <- mean(c(LFL_O$MBE_kpp, LFL_O$MBE_kpsp))
df_load_corf[21, 4] <- mean(c(HFL_03$MBE_kpp, HFL_03$MBE_kpsp))
df_load_corf[22, 4] <- mean(c(LFL_03$MBE_kpp, LFL_03$MBE_kpsp))
df_load_corf[23, 4] <- mean(c(HFL_05$MBE_kpp, HFL_05$MBE_kpsp))
df_load_corf[24, 4] <- mean(c(LFL_05$MBE_kpp, LFL_05$MBE_kpsp))
df_load_corf[25, 4] <- mean(c(HFL_O$MBE_kppm, HFL_O$MBE_kpspm))
df_load_corf[26, 4] <- mean(c(LFL_O$MBE_kppm, LFL_O$MBE_kpspm))
df_load_corf[27, 4] <- mean(c(HFL_03$MBE_kppm, HFL_03$MBE_kpspm))
df_load_corf[28, 4] <- mean(c(LFL_03$MBE_kppm, LFL_03$MBE_kpspm))
df_load_corf[29, 4] <- mean(c(HFL_05$MBE_kppm, HFL_05$MBE_kpspm))
df_load_corf[30, 4] <- mean(c(LFL_05$MBE_kpd))
df_load_corf[31, 4] <- mean(c(HFL_O$MBE_kpd))
df_load_corf[32, 4] <- mean(c(LFL_O$MBE_kpd))
df_load_corf[33, 4] <- mean(c(HFL_03$MBE_kpd))
df_load_corf[34, 4] <- mean(c(LFL_03$MBE_kpd))
df_load_corf[35, 4] <- mean(c(HFL_05$MBE_kpd))
df_load_corf[36, 4] <- mean(c(LFL_05$MBE_kpd))

df_load_corf[1, 5] <- mean(c(HFL_O$MAE_pasp, HFL_O$MAE_pasp))
df_load_corf[2, 5] <- mean(c(LFL_O$MAE_pasp, HFL_O$MAE_pasp))
df_load_corf[3, 5] <- mean(c(HFL_03$MAE_pasp, HFL_03$MAE_pasp))
df_load_corf[4, 5] <- mean(c(LFL_03$MAE_pasp, LFL_03$MAE_pasp))
df_load_corf[5, 5] <- mean(c(HFL_05$MAE_pasp, HFL_05$MAE_pasp))
df_load_corf[6, 5] <- mean(c(LFL_05$MAE_pasp, LFL_05$MAE_pasp))
df_load_corf[7, 5] <- mean(c(HFL_O$MAE_mapp, HFL_O$MAE_mapsp))
df_load_corf[8, 5] <- mean(c(LFL_O$MAE_mapp, LFL_O$MAE_mapsp))
df_load_corf[9, 5] <- mean(c(HFL_03$MAE_mapp, HFL_03$MAE_mapsp))
df_load_corf[10, 5] <- mean(c(LFL_03$MAE_mapp, LFL_03$MAE_mapsp))
df_load_corf[11, 5] <- mean(c(HFL_05$MAE_mapp, HFL_05$MAE_mapsp))
df_load_corf[12, 5] <- mean(c(LFL_05$MAE_mapp, LFL_05$MAE_mapsp))
df_load_corf[13, 5] <- mean(c(HFL_O$MAE_egap, HFL_O$MAE_egasp))
df_load_corf[14, 5] <- mean(c(LFL_O$MAE_egap, LFL_O$MAE_egasp))
df_load_corf[15, 5] <- mean(c(HFL_03$MAE_egap, HFL_03$MAE_egasp))
df_load_corf[16, 5] <- mean(c(LFL_03$MAE_egap, LFL_03$MAE_egasp))
df_load_corf[17, 5] <- mean(c(HFL_05$MAE_egap, HFL_05$MAE_egasp))
df_load_corf[18, 5] <- mean(c(LFL_05$MAE_egap, LFL_05$MAE_egasp))
df_load_corf[19, 5] <- mean(c(HFL_O$MAE_kpp, HFL_O$MAE_kpsp))
df_load_corf[20, 5] <- mean(c(LFL_O$MAE_kpp, LFL_O$MAE_kpsp))
df_load_corf[21, 5] <- mean(c(HFL_03$MAE_kpp, HFL_03$MAE_kpsp))
df_load_corf[22, 5] <- mean(c(LFL_03$MAE_kpp, LFL_03$MAE_kpsp))
df_load_corf[23, 5] <- mean(c(HFL_05$MAE_kpp, HFL_05$MAE_kpsp))
df_load_corf[24, 5] <- mean(c(LFL_05$MAE_kpp, LFL_05$MAE_kpsp))
df_load_corf[25, 5] <- mean(c(HFL_O$MAE_kppm, HFL_O$MAE_kpspm))
df_load_corf[26, 5] <- mean(c(LFL_O$MAE_kppm, LFL_O$MAE_kpspm))
df_load_corf[27, 5] <- mean(c(HFL_03$MAE_kppm, HFL_03$MAE_kpspm))
df_load_corf[28, 5] <- mean(c(LFL_03$MAE_kppm, LFL_03$MAE_kpspm))
df_load_corf[29, 5] <- mean(c(HFL_05$MAE_kppm, HFL_05$MAE_kpspm))
df_load_corf[30, 5] <- mean(c(LFL_05$MAE_kpd))
df_load_corf[31, 5] <- mean(c(HFL_O$MAE_kpd))
df_load_corf[32, 5] <- mean(c(LFL_O$MAE_kpd))
df_load_corf[33, 5] <- mean(c(HFL_03$MAE_kpd))
df_load_corf[34, 5] <- mean(c(LFL_03$MAE_kpd))
df_load_corf[35, 5] <- mean(c(HFL_05$MAE_kpd))
df_load_corf[36, 5] <- mean(c(LFL_05$MAE_kpd))


library(knitr)
library(kableExtra)

kable(df_load_corf, format = "html", table.attr = "class='table table-striped'") %>%
  kable_styling(full_width = FALSE)
Metodo Carga_corf mPC mMBE mMAE
PA HFL_O 0.3450556 -1.2884722 1.3045278
PA LFL_O 0.2101250 -2.3113333 2.3416944
PA HFL_03 0.2895833 -1.4966111 1.5391111
PA LFL_03 0.0722222 -3.4321667 3.4885556
PA HFL_05 0.2154722 -1.6869722 1.8191944
PA LFL_05 0.0767222 -3.5700000 3.6507222
MAP HFL_O 0.4107361 1.8328472 1.9126528
MAP LFL_O 0.0335556 3.0614583 3.0715972
MAP HFL_03 0.2948056 1.7496528 1.8045417
MAP LFL_03 0.0198611 2.9944306 3.0008750
MAP HFL_05 0.1303056 2.0650556 2.0892778
MAP LFL_05 0.0098194 2.9826528 2.9884028
EGA HFL_O 0.7505694 0.0686250 0.4905139
EGA LFL_O 0.2785972 1.0758333 1.8803611
EGA HFL_03 0.6765278 0.1401806 0.6070417
EGA LFL_03 0.2404306 1.1583056 2.0021389
EGA HFL_05 0.5379028 0.3485278 0.8345556
EGA LFL_05 0.2096944 1.3055694 2.1039306
KP_mc HFL_O 0.3499444 0.3869722 0.9120278
KP_mc LFL_O 0.3520417 -0.5445556 1.2710278
KP_mc HFL_03 0.3671250 0.0219444 1.0165556
KP_mc LFL_03 0.3090833 -0.8846806 1.5223750
KP_mc HFL_05 0.3364167 -0.2413056 1.1463056
KP_mc LFL_05 0.2780694 -1.0081111 1.6419444
KP_mcm HFL_O 0.2266944 -1.7534167 1.8705556
KP_mcm LFL_O 0.0132500 -3.8801111 3.8805556
KP_mcm HFL_03 0.0764306 -2.9044444 2.9120556
KP_mcm LFL_03 0.0046528 -4.3981250 4.3982361
KP_mcm HFL_05 0.0229444 -3.6120694 3.6130139
KP_mcm LFL_05 0.0533333 -4.6880000 4.6880000
KP HFL_O 0.1535556 -3.5571944 3.5571944
KP LFL_O 0.0397778 -5.0394444 5.0394444
KP HFL_03 0.1702500 -3.3644167 3.3644722
KP LFL_03 0.0447778 -4.8764444 4.8764444
KP HFL_05 0.2055000 -3.1456667 3.1526667
KP LFL_05 0.0533333 -4.6880000 4.6880000
library(ggplot2)
df_load_corf$Metodo <- as.factor(df_load_corf$Metodo)
df_load_corf$Carga_corf <- as.factor(df_load_corf$Carga_corf)

ggplot(df_load_corf, aes(x = Carga_corf, y = mMBE, color = Metodo)) +
  geom_point(position = position_dodge(width = 0.5)) +
  geom_errorbar(aes(ymin = mMBE - mMAE, ymax = mMBE + mMAE),
                width = 0.2, position = position_dodge(width = 0.5)) +
  labs(title = "Desviación de MBE con MAE como Error - carga factorial - cor entre factores",
       x = "Carga factorial - relacion entre factores",
       y = "MBE (con MAE como barras de error)") +
  theme_minimal()

# Correcta proporcion

ggplot(df_load_corf, aes(x = Carga_corf, y = mPC, fill = Metodo)) +
  geom_bar(stat = "identity", position = "dodge") +
  labs(title = "Proporciones Correctas por carga factorial y relacion entre factores",
       x = "Condición",
       y = "Proporción Correcta") +
    scale_fill_grey(start = 0, end = 0.8)   +
  theme_minimal()

library(tidyr)
df_long <- df_load_corf%>%
  pivot_longer(cols = c(mPC, mMBE, mMAE), 
               names_to = "variable", 
               values_to = "value")

ggplot(df_long, aes(x = Carga_corf, y = value, group = variable, color = variable)) +
  geom_line() +
  geom_point() +
  facet_wrap(~ Metodo, scales = "free_y") +  # Facetas según el método
  labs(title = "GrÔfico Línea para PC, MBE, y MAE según Método",
       x = "Carga Factorial - CORRELACION ENTRE FACTORES",
       y = "Valor") +
  theme_minimal() +
  theme(axis.text.x = element_text(angle = 45, hjust = 1)) 

Resultado por método y tipo de correlación empleado

df_glob_cor <- data.frame(
  Metodo = c("PAp","Pasp" ,"MAPp", "MAPsp", "EGAp","EGAsp", "KP_mcp", "KP_mcsp",
             "KP_mcmp", "KP_mcmsp","KP"),
  mPC = numeric(11),   
  mMBE = numeric(11),  
  mMAE = numeric(11)   
)

df_glob_cor[1, 2] <- mean(c(SUMMARY$PC_pap))
df_glob_cor[2, 2] <- mean(c(SUMMARY$PC_pasp))
df_glob_cor[3, 2] <- mean(c(SUMMARY$PC_mapp))
df_glob_cor[4, 2] <- mean(c(SUMMARY$PC_mapsp))
df_glob_cor[5, 2] <- mean(c(SUMMARY$PC_egap))
df_glob_cor[6, 2] <- mean(c(SUMMARY$PC_egasp))
df_glob_cor[7, 2] <- mean(c(SUMMARY$PC_kpp))
df_glob_cor[8, 2] <- mean(c(SUMMARY$PC_kpsp))
df_glob_cor[9, 2] <- mean(c(SUMMARY$PC_kppm))
df_glob_cor[10, 2] <- mean(c(SUMMARY$PC_kpspm))
df_glob_cor[11, 2] <- mean(c(SUMMARY$PC_kpd))

df_glob_cor[1, 3] <- mean(c(SUMMARY$MBE_pap))
df_glob_cor[2, 3] <- mean(c(SUMMARY$MBE_pasp))
df_glob_cor[3, 3] <- mean(c(SUMMARY$MBE_mapp))
df_glob_cor[4, 3] <- mean(c(SUMMARY$MBE_mapsp))
df_glob_cor[5, 3] <- mean(c(SUMMARY$MBE_egap))
df_glob_cor[6, 3] <- mean(c(SUMMARY$MBE_egasp))
df_glob_cor[7, 3] <- mean(c(SUMMARY$MBE_kpp))
df_glob_cor[8, 3] <- mean(c(SUMMARY$MBE_kpsp))
df_glob_cor[9, 3] <- mean(c(SUMMARY$MBE_kppm))
df_glob_cor[10, 3] <- mean(c(SUMMARY$MBE_kpspm))
df_glob_cor[11, 3] <- mean(c(SUMMARY$MBE_kpd))


df_glob_cor[1, 4] <- mean(c(SUMMARY$MAE_pap))
df_glob_cor[2, 4] <- mean(c(SUMMARY$MAE_pasp))
df_glob_cor[3, 4] <- mean(c(SUMMARY$MAE_mapp))
df_glob_cor[4, 4] <- mean(c(SUMMARY$MAE_mapsp))
df_glob_cor[5, 4] <- mean(c(SUMMARY$MAE_egap))
df_glob_cor[6, 4] <- mean(c(SUMMARY$MAE_egasp))
df_glob_cor[7, 4] <- mean(c(SUMMARY$MAE_kpp))
df_glob_cor[8, 4] <- mean(c(SUMMARY$MAE_kpsp))
df_glob_cor[9, 4] <- mean(c(SUMMARY$MAE_kppm))
df_glob_cor[10, 4] <- mean(c(SUMMARY$MAE_kpspm))
df_glob_cor[11, 4] <- mean(c(SUMMARY$MAE_kpd))

kable(df_glob_cor, format = "html", table.attr = "class='table table-striped'") %>%
  kable_styling(full_width = FALSE)
Metodo mPC mMBE mMAE
PAp 0.1895250 -2.3398500 2.404825
Pasp 0.1895250 -2.3405292 2.405379
MAPp 0.1765708 2.2614417 2.288592
MAPsp 0.1766792 2.2608625 2.288088
EGAp 0.4802333 0.5941125 1.214338
EGAsp 0.4799333 0.5956583 1.216133
KP_mcp 0.3177958 -0.4288167 1.209742
KP_mcsp 0.3174750 -0.4154083 1.206633
KP_mcmp 0.0527042 -3.3984958 3.417421
KP_mcmsp 0.0527292 -3.3977792 3.416729
KP 0.1317542 -3.7780458 3.779104

Aparentemente no hay diferencias entre el tipo de matriz de correlación a usar (pendiente realizar prueba de hipótesis)

Resultados globales por factor

library(dplyr)
f1 <- SUMMARY %>% filter(Factor == "1")
f2 <- SUMMARY %>% filter(Factor == "2")
f4 <- SUMMARY %>% filter(Factor == "4")
f6 <- SUMMARY %>% filter(Factor == "6")

df_glob_fc <- data.frame(
  Metodo = c("PA","MAP", "EGA","KP_mc","KP_mcm","KP"),
  mPC1 = numeric(6),   
  mMBE1 = numeric(6),  
  mMAE1 = numeric(6),
  mPC2 = numeric(6),   
  mMBE2 = numeric(6),  
  mMAE2 = numeric(6),
  mPC4 = numeric(6),   
  mMBE4 = numeric(6),  
  mMAE4 = numeric(6), 
  mPC6 = numeric(6),   
  mMBE6 = numeric(6),  
  mMAE6 = numeric(6)
)

df_glob_fc[1, 2] <- mean(c(f1$PC_pasp, f1$PC_pasp))
df_glob_fc[2, 2] <- mean(c(f1$PC_mapp, f1$PC_mapsp))
df_glob_fc[3, 2] <- mean(c(f1$PC_egap, f1$PC_egasp))
df_glob_fc[4, 2] <- mean(c(f1$PC_kpp, f1$PC_kpsp))
df_glob_fc[5, 2] <- mean(c(f1$PC_kppm, f1$PC_kpspm))
df_glob_fc[6, 2] <- mean(c(f1$PC_kpd))

df_glob_fc[1, 3] <- mean(c(f1$MBE_pasp, f1$MBE_pasp))
df_glob_fc[2, 3] <- mean(c(f1$MBE_mapp, f1$MBE_mapsp))
df_glob_fc[3, 3] <- mean(c(f1$MBE_egap, f1$MBE_egasp))
df_glob_fc[4, 3] <- mean(c(f1$MBE_kpp, f1$MBE_kpsp))
df_glob_fc[5, 3] <- mean(c(f1$MBE_kppm, f1$MBE_kpspm))
df_glob_fc[6, 3] <- mean(c(f1$MBE_kpd))

df_glob_fc[1, 4] <- mean(c(f1$MAE_pasp, f1$MAE_pasp))
df_glob_fc[2, 4] <- mean(c(f1$MAE_mapp, f1$MAE_mapsp))
df_glob_fc[3, 4] <- mean(c(f1$MAE_egap, f1$MAE_egasp))
df_glob_fc[4, 4] <- mean(c(f1$MAE_kpp, f1$MAE_kpsp))
df_glob_fc[5, 4] <- mean(c(f1$MAE_kppm, f1$MAE_kpspm))
df_glob_fc[6, 4] <- mean(c(f1$MAE_kpd))


df_glob_fc[1, 5] <- mean(c(f2$PC_pasp, f2$PC_pasp))
df_glob_fc[2, 5] <- mean(c(f2$PC_mapp, f2$PC_mapsp))
df_glob_fc[3, 5] <- mean(c(f2$PC_egap, f2$PC_egasp))
df_glob_fc[4, 5] <- mean(c(f2$PC_kpp, f2$PC_kpsp))
df_glob_fc[5, 5] <- mean(c(f2$PC_kppm, f2$PC_kpspm))
df_glob_fc[6, 5] <- mean(c(f2$PC_kpd))

df_glob_fc[1, 6] <- mean(c(f2$MBE_pasp, f2$MBE_pasp))
df_glob_fc[2, 6] <- mean(c(f2$MBE_mapp, f2$MBE_mapsp))
df_glob_fc[3, 6] <- mean(c(f2$MBE_egap, f2$MBE_egasp))
df_glob_fc[4, 6] <- mean(c(f2$MBE_kpp, f2$MBE_kpsp))
df_glob_fc[5, 6] <- mean(c(f2$MBE_kppm, f2$MBE_kpspm))
df_glob_fc[6, 6] <- mean(c(f2$MBE_kpd))

df_glob_fc[1, 7] <- mean(c(f2$MAE_pasp, f2$MAE_pasp))
df_glob_fc[2, 7] <- mean(c(f2$MAE_mapp, f2$MAE_mapsp))
df_glob_fc[3, 7] <- mean(c(f2$MAE_egap, f2$MAE_egasp))
df_glob_fc[4, 7] <- mean(c(f2$MAE_kpp, f2$MAE_kpsp))
df_glob_fc[5, 7] <- mean(c(f2$MAE_kppm, f2$MAE_kpspm))
df_glob_fc[6, 7] <- mean(c(f2$MAE_kpd))

df_glob_fc[1, 8] <- mean(c(f4$PC_pasp, f4$PC_pasp))
df_glob_fc[2, 8] <- mean(c(f4$PC_mapp, f4$PC_mapsp))
df_glob_fc[3, 8] <- mean(c(f4$PC_egap, f4$PC_egasp))
df_glob_fc[4, 8] <- mean(c(f4$PC_kpp, f4$PC_kpsp))
df_glob_fc[5, 8] <- mean(c(f4$PC_kppm, f4$PC_kpspm))
df_glob_fc[6, 8] <- mean(c(f4$PC_kpd))

df_glob_fc[1, 9] <- mean(c(f4$MBE_pasp, f4$MBE_pasp))
df_glob_fc[2, 9] <- mean(c(f4$MBE_mapp, f4$MBE_mapsp))
df_glob_fc[3, 9] <- mean(c(f4$MBE_egap, f4$MBE_egasp))
df_glob_fc[4, 9] <- mean(c(f4$MBE_kpp, f4$MBE_kpsp))
df_glob_fc[5, 9] <- mean(c(f4$MBE_kppm, f4$MBE_kpspm))
df_glob_fc[6, 9] <- mean(c(f4$MBE_kpd))

df_glob_fc[1, 10] <- mean(c(f4$MAE_pasp, f4$MAE_pasp))
df_glob_fc[2, 10] <- mean(c(f4$MAE_mapp, f4$MAE_mapsp))
df_glob_fc[3, 10] <- mean(c(f4$MAE_egap, f4$MAE_egasp))
df_glob_fc[4, 10] <- mean(c(f4$MAE_kpp, f4$MAE_kpsp))
df_glob_fc[5, 10] <- mean(c(f4$MAE_kppm, f4$MAE_kpspm))
df_glob_fc[6, 10] <- mean(c(f4$MAE_kpd))


df_glob_fc[1, 11] <- mean(c(f6$PC_pasp, f6$PC_pasp))
df_glob_fc[2, 11] <- mean(c(f6$PC_mapp, f6$PC_mapsp))
df_glob_fc[3, 11] <- mean(c(f6$PC_egap, f6$PC_egasp))
df_glob_fc[4, 11] <- mean(c(f6$PC_kpp, f6$PC_kpsp))
df_glob_fc[5, 11] <- mean(c(f6$PC_kppm, f6$PC_kpspm))
df_glob_fc[6, 11] <- mean(c(f6$PC_kpd))

df_glob_fc[1, 12] <- mean(c(f6$MBE_pasp, f6$MBE_pasp))
df_glob_fc[2, 12] <- mean(c(f6$MBE_mapp, f6$MBE_mapsp))
df_glob_fc[3, 12] <- mean(c(f6$MBE_egap, f6$MBE_egasp))
df_glob_fc[4, 12] <- mean(c(f6$MBE_kpp, f6$MBE_kpsp))
df_glob_fc[5, 12] <- mean(c(f6$MBE_kppm, f6$MBE_kpspm))
df_glob_fc[6, 12] <- mean(c(f6$MBE_kpd))

df_glob_fc[1, 13] <- mean(c(f6$MAE_pasp, f6$MAE_pasp))
df_glob_fc[2, 13] <- mean(c(f6$MAE_mapp, f6$MAE_mapsp))
df_glob_fc[3, 13] <- mean(c(f6$MAE_egap, f6$MAE_egasp))
df_glob_fc[4, 13] <- mean(c(f6$MAE_kpp, f6$MAE_kpsp))
df_glob_fc[5, 13] <- mean(c(f6$MAE_kppm, f6$MAE_kpspm))
df_glob_fc[6, 13] <- mean(c(f6$MAE_kpd))


kable(df_glob_fc, format = "html", table.attr = "class='table table-striped'") %>%
  kable_styling(full_width = FALSE)
Metodo mPC1 mMBE1 mMAE1 mPC2 mMBE2 mMAE2 mPC4 mMBE4 mMAE4 mPC6 mMBE6 mMAE6
PA 0.2838750 -1.1926667 1.2823333 0.2486667 -1.6410694 1.6862917 0.1565000 -2.5422083 2.582014 0.1319583 -3.2209306 3.322181
MAP 0.4176250 0.5823750 0.5823750 0.2156042 1.2766042 1.2793264 0.1438681 2.4497639 2.477236 0.0900694 3.6166806 3.677111
EGA 0.7602500 -0.1967083 0.2745417 0.5706528 0.0518194 0.6594861 0.4446806 0.5891181 1.264299 0.3315278 1.4075833 2.035486
KP_mc 0.1873333 -0.8165208 0.8165208 0.7632639 -0.1657083 0.2674028 0.1519028 -0.1563889 1.340667 0.0811736 -0.8127708 2.147049
KP_mcm 0.0069792 -2.1570000 2.1570000 0.0881458 -2.2589097 2.2869097 0.0475278 -3.5900764 3.610118 0.0377222 -4.7591389 4.774222
KP 0.3167500 -0.7737083 0.7737083 0.2667639 -1.6999444 1.7000833 0.0508889 -4.1320556 4.133278 0.0159444 -6.5035833 6.505750

Visualmente el nĆŗmero de factores si parece incidir.

Se cruza ahora la anterior información con el tipo de matriz de correlación

library(dplyr)
f1m1 <- SUMMARY %>% filter(Factor == "1") %>% filter(Matrix =="1")
f1m2 <- SUMMARY %>% filter(Factor == "1") %>% filter(Matrix =="2")
f2m1 <- SUMMARY %>% filter(Factor == "2") %>% filter(Matrix =="1")
f2m2 <- SUMMARY %>% filter(Factor == "2") %>% filter(Matrix =="2")
f4m1 <- SUMMARY %>% filter(Factor == "4") %>% filter(Matrix =="1")
f4m2 <- SUMMARY %>% filter(Factor == "4") %>% filter(Matrix =="2")
f6m1 <- SUMMARY %>% filter(Factor == "6") %>% filter(Matrix =="1")
f6m2 <- SUMMARY %>% filter(Factor == "6") %>% filter(Matrix =="2")

df_glob_fc_m <- data.frame(
  Metodo = c("PA","PA" ,"MAP","MAP","EGA","EGA","KP_mc", "KP_mc",
             "KP_mcm","KP_mcm","KP", "KP"),
  matrix = c("1", "2", "1", "2", "1", "2", "1", "2", "1", "2", "1", "2"),
  mPC1 = numeric(12),   
  mMBE1 = numeric(12),  
  mMAE1 = numeric(12),
  mPC2 = numeric(12),   
  mMBE2 = numeric(12),  
  mMAE2 = numeric(12),
  mPC4 = numeric(12),   
  mMBE4 = numeric(12),  
  mMAE4 = numeric(12), 
  mPC6 = numeric(12),   
  mMBE6 = numeric(12),  
  mMAE6 = numeric(12)
)

df_glob_fc_m[1, 3] <- mean(c(f1m1$PC_pasp, f1m1$PC_pasp))
df_glob_fc_m[2, 3] <- mean(c(f1m2$PC_pasp, f1m2$PC_pasp))
df_glob_fc_m[3, 3] <- mean(c(f1m1$PC_mapp, f1m1$PC_mapsp))
df_glob_fc_m[4, 3] <- mean(c(f1m2$PC_mapp, f1m2$PC_mapsp))
df_glob_fc_m[5, 3] <- mean(c(f1m1$PC_egap, f1m1$PC_egasp))
df_glob_fc_m[6, 3] <- mean(c(f1m2$PC_egap, f1m2$PC_egasp))
df_glob_fc_m[7, 3] <- mean(c(f1m1$PC_kpp, f1m1$PC_kpsp))
df_glob_fc_m[8, 3] <- mean(c(f1m2$PC_kpp, f1m2$PC_kpsp))
df_glob_fc_m[9, 3] <- mean(c(f1m1$PC_kppm, f1m1$PC_kpspm))
df_glob_fc_m[10, 3] <- mean(c(f1m2$PC_kppm, f1m2$PC_kpspm))
df_glob_fc_m[11, 3] <- mean(c(f1m1$PC_kpd))
df_glob_fc_m[12, 3] <- mean(c(f1m2$PC_kpd))

df_glob_fc_m[1, 4] <- mean(c(f1m1$MBE_pasp, f1m1$MBE_pasp))
df_glob_fc_m[2, 4] <- mean(c(f1m2$MBE_pasp, f1m2$MBE_pasp))
df_glob_fc_m[3, 4] <- mean(c(f1m1$MBE_mapp, f1m1$MBE_mapsp))
df_glob_fc_m[4, 4] <- mean(c(f1m2$MBE_mapp, f1m2$MBE_mapsp))
df_glob_fc_m[5, 4] <- mean(c(f1m1$MBE_egap, f1m1$MBE_egasp))
df_glob_fc_m[6, 4] <- mean(c(f1m2$MBE_egap, f1m2$MBE_egasp))
df_glob_fc_m[7, 4] <- mean(c(f1m1$MBE_kpp, f1m1$MBE_kpsp))
df_glob_fc_m[8, 4] <- mean(c(f1m2$MBE_kpp, f1m2$MBE_kpsp))
df_glob_fc_m[9, 4] <- mean(c(f1m1$MBE_kppm, f1m1$MBE_kpspm))
df_glob_fc_m[10, 4] <- mean(c(f1m2$MBE_kppm, f1m2$MBE_kpspm))
df_glob_fc_m[11, 4] <- mean(c(f1m1$MBE_kpd))
df_glob_fc_m[12, 4] <- mean(c(f1m2$MBE_kpd))


df_glob_fc_m[1, 5] <- mean(c(f1m1$MAE_pasp, f1m1$MAE_pasp))
df_glob_fc_m[2, 5] <- mean(c(f1m2$MAE_pasp, f1m2$MAE_pasp))
df_glob_fc_m[3, 5] <- mean(c(f1m1$MAE_mapp, f1m1$MAE_mapsp))
df_glob_fc_m[4, 5] <- mean(c(f1m2$MAE_mapp, f1m2$MAE_mapsp))
df_glob_fc_m[5, 5] <- mean(c(f1m1$MAE_egap, f1m1$MAE_egasp))
df_glob_fc_m[6, 5] <- mean(c(f1m2$MAE_egap, f1m2$MAE_egasp))
df_glob_fc_m[7, 5] <- mean(c(f1m1$MAE_kpp, f1m1$MAE_kpsp))
df_glob_fc_m[8, 5] <- mean(c(f1m2$MAE_kpp, f1m2$MAE_kpsp))
df_glob_fc_m[9, 5] <- mean(c(f1m1$MAE_kppm, f1m1$MAE_kpspm))
df_glob_fc_m[10,5] <- mean(c(f1m2$MAE_kppm, f1m2$MAE_kpspm))
df_glob_fc_m[11, 5] <- mean(c(f1m1$MAE_kpd))
df_glob_fc_m[12, 5] <- mean(c(f1m2$MAE_kpd))


df_glob_fc_m[1, 6] <- mean(c(f2m1$PC_pasp, f2m1$PC_pasp))
df_glob_fc_m[2, 6] <- mean(c(f2m2$PC_pasp, f2m2$PC_pasp))
df_glob_fc_m[3, 6] <- mean(c(f2m1$PC_mapp, f2m1$PC_mapsp))
df_glob_fc_m[4, 6] <- mean(c(f2m2$PC_mapp, f2m2$PC_mapsp))
df_glob_fc_m[5, 6] <- mean(c(f2m1$PC_egap, f2m1$PC_egasp))
df_glob_fc_m[6, 6] <- mean(c(f2m2$PC_egap, f2m2$PC_egasp))
df_glob_fc_m[7, 6] <- mean(c(f2m1$PC_kpp, f2m1$PC_kpsp))
df_glob_fc_m[8, 6] <- mean(c(f2m2$PC_kpp, f2m2$PC_kpsp))
df_glob_fc_m[9, 6] <- mean(c(f2m1$PC_kppm, f2m1$PC_kpspm))
df_glob_fc_m[10,6] <- mean(c(f2m2$PC_kppm, f2m2$PC_kpspm))
df_glob_fc_m[11, 6] <- mean(c(f2m1$PC_kpd))
df_glob_fc_m[12, 6] <- mean(c(f2m2$PC_kpd))

df_glob_fc_m[1, 7] <- mean(c(f2m1$MBE_pasp, f2m1$MBE_pasp))
df_glob_fc_m[2, 7] <- mean(c(f2m2$MBE_pasp, f2m2$MBE_pasp))
df_glob_fc_m[3, 7] <- mean(c(f2m1$MBE_mapp, f2m1$MBE_mapsp))
df_glob_fc_m[4, 7] <- mean(c(f2m2$MBE_mapp, f2m2$MBE_mapsp))
df_glob_fc_m[5, 7] <- mean(c(f2m1$MBE_egap, f2m1$MBE_egasp))
df_glob_fc_m[6, 7] <- mean(c(f2m2$MBE_egap, f2m2$MBE_egasp))
df_glob_fc_m[7, 7] <- mean(c(f2m1$MBE_kpp, f2m1$MBE_kpsp))
df_glob_fc_m[8, 7] <- mean(c(f2m2$MBE_kpp, f2m2$MBE_kpsp))
df_glob_fc_m[9, 7] <- mean(c(f2m1$MBE_kppm, f2m1$MBE_kpspm))
df_glob_fc_m[10, 7] <- mean(c(f2m2$MBE_kppm, f2m2$MBE_kpspm))
df_glob_fc_m[11, 7] <- mean(c(f2m1$MBE_kpd))
df_glob_fc_m[12, 7] <- mean(c(f2m2$MBE_kpd))


df_glob_fc_m[1, 8] <- mean(c(f2m1$MAE_pasp, f2m1$MAE_pasp))
df_glob_fc_m[2, 8] <- mean(c(f2m2$MAE_pasp, f2m2$MAE_pasp))
df_glob_fc_m[3, 8] <- mean(c(f2m1$MAE_mapp, f2m1$MAE_mapsp))
df_glob_fc_m[4, 8] <- mean(c(f2m2$MAE_mapp, f2m2$MAE_mapsp))
df_glob_fc_m[5, 8] <- mean(c(f2m1$MAE_egap, f2m1$MAE_egasp))
df_glob_fc_m[6, 8] <- mean(c(f2m2$MAE_egap, f2m2$MAE_egasp))
df_glob_fc_m[7, 8] <- mean(c(f2m1$MAE_kpp, f2m1$MAE_kpsp))
df_glob_fc_m[8, 8] <- mean(c(f2m2$MAE_kpp, f2m2$MAE_kpsp))
df_glob_fc_m[9, 8] <- mean(c(f2m1$MAE_kppm, f2m1$MAE_kpspm))
df_glob_fc_m[10, 8] <- mean(c(f2m2$MAE_kppm, f2m2$MAE_kpspm))
df_glob_fc_m[11, 8] <- mean(c(f2m1$MAE_kpd))
df_glob_fc_m[12, 8] <- mean(c(f2m2$MAE_kpd))


df_glob_fc_m[1, 9] <- mean(c(f4m1$PC_pasp, f4m1$PC_pasp))
df_glob_fc_m[2, 9] <- mean(c(f4m2$PC_pasp, f4m2$PC_pasp))
df_glob_fc_m[3, 9] <- mean(c(f4m1$PC_mapp, f4m1$PC_mapsp))
df_glob_fc_m[4, 9] <- mean(c(f4m2$PC_mapp, f4m2$PC_mapsp))
df_glob_fc_m[5, 9] <- mean(c(f4m1$PC_egap, f4m1$PC_egasp))
df_glob_fc_m[6, 9] <- mean(c(f4m2$PC_egap, f4m2$PC_egasp))
df_glob_fc_m[7, 9] <- mean(c(f4m1$PC_kpp, f4m1$PC_kpsp))
df_glob_fc_m[8, 9] <- mean(c(f4m2$PC_kpp, f4m2$PC_kpsp))
df_glob_fc_m[9, 9] <- mean(c(f4m1$PC_kppm, f4m1$PC_kpspm))
df_glob_fc_m[10, 9] <- mean(c(f4m2$PC_kppm, f4m2$PC_kpspm))
df_glob_fc_m[11, 9] <- mean(c(f4m1$PC_kpd))
df_glob_fc_m[12, 9] <- mean(c(f4m2$PC_kpd))

df_glob_fc_m[1, 10] <- mean(c(f4m1$MBE_pasp, f4m1$MBE_pasp))
df_glob_fc_m[2, 10] <- mean(c(f4m2$MBE_pasp, f4m2$MBE_pasp))
df_glob_fc_m[3, 10] <- mean(c(f4m1$MBE_mapp, f4m1$MBE_mapsp))
df_glob_fc_m[4, 10] <- mean(c(f4m2$MBE_mapp, f4m2$MBE_mapsp))
df_glob_fc_m[5, 10] <- mean(c(f4m1$MBE_egap, f4m1$MBE_egasp))
df_glob_fc_m[6, 10] <- mean(c(f4m2$MBE_egap, f4m2$MBE_egasp))
df_glob_fc_m[7, 10] <- mean(c(f4m1$MBE_kpp, f4m1$MBE_kpsp))
df_glob_fc_m[8, 10] <- mean(c(f4m2$MBE_kpp, f4m2$MBE_kpsp))
df_glob_fc_m[9, 10] <- mean(c(f4m1$MBE_kppm, f4m1$MBE_kpspm))
df_glob_fc_m[10, 10] <- mean(c(f4m2$MBE_kppm, f4m2$MBE_kpspm))
df_glob_fc_m[11, 10] <- mean(c(f4m1$MBE_kpd))
df_glob_fc_m[12, 10] <- mean(c(f4m2$MBE_kpd))


df_glob_fc_m[1, 11] <- mean(c(f4m1$MAE_pasp, f4m1$MAE_pasp))
df_glob_fc_m[2, 11] <- mean(c(f4m2$MAE_pasp, f4m2$MAE_pasp))
df_glob_fc_m[3, 11] <- mean(c(f4m1$MAE_mapp, f4m1$MAE_mapsp))
df_glob_fc_m[4, 11] <- mean(c(f4m2$MAE_mapp, f4m2$MAE_mapsp))
df_glob_fc_m[5, 11] <- mean(c(f4m1$MAE_egap, f4m1$MAE_egasp))
df_glob_fc_m[6, 11] <- mean(c(f4m2$MAE_egap, f4m2$MAE_egasp))
df_glob_fc_m[7, 11] <- mean(c(f4m1$MAE_kpp, f4m1$MAE_kpsp))
df_glob_fc_m[8, 11] <- mean(c(f4m2$MAE_kpp, f4m2$MAE_kpsp))
df_glob_fc_m[9, 11] <- mean(c(f4m1$MAE_kppm, f4m1$MAE_kpspm))
df_glob_fc_m[10, 11] <- mean(c(f4m2$MAE_kppm, f4m2$MAE_kpspm))
df_glob_fc_m[11, 11] <- mean(c(f4m1$MAE_kpd))
df_glob_fc_m[12, 11] <- mean(c(f4m2$MAE_kpd))


df_glob_fc_m[1, 12] <- mean(c(f6m1$PC_pasp, f6m1$PC_pasp))
df_glob_fc_m[2, 12] <- mean(c(f6m2$PC_pasp, f6m2$PC_pasp))
df_glob_fc_m[3, 12] <- mean(c(f6m1$PC_mapp, f6m1$PC_mapsp))
df_glob_fc_m[4, 12] <- mean(c(f6m2$PC_mapp, f6m2$PC_mapsp))
df_glob_fc_m[5, 12] <- mean(c(f6m1$PC_egap, f6m1$PC_egasp))
df_glob_fc_m[6, 12] <- mean(c(f6m2$PC_egap, f6m2$PC_egasp))
df_glob_fc_m[7, 12] <- mean(c(f6m1$PC_kpp, f6m1$PC_kpsp))
df_glob_fc_m[8, 12] <- mean(c(f6m2$PC_kpp, f6m2$PC_kpsp))
df_glob_fc_m[9, 12] <- mean(c(f6m1$PC_kppm, f6m1$PC_kpspm))
df_glob_fc_m[10, 12] <- mean(c(f6m2$PC_kppm, f6m2$PC_kpspm))
df_glob_fc_m[11, 12] <- mean(c(f6m1$PC_kpd))
df_glob_fc_m[12, 12] <- mean(c(f6m2$PC_kpd))

df_glob_fc_m[1, 13] <- mean(c(f6m1$MBE_pasp, f6m1$MBE_pasp))
df_glob_fc_m[2, 13] <- mean(c(f6m2$MBE_pasp, f6m2$MBE_pasp))
df_glob_fc_m[3, 13] <- mean(c(f6m1$MBE_mapp, f6m1$MBE_mapsp))
df_glob_fc_m[4, 13] <- mean(c(f6m2$MBE_mapp, f6m2$MBE_mapsp))
df_glob_fc_m[5, 13] <- mean(c(f6m1$MBE_egap, f6m1$MBE_egasp))
df_glob_fc_m[6, 13] <- mean(c(f6m2$MBE_egap, f6m2$MBE_egasp))
df_glob_fc_m[7, 13] <- mean(c(f6m1$MBE_kpp, f6m1$MBE_kpsp))
df_glob_fc_m[8, 13] <- mean(c(f6m2$MBE_kpp, f6m2$MBE_kpsp))
df_glob_fc_m[9, 13] <- mean(c(f6m1$MBE_kppm, f6m1$MBE_kpspm))
df_glob_fc_m[10, 13] <- mean(c(f6m2$MBE_kppm, f6m2$MBE_kpspm))
df_glob_fc_m[11, 13] <- mean(c(f6m1$MBE_kpd))
df_glob_fc_m[12, 13] <- mean(c(f6m2$MBE_kpd))


df_glob_fc_m[1, 14] <- mean(c(f6m1$MAE_pasp, f6m1$MAE_pasp))
df_glob_fc_m[2, 14] <- mean(c(f6m2$MAE_pasp, f6m2$MAE_pasp))
df_glob_fc_m[3, 14] <- mean(c(f6m1$MAE_mapp, f6m1$MAE_mapsp))
df_glob_fc_m[4, 14] <- mean(c(f6m2$MAE_mapp, f6m2$MAE_mapsp))
df_glob_fc_m[5, 14] <- mean(c(f6m1$MAE_egap, f6m1$MAE_egasp))
df_glob_fc_m[6, 14] <- mean(c(f6m2$MAE_egap, f6m2$MAE_egasp))
df_glob_fc_m[7, 14] <- mean(c(f6m1$MAE_kpp, f6m1$MAE_kpsp))
df_glob_fc_m[8, 14] <- mean(c(f6m2$MAE_kpp, f6m2$MAE_kpsp))
df_glob_fc_m[9, 14] <- mean(c(f6m1$MAE_kppm, f6m1$MAE_kpspm))
df_glob_fc_m[10, 14] <- mean(c(f6m2$MAE_kppm, f6m2$MAE_kpspm))
df_glob_fc_m[11, 14] <- mean(c(f6m1$MAE_kpd))
df_glob_fc_m[12, 14] <- mean(c(f6m2$MAE_kpd))



kable(df_glob_fc_m, format = "html", table.attr = "class='table table-striped'") %>%
  kable_styling(full_width = FALSE)
Metodo matrix mPC1 mMBE1 mMAE1 mPC2 mMBE2 mMAE2 mPC4 mMBE4 mMAE4 mPC6 mMBE6 mMAE6
PA 1 0.2518333 -1.3230000 1.4208333 0.2558056 -1.6256944 1.6747500 0.1499167 -2.7279444 2.769111 0.1150000 -3.3459167 3.450972
PA 2 0.3159167 -1.0623333 1.1438333 0.2415278 -1.6564444 1.6978333 0.1630833 -2.3564722 2.394917 0.1489167 -3.0959444 3.193389
MAP 1 0.3305417 0.6694583 0.6694583 0.2157500 1.2745556 1.2769444 0.1334722 2.5543194 2.579708 0.0873889 3.6757778 3.734778
MAP 2 0.5047083 0.4952917 0.4952917 0.2154583 1.2786528 1.2817083 0.1542639 2.3452083 2.374764 0.0927500 3.5575833 3.619444
EGA 1 0.6947917 -0.2213333 0.3496667 0.5721389 0.0486111 0.6574722 0.4225694 0.7485972 1.377597 0.2980833 1.6560417 2.284708
EGA 2 0.8257083 -0.1720833 0.1994167 0.5691667 0.0550278 0.6615000 0.4667917 0.4296389 1.151000 0.3649722 1.1591250 1.786264
KP_mc 1 0.1789583 -0.8260000 0.8260000 0.7641250 -0.1632222 0.2675278 0.1414167 -0.2540833 1.426917 0.0956806 -0.8735139 2.113903
KP_mc 2 0.1957083 -0.8070417 0.8070417 0.7624028 -0.1681944 0.2672778 0.1623889 -0.0586944 1.254417 0.0666667 -0.7520278 2.180194
KP_mcm 1 0.0062500 -2.2061667 2.2061667 0.0905972 -2.2542222 2.2851111 0.0453889 -3.7278611 3.747306 0.0308194 -4.8722639 4.879236
KP_mcm 2 0.0077083 -2.1078333 2.1078333 0.0856944 -2.2635972 2.2887083 0.0496667 -3.4522917 3.472931 0.0446250 -4.6460139 4.669208
KP 1 0.2927500 -0.8478333 0.8478333 0.2712222 -1.6914722 1.6917500 0.0522778 -4.2563611 4.257694 0.0101944 -6.6181944 6.619528
KP 2 0.3407500 -0.6995833 0.6995833 0.2623056 -1.7084167 1.7084167 0.0495000 -4.0077500 4.008861 0.0216944 -6.3889722 6.391972

Especialmente en el caso undimensional la matriz de correlación parece afectar la extracción de factores, auqnue también en otros métodos para afectar la detección de factores (6 factores)

Intento de grafico de la desviacion del MBE para el anƔlisis paralelo con el MAE como error

library(ggplot2)
df_glob_fc_m$matrix <- as.factor(df_glob_fc_m$matrix)
df_glob_fc_m$Metodo <- as.factor(df_glob_fc_m$Metodo )
ggplot(df_glob_fc_m, aes(x = matrix, y = mMBE1, color = Metodo)) +
  geom_point(position = position_dodge(width = 0.5)) +
  geom_errorbar(aes(ymin = mMBE1 - mMAE1, ymax = mMBE1 + mMAE1),
                width = 0.2, position = position_dodge(width = 0.5)) +
  labs(title = "Desviación de MBE con MAE como Error factor 1",
       x = "Tipo de matriz",
       y = "MBE (con MAE como barras de error)") +
  theme_minimal()

# 2 factores

ggplot(df_glob_fc_m, aes(x = matrix, y = mMBE2, color = Metodo)) +
  geom_point(position = position_dodge(width = 0.5)) +
  geom_errorbar(aes(ymin = mMBE2 - mMAE2, ymax = mMBE2 + mMAE2),
                width = 0.2, position = position_dodge(width = 0.5)) +
  labs(title = "Desviación de MBE con MAE como Error factor 2",
       x = "Tipo de matriz",
       y = "MBE (con MAE como barras de error)") +
  theme_minimal()

# 4 factores

ggplot(df_glob_fc_m, aes(x = matrix, y = mMBE4, color = Metodo)) +
  geom_point(position = position_dodge(width = 0.5)) +
  geom_errorbar(aes(ymin = mMBE4 - mMAE4, ymax = mMBE4 + mMAE4),
                width = 0.2, position = position_dodge(width = 0.5)) +
  labs(title = "Desviación de MBE con MAE como Error factor 4",
       x = "Tipo de matriz",
       y = "MBE (con MAE como barras de error)") +
  theme_minimal()

6 factores

ggplot(df_glob_fc_m, aes(x = matrix, y = mMBE6, color = Metodo)) +
  geom_point(position = position_dodge(width = 0.5)) +
  geom_errorbar(aes(ymin = mMBE6 - mMAE6, ymax = mMBE6 + mMAE6),
                width = 0.2, position = position_dodge(width = 0.5)) +
  labs(title = "Desviación de MBE con MAE como Error factor 6",
       x = "Tipo de matriz",
       y = "MBE (con MAE como barras de error)") +
  theme_minimal()