library(tidyverse)
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ dplyr     1.1.4     ✔ readr     2.1.5
## ✔ forcats   1.0.0     ✔ stringr   1.5.1
## ✔ ggplot2   3.5.1     ✔ tibble    3.2.1
## ✔ lubridate 1.9.3     ✔ tidyr     1.3.1
## ✔ purrr     1.0.2     
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag()    masks stats::lag()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
dataset <-read_delim("C:/Users/MSKR/MASTERS_ADS/STATISTICS_SEM1/DATA_SET_1.csv", delim = ",")
## Rows: 4424 Columns: 37
## ── Column specification ────────────────────────────────────────────────────────
## Delimiter: ","
## chr  (1): Target
## dbl (36): Marital status, Application mode, Application order, Course, Dayti...
## 
## ℹ Use `spec()` to retrieve the full column specification for this data.
## ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
dataset_1<-mutate(dataset, marital_status = ifelse(dataset$`Marital status` == 1, "single",
                    ifelse(`Marital status` == 2, "married",
                    ifelse(`Marital status` == 3, "widower",
                    ifelse(`Marital status` == 4, "divorced",
                    ifelse(`Marital status` == 5, "facto union",
                    ifelse(`Marital status` == 6, "legally seperated", "no")))))))
dataset_1<-mutate(dataset_1, day_eve_class= ifelse(dataset_1$`Daytime/evening attendance    ` == 1, "day","evening"))
dataset_1[c('Curricular units 1st sem (approved)','Curricular units 1st sem (evaluations)')]
## # A tibble: 4,424 × 2
##    `Curricular units 1st sem (approved)` Curricular units 1st sem (evaluations…¹
##                                    <dbl>                                   <dbl>
##  1                                     0                                       0
##  2                                     6                                       6
##  3                                     0                                       0
##  4                                     6                                       8
##  5                                     5                                       9
##  6                                     5                                      10
##  7                                     7                                       9
##  8                                     0                                       5
##  9                                     6                                       8
## 10                                     5                                       9
## # ℹ 4,414 more rows
## # ℹ abbreviated name: ¹​`Curricular units 1st sem (evaluations)`
p <- ggplot(dataset_1, aes(x = Target, y = `Unemployment rate`))+
geom_col()
p

p1 <- ggplot(dataset_1,aes(x = Target, y = `Inflation rate`))+
  geom_col()
p1

p2 <- ggplot(dataset_1,aes(x = Target, y = GDP))+
  geom_col()
p2