avg_male_age <- get_decennial(geography = "tract", state = "Texas", variables = "P013002", year = 2010)
write_xlsx(x = avg_male_age, path = "/Users/gabrielagarzalong/Desktop/School.xlsx", col_names = TRUE)
bexar_county <- get_acs(geography = "tract", variables = "B19013_001E",
state = "TX", county = "Bexar", year = 2018, geometry = TRUE)
hispanic_pop <- get_acs(geography = "county", variables = "B03002_012E",
state = "TX", year = 2018, geometry = TRUE)
names(hispanic_pop)[4] <- "HispanicPop"
ggplot(hispanic_pop, aes(y = HispanicPop)) +
geom_boxplot(fill = "navyblue", color = "black") +
scale_y_log10() + # I had to chatgpt this part for outliers
labs(title = "Hispanic Population Across TX Counties",
y = "Population",
x = "")
poverty_pop <- get_acs(geography = "tract", variables = "B17001_002E",
state = "TX", county = "Bexar", year = 2018, geometry = TRUE)
var <- c(poptotal='B03002_001E',
hispanic='B03002_012E',
white='B03002_003E',
black='B03002_004E',
poptotal2='B17017_001E',
poverty='B17017_002E')
hwbpop <- get_acs(geography = "block group",
variables = var,
state = "TX",
county = "Bexar",
year = 2018,
output="wide",
geometry = TRUE)
hwbpop$black_pct <- hwbpop$black / hwbpop$poptotal
hwbpop$white_pct <- hwbpop$white / hwbpop$poptotal
hwbpop$hispanic_pct <- hwbpop$hispanic / hwbpop$poptotal
hwbpop$poverty_pct <- hwbpop$poverty / hwbpop$poptotal2
hwbpop$Poor <- ifelse(hwbpop$poverty_pct > 0.3, "Poor", "Nonpoor")
hwbpop$Race <- "Other"
hwbpop$Race[hwbpop$white_pct > 0.5] <- "White"
hwbpop$Race[hwbpop$black_pct > 0.5] <- "Black"
hwbpop$Race[hwbpop$hispanic_pct > 0.5] <- "Hispanic"
combined_data <- combine_vars(poverty_pop, hwbpop, )
hwbpop$race_poverty <- paste0(hwbpop$Poor, hwbpop$Race)
unique(hwbpop$poverty_pop)
fd <- hwbpop
filter(!grepl("Nonpoor", poverty_pop))
unique(fd$poverty_pop)
ggplot(fd, aes(x=race_poverty, fill=race_poverty)) +
geom_bar()