library(dplyr)
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
# Dataset 1: Customers
customers <- tibble(
customer_id = c(1, 2, 3, 4, 5),
name = c("Alice", "Bob", "Charlie", "David", "Eve"),
city = c("New York", "Los Angeles", "Chicago", "Houston", "Phoenix")
)
# Dataset 2: Orders
orders <- tibble(
order_id = c(101, 102, 103, 104, 105, 106),
customer_id = c(1, 2, 3, 2, 6, 7),
product = c("Laptop", "Phone", "Tablet", "Desktop", "Camera", "Printer"),
amount = c(1200, 800, 300, 1500, 600, 150)
)
Task1 <- inner_join(customers, orders, by = "customer_id")
#How many rows are in the result?
four
#Why are some customers or orders not included in the result?
Inner join only connects data that have matching keys in both data set
print(Task1)
## # A tibble: 4 × 6
## customer_id name city order_id product amount
## <dbl> <chr> <chr> <dbl> <chr> <dbl>
## 1 1 Alice New York 101 Laptop 1200
## 2 2 Bob Los Angeles 102 Phone 800
## 3 2 Bob Los Angeles 104 Desktop 1500
## 4 3 Charlie Chicago 103 Tablet 300
Task2 <- left_join(customers, orders, by = "customer_id")
#How many rows are in the result?
six
#Explain why this number differs from the inner join result. Display the result
Left join includes all the rows from customers but only matching rows from orders
print(Task2)
## # A tibble: 6 × 6
## customer_id name city order_id product amount
## <dbl> <chr> <chr> <dbl> <chr> <dbl>
## 1 1 Alice New York 101 Laptop 1200
## 2 2 Bob Los Angeles 102 Phone 800
## 3 2 Bob Los Angeles 104 Desktop 1500
## 4 3 Charlie Chicago 103 Tablet 300
## 5 4 David Houston NA <NA> NA
## 6 5 Eve Phoenix NA <NA> NA
Task3 <- right_join(customers, orders, by = "customer_id")
#How many rows are in the result?
six
#Which customer_ids in the result have NULL for customer name and city? Explain why. Display the result
six and seven, There is no matching data for customer ids six and seven in the Customers data set.
print(Task3)
## # A tibble: 6 × 6
## customer_id name city order_id product amount
## <dbl> <chr> <chr> <dbl> <chr> <dbl>
## 1 1 Alice New York 101 Laptop 1200
## 2 2 Bob Los Angeles 102 Phone 800
## 3 2 Bob Los Angeles 104 Desktop 1500
## 4 3 Charlie Chicago 103 Tablet 300
## 5 6 <NA> <NA> 105 Camera 600
## 6 7 <NA> <NA> 106 Printer 150
Task4 <- full_join(customers, orders, by = "customer_id")
#How many rows are in the result?
eight
#Identify any rows where there’s information from only one table. Explain these results. Display the result
Rows five through eight only have data from one of each set. Rows five and six Only have data from the customer set whereas rows seven and eight only have data from the orders data set. This is due to the full join including every row in each set but the two sets are missing corresponding data for these rows.
print(Task4)
## # A tibble: 8 × 6
## customer_id name city order_id product amount
## <dbl> <chr> <chr> <dbl> <chr> <dbl>
## 1 1 Alice New York 101 Laptop 1200
## 2 2 Bob Los Angeles 102 Phone 800
## 3 2 Bob Los Angeles 104 Desktop 1500
## 4 3 Charlie Chicago 103 Tablet 300
## 5 4 David Houston NA <NA> NA
## 6 5 Eve Phoenix NA <NA> NA
## 7 6 <NA> <NA> 105 Camera 600
## 8 7 <NA> <NA> 106 Printer 150
Task5 <- semi_join(customers, orders, by = "customer_id")
#How many rows are in the result?
Three
#How does this result differ from the inner join result? Display the result
This differs from the inner join result due to the semi join only displaying the customers who made only one order.
print(Task5)
## # A tibble: 3 × 3
## customer_id name city
## <dbl> <chr> <chr>
## 1 1 Alice New York
## 2 2 Bob Los Angeles
## 3 3 Charlie Chicago
Task6 <- anti_join(customers, orders, by = "customer_id")
#Which customers are in the result?
David and Eve
#Explain what this result tells you about these customers. Display the result
These are the customers who have not placed any orders.
print(Task6)
## # A tibble: 2 × 3
## customer_id name city
## <dbl> <chr> <chr>
## 1 4 David Houston
## 2 5 Eve Phoenix
#Which join would you use to find all customers, including those who haven’t placed any orders? Why?
Full Join
#Which join would you use to find only the customers who have placed orders? Why?
Right Join
#Write the R code for both scenarios. Display the result
Task7 <- full_join(customers, orders, by = "customer_id")
print(Task7)
## # A tibble: 8 × 6
## customer_id name city order_id product amount
## <dbl> <chr> <chr> <dbl> <chr> <dbl>
## 1 1 Alice New York 101 Laptop 1200
## 2 2 Bob Los Angeles 102 Phone 800
## 3 2 Bob Los Angeles 104 Desktop 1500
## 4 3 Charlie Chicago 103 Tablet 300
## 5 4 David Houston NA <NA> NA
## 6 5 Eve Phoenix NA <NA> NA
## 7 6 <NA> <NA> 105 Camera 600
## 8 7 <NA> <NA> 106 Printer 150
Task7.2 <- right_join(customers, orders, by = "customer_id")
print(Task7.2)
## # A tibble: 6 × 6
## customer_id name city order_id product amount
## <dbl> <chr> <chr> <dbl> <chr> <dbl>
## 1 1 Alice New York 101 Laptop 1200
## 2 2 Bob Los Angeles 102 Phone 800
## 3 2 Bob Los Angeles 104 Desktop 1500
## 4 3 Charlie Chicago 103 Tablet 300
## 5 6 <NA> <NA> 105 Camera 600
## 6 7 <NA> <NA> 106 Printer 150
summary_result <- customers %>%
full_join(orders, by = "customer_id") %>%
group_by(name, city) %>%
summarize(
total_orders = n(), # Count of orders
total_amount_spent = sum(amount, na.rm = TRUE) # Total amount spent
) %>%
ungroup() # Remove grouping
## `summarise()` has grouped output by 'name'. You can override using the
## `.groups` argument.
print(summary_result)
## # A tibble: 6 × 4
## name city total_orders total_amount_spent
## <chr> <chr> <int> <dbl>
## 1 Alice New York 1 1200
## 2 Bob Los Angeles 2 2300
## 3 Charlie Chicago 1 300
## 4 David Houston 1 0
## 5 Eve Phoenix 1 0
## 6 <NA> <NA> 2 750