# Load packages
# Core
library(tidyverse)
library(tidyquant)
Collect individual returns into a portfolio by assigning a weight to each stock
Choose your stocks.
from 2012-12-31 to 2017-12-31
symbols <- c("L", "Dell", "HAL", "TSM", "HMC")
prices <- tq_get(x = symbols,
get = "stock.prices",
from = "2012-12-31",
to = "2017-12-31")
## 2 Convert prices to returns (quarterly)
``` r
asset_returns_tbl <- prices %>%
group_by(symbol) %>%
tq_transmute(select = adjusted,
mutate_fun = periodReturn,
period = "quarterly",
type = "log") %>%
slice(-1) %>%
ungroup() %>%
set_names(c("asset", "date", "returns"))
## 3 Assign a weight to each asset (change the weigting scheme)
``` r
# symbols
symbols <- asset_returns_tbl %>% distinct(asset) %>% pull()
symbols
## [1] "Dell" "HAL" "HMC" "L" "TSM"
# weights
weights <- c(0.25, 0.25, 0.2, 0.2, 0.1)
weights
## [1] 0.25 0.25 0.20 0.20 0.10
w_tbl <- tibble(symbols, weights)
w_tbl
## # A tibble: 5 × 2
## symbols weights
## <chr> <dbl>
## 1 Dell 0.25
## 2 HAL 0.25
## 3 HMC 0.2
## 4 L 0.2
## 5 TSM 0.1
## 4 Build a portfolio
``` r
# ?tq_portfolio
portfolio_returns_tbl <- asset_returns_tbl %>%
tq_portfolio(assets_col = asset,
returns_col = returns,
weights = w_tbl, rebalance_on = "quarter")
portfolio_returns_tbl
## # A tibble: 20 × 2
## date portfolio.returns
## <date> <dbl>
## 1 2013-03-28 0.0630
## 2 2013-06-28 0.0126
## 3 2013-09-30 0.0477
## 4 2013-12-31 0.0402
## 5 2014-03-31 0.00235
## 6 2014-06-30 0.0531
## 7 2014-09-30 -0.0409
## 8 2014-12-31 -0.139
## 9 2015-03-31 0.0495
## 10 2015-06-30 -0.0175
## 11 2015-09-30 -0.0846
## 12 2015-12-31 0.0265
## 13 2016-03-31 -0.00253
## 14 2016-06-30 0.0650
## 15 2016-09-30 0.0424
## 16 2016-12-30 0.105
## 17 2017-03-31 0.0373
## 18 2017-06-30 -0.0563
## 19 2017-09-29 0.105
## 20 2017-12-29 0.0730
## 5 Plot: Portfolio Histogram and Density
Scatterplot
``` r
portfolio_returns_tbl %>%
ggplot(mapping = aes(x = date, y = portfolio.returns)) +
geom_point(color = "cornflowerblue") +
# Formatting
scale_x_date(date_breaks = "1 year",
date_labels = "%Y") +
# Labeling
labs(y = "monthly returns",
x = NULL,
title = "Portfolio Returns Scatter")
Histogram
portfolio_returns_tbl %>%
ggplot(mapping = aes(x = portfolio.returns)) +
geom_histogram(fill = "cornflowerblue", binwidth = 0.005,) +
labs(x = "returns",
title = "portfolio Returns Distribution")
Histogram & Density Plot
portfolio_returns_tbl %>%
ggplot(mapping = aes(x = portfolio.returns)) +
geom_histogram(fill = "cornflowerblue", binwidth = 0.01,) +
geom_density() +
# Formatting
scale_x_continuous(labels = scales :: percent_format()) +
labs(x = "returns",
y = "distribution",
title = "Portfolio Histogram & Density")
What return should you expect from the portfolio in a typical quarter?
I would say that I can expect a fairly high return within a typical quarter, because of the volatility between the stocks.