We’re going to use Stan. Set some settings:
library(rstan)
library(rstanmulticore)
rstan_options(auto_write = TRUE)
options(mc.cores = parallel::detectCores())
First, connect to the Wordbank database and pull out the English WS and WG data.
wordbank <- connect_to_wordbank()
admins <- get_administration_data() %>%
filter(language == "English")
items <- get_item_data() %>%
filter(language == "English", type == "word") %>%
select(item_id, form, category, lexical_category, item) %>%
mutate(num_item_id = as.numeric(substr(item_id, 6, nchar(item_id))))
get_form_data <- function(input_language, input_form) {
form_items <- filter(items, form == input_form)
get_instrument_data(input_language, input_form,
form_items$item_id, iteminfo=form_items) %>%
mutate(produces = value == "produces",
understands = value == "understands" | value == "produces") %>%
select(-value) %>%
gather(measure, value, produces, understands) %>%
left_join(select(admins, data_id, age)) %>%
filter(!is.na(age)) %>%
mutate(form = input_form)
}
ws <- get_form_data("English", "WS") %>%
filter(measure == "produces")
Now aggregate by item.
items <- ws %>%
group_by(item, age) %>%
summarise(produces = mean(value, na.rm=TRUE))
write_csv(items, "ws.csv")
Now arrange.
ordered <- items %>%
group_by() %>%
arrange(age, desc(produces)) %>%
group_by(age) %>%
mutate(index = 1:n())
Plot this with a glm sinusoid like in the Mayor & Plunkett (2011) paper.
qplot(index, produces, facets= ~age,
geom = "line",
data = ordered) +
ylim(c(0,1)) +
geom_smooth(method = "glm",
family = "binomial",
formula = y ~ x)
Try a polynomial fit.
qplot(index, produces, facets= ~age,
geom = "line",
data = ordered) +
ylim(c(0,1)) +
geom_smooth(method = "lm",
family = "binomial",
color = "red",
formula = y ~ poly(x, 3))
Doesn’t work that well for the younger ages, though looks fine later.
Note age interactions in the stats.
mp.glm <- glm(produces ~ index * age, family = "binomial", data = ordered)
summary(mp.glm)
##
## Call:
## glm(formula = produces ~ index * age, family = "binomial", data = ordered)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -0.51045 -0.09580 -0.01266 0.07168 1.16561
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -4.695e+00 2.839e-01 -16.538 < 2e-16 ***
## index -7.769e-03 8.480e-04 -9.161 < 2e-16 ***
## age 2.640e-01 1.251e-02 21.100 < 2e-16 ***
## index:age 9.173e-05 3.489e-05 2.629 0.00855 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 4140.24 on 10199 degrees of freedom
## Residual deviance: 175.65 on 10196 degrees of freedom
## AIC: 5984.7
##
## Number of Fisher Scoring iterations: 5
The Mayor & Plunkett (2011) model has two corrections. The first uses the parametric form of the logistic to fill in low-frequency words that are not on the CDI, the second uses the difference between diary study counts and CDI counts to find a multiplier for higher-frequency words that are omitted.
I think there’s a bit of a conceptual issue here, as these two corrections should essentially be the same thing - there are some words that are not on the CDI, and more of these are the low frequency/hard words. So really, it all is a correction for missing words.
Also - the first correction, which depends on the parametric form of the logistic, is much much smaller than the second. Take a look at this.
Equation 3:
\[ p(w_i) = 1 - \frac{1}{1 + e^{\frac{-(i-a)}{b}}} \]
a <- 600 # from figure 6c for a 30mo
b <- 180 # from figure 6c
ranks <- 0:3000
age <- 20
ys <- (1 - (1 / (1 + exp((-(ranks - a ))/b))))
qplot(ranks, ys,
geom = "line") +
geom_vline(xintercept = 680, lty = 2) +
geom_polygon(aes(x = c(ranks[ranks > 680],
rev(ranks[ranks > 680])),
y = c(ys[ranks > 680],
rep(0, length(ranks[ranks > 680])))),
fill = "blue", alpha = .5) +
ylim(c(0,1))
So adding the gray area gives us
\[ V_{corr_1} = b \log (1 + e^(a / b)) \]
but then adding the second correction is just a multiplier on this:
\[ V_{corr_2} = \alpha * V_{corr_1} \]
Note that (strikingly), M&P2011 never give their value of \(\alpha\) in the text. I estimate it below so that I can make an estimate of what correction 2 actually looks like…
a <- 600
b <- 180
ranks <- 1:3000
age <- 20
ys <- (1 - (1 / (1 + exp((-(ranks - a ))/b))))
area.uncorrected <- sum(ys[1:680])
area.c1 <- b * log(1 + exp(a / b))
area.c2 <- 1142 # from lookup table A1
alpha = area.c2 / area.c1
ys2 <- (1 - (1 / (1 + exp((-(ranks - (a*alpha) ))/(alpha * b)))))
area.corrected <- sum(ys2)
qplot(ranks, ys,
geom = "line") +
geom_vline(xintercept = 680, lty = 2) +
geom_polygon(aes(x = c(ranks[ranks > 680],
rev(ranks[ranks > 680])),
y = c(ys[ranks > 680],
rep(0, length(ranks[ranks > 680])))),
fill = "blue", alpha = .5) +
geom_line(aes(y = ys2), lty = 3) +
geom_polygon(aes(x = c(ranks, rev(ranks)),
y = c(ys2, rev(ys))),
fill = "red",
alpha = .5) +
ylim(c(0,1))
So you can see that the second correction dwarfs the first correction in size, and is really based on a few small diary studies.
In sum, I’m worried about this model for a few reasons:
This is the normal distribution model from the McMurray (2007) “Defusing the Vocabulary Explosion” paper. Assume kids are \(k\) and words \(w\). Kids’ abilities are a function of age (\(a\)). We model production probability \(p\).
\[ k_i \sim \mathcal{N}(\mu_1, \sigma_1) \\ w_j \sim \mathcal{N}(\mu_2, \sigma_2) \\ k_i(a) = k_i * a \\ p(k_i, w_j, a) = k_i(a) > w_j \\ \]
Try this with arbitrary parameters and make the same plot as above.
n.words <- 500
n.kids <- 1000
difficulty <- rnorm(n = n.words, m = 100, sd = 20)
ability <- rnorm(n = n.kids, m = 4, sd = 1)
age <- 16:30
sims <- expand.grid(difficulty = difficulty, ability = ability, age = age) %>%
group_by(ability, age) %>%
mutate(item = 1:n()) %>%
group_by() %>%
mutate(produces = difficulty < ability * age) %>%
group_by(item, age) %>%
summarise(produces = mean(produces)) %>%
group_by() %>%
arrange(age, desc(produces)) %>%
group_by(age) %>%
mutate(index = 1:n())
qplot(index, produces, facets = ~age,
geom = "line",
data = sims)
Cool - so this looks almost identical in distributional form! Just for kicks, let’s plot these on top of one another. For now I’m just tweaking parameters, though all four (\(\mu_1\), \(\mu_2\), \(\sigma_1\), and \(\sigma_2\)) matter to the fit.
n.words <- 680 # same as on the CDI
n.kids <- 500 # reasonable number, so the curves are smoothish
difficulty <- rnorm(n = n.words, m = 100, sd = 20)
ability <- rnorm(n = n.kids, m = 4, sd = 1)
age <- 16:30
sims <- expand.grid(difficulty = difficulty, ability = ability, age = age) %>%
group_by(ability, age) %>%
mutate(item = 1:n()) %>%
group_by() %>%
mutate(produces = difficulty < ability * age) %>%
group_by(item, age) %>%
summarise(produces = mean(produces)) %>%
group_by() %>%
arrange(age, desc(produces)) %>%
group_by(age) %>%
mutate(index = 1:n())
sims$dataset <- "simulations"
ordered$dataset <- "empirical WS"
d <- bind_rows(select(sims, index, produces, age, dataset),
select(ordered, index, produces, age, dataset))
qplot(index, produces, facets = ~age,
geom = "line",
col = dataset,
data = d)
So if the McMurray model is more or less the right model of vocabulary growth, how do we use knowledge about its parameters to correct CDI data? Two points here.
First, we have to define a process by which words are excluded and then estimate the parameters of the full model based on the CDI model.
Second, to do this we’re still going to need some facts about total vocabulary to compare to the CDI vocabulary estimates, so we’ll still need a study like Robinson & Mervis (1999).
So let’s consider the McMurray model as the base of our generative model, having the steps:
Let’s consider a model of selecting words for an instrument where the probability of selecting a word gradually decreases with its difficulty rank. The easiest words (e.g. momma, no, ball) will all be on the list, but only a smaller number of hard words will make it.
\[ p_{inclusion}(i) \sim \operatorname{Bern} (\frac{1}{i^{\alpha}}) \]
So each word is included as a function of a Bernoulli draw (coin flip) with probability proportional to its rank.
xs <- 1:100
ys <- 1 / xs^(1/4)
qplot(xs, ys)
So let’s see what this looks like. We’ll do the same generative process as before but this time with many more words, which we’ll exclude at random.
n.words <- 4000
n.kids <- 100
alpha = .25
difficulty <- rnorm(n = n.words, m = 100, sd = 20)
ability <- rnorm(n = n.kids, m = 4, sd = 1)
age <- 16:30
sims <- expand.grid(difficulty = difficulty, ability = ability, age = age) %>%
group_by(ability, age) %>%
mutate(item = 1:n()) %>%
group_by() %>%
mutate(produces = difficulty < ability * age) %>%
group_by(item, age) %>%
summarise(produces = mean(produces)) %>%
group_by() %>%
arrange(age, desc(produces)) %>%
group_by(age) %>%
mutate(index = 1:n())
Now choose the words to exclude, based on actual ground-truth difficulty.
words.to.include <- expand.grid(difficulty = difficulty) %>%
mutate(item = 1:n()) %>%
arrange(difficulty) %>%
mutate(diff.idx = 1:n()) %>%
rowwise %>%
mutate(inc = rbinom(1, size = 1, prob = 1/diff.idx^alpha) == 1) %>%
filter(inc) %>%
rowwise %>%
mutate(sim.idx = sims$index[sims$item == item][1])
First visualize this with the words, with red being more included words.
qplot(index, produces, facets = ~age,
geom = "line",
data = sims) +
geom_vline(data = words.to.include,
aes(xintercept = sim.idx),
col = "red", alpha = .03)
Next show the curves with only those words included.
sims.subset <- sims %>%
filter(item %in% words.to.include$item) %>%
mutate(index = 1:n())
sims$dataset <- "full simulation"
sims.subset$dataset <- "item subset"
d <- bind_rows(sims, sims.subset)
qplot(index, produces, facets = ~age,
geom = "line", col = dataset,
data = d)
Now plot the multiplier in this simulation, which we can get based on the area under the curve. (As M&P2011 note, the area under the curve is the expected vocabulary estimate for that measure).
ms <- d %>%
group_by(age, dataset) %>%
summarise(produces = sum(produces))
qplot(age, produces, col = dataset,
geom = "line", data = ms) +
geom_hline(yintercept = 680, lty = 2) +
geom_hline(yintercept = 3000, lty = 2)
It’s pretty clear that we’re actually getting something similar to Bernard & Mervis (1999) here, and our correction isn’t looking that dissimilar to M&P2011. Of course, this is all with six parameters I made up: \(\mu_1\), \(\mu_2\), \(\sigma_1\), \(\sigma_2\), \(\alpha\) (the parameter on the words that got dropped), and \(N_{total}\) (the total number of words we considered). But we (sort of) fit the first four to the empriical data. And the combo of \(\alpha\) and \(N_{total}\) wasn’t totally invented either.
But really the next step is to use the empirical data and B&M1999 (plus other data) to fit this model, since with the addition of some hyper-priors it’s a well-defined generative model.
Let’s start slow, first defining the McMurray model.
mcmurray <-'
data {
int<lower=1> W; // number of words
int<lower=1> S; // number of subjects
int<lower=1> N; // number of datapoints (W*S)
vector[S] age; // subject ages
int<lower=0,upper=1> produces[N]; // actual data
}
parameters {
real<lower=0> mu_w; // word mean
real<lower=0> mu_s; // subject mean
real<lower=0> sigma_w; // word SD
real<lower=0> sigma_s; // subject SD
real<lower=0> difficulty[W]; // word mean
real<lower=0> ability[S]; // subject mean
}
model {
mu_w ~ normal(0, 10);
mu_s ~ normal(0, 10);
sigma_w ~ normal(0, 5);
sigma_s ~ normal(0, 5);
difficulty ~ normal(mu_w, sigma_w);
ability ~ normal(mu_s, sigma_s);
for (s in 1:S)
for (w in 1:W)
produces[W*(s-1) + w] ~ bernoulli_logit((ability[s] * age[s]) - difficulty[w]);
}
'
Let’s start by doing simulations with fake data. These are six kids and five words, with the kids gradually increasing in age. Their abilities should be lower and lower, and words 1, 3, and 5 should be estimated as hard.
dat <- list(age = c(12, 14, 16, 18, 20, 22),
produces = rep(c(0, 1, 0, 1, 0), 6),
W = 5,
S = 6,
N = 30)
Run!
samps <- pstan(model_code = mcmurray, model_name = "mcmurray_simple",
data = dat, iter = 2000, warmup=200, thin=20, chains = 4,
pars = c('mu_w','mu_s','sigma_w', 'sigma_s',
'difficulty', 'ability'),
verbose = F, refresh=2000/4)
Now examine output.
samps
## Inference for Stan model: mcmurray_simple.
## 4 chains, each with iter=2000; warmup=200; thin=20;
## post-warmup draws per chain=90, total post-warmup draws=360.
##
## mean se_mean sd 2.5% 25% 50% 75% 97.5% n_eff Rhat
## mu_w 13.29 0.39 5.25 3.28 9.71 13.07 17.01 24.50 183 1.01
## mu_s 0.67 0.04 0.31 0.25 0.43 0.58 0.90 1.34 55 1.04
## sigma_w 8.30 0.23 2.87 3.60 6.25 7.98 9.89 15.01 157 1.02
## sigma_s 0.17 0.01 0.21 0.02 0.06 0.11 0.20 0.73 291 1.00
## difficulty[1] 21.53 0.44 8.12 9.38 15.70 20.68 26.06 41.14 339 1.00
## difficulty[2] 4.27 0.36 3.50 0.10 1.46 3.38 6.55 12.66 95 1.02
## difficulty[3] 21.18 0.47 8.05 10.08 14.90 19.80 25.74 39.36 290 1.00
## difficulty[4] 4.59 0.52 3.67 0.18 1.99 3.64 6.27 13.32 51 1.04
## difficulty[5] 21.29 0.46 7.98 8.50 15.88 20.32 26.19 38.70 296 1.00
## ability[1] 0.73 0.03 0.37 0.24 0.45 0.64 1.00 1.67 151 1.02
## ability[2] 0.68 0.04 0.32 0.23 0.43 0.60 0.93 1.33 56 1.04
## ability[3] 0.67 0.04 0.32 0.23 0.42 0.59 0.86 1.38 61 1.04
## ability[4] 0.66 0.04 0.31 0.20 0.41 0.60 0.89 1.33 71 1.03
## ability[5] 0.65 0.03 0.30 0.23 0.42 0.56 0.85 1.33 95 1.03
## ability[6] 0.60 0.04 0.28 0.21 0.39 0.53 0.79 1.17 44 1.05
## lp__ 2.60 0.72 5.45 -8.57 -0.85 2.41 6.19 12.45 57 1.05
##
## Samples were drawn using NUTS(diag_e) at Tue Aug 4 21:08:31 2015.
## For each parameter, n_eff is a crude measure of effective sample size,
## and Rhat is the potential scale reduction factor on split chains (at
## convergence, Rhat=1).
Looks reasonable to me.
I started out these simulations looking at many words, and a small number of kids, and the results looked funky. Not sure if that’s a convergence issue, or an issue with not having the appropriate diversity of kids. So let’s try a smaller number of words.
n.words <- 6
n.subs <- 500
model.data <- ws %>%
filter(data_id <= n.subs,
item %in% c("mommy","dog","up","table","truck","alligator")) %>%
select(data_id, num_item_id, item, value, age) %>%
rename(produces = value) %>%
arrange(data_id) # critical to get the words nested inside subjects
# for simulations, fill in false for missing data
model.data$produces[is.na(model.data$produces)] <- FALSE
ages <- model.data %>%
group_by(data_id) %>%
summarise(age = mean(age)) %>%
select(age)
dat <- list(age = ages$age,
produces = model.data$produces,
W = n.words,
S = n.subs,
N = n.words * n.subs)
model.data %>%
group_by(num_item_id) %>%
summarise(produces = mean(produces))
## Source: local data frame [6 x 2]
##
## num_item_id produces
## 1 13 0.264
## 2 26 0.878
## 3 69 0.670
## 4 290 0.448
## 5 366 0.948
## 6 635 0.564
Run the model.
samps <- pstan(model_code = mcmurray, model_name = "mcmurray_simple",
data = dat, iter = 2000, warmup=200, thin=20, chains = 4,
pars = c('mu_w','mu_s','sigma_w', 'sigma_s',
'difficulty', 'ability'),
verbose = F, refresh=2000/4)
Diagnostics. Order of words is “alligator”, “dog”, “truck”, “table”, “mommy”, “up.”
traceplot(samps, pars = c("mu_w", "mu_s", "sigma_w", "sigma_s"))
samplerpar = get_sampler_params(samps)[[1]]
summary(samplerpar)
## accept_stat__ stepsize__ treedepth__ n_leapfrog__
## Min. :0.0006583 Min. :0.007812 Min. :2.00 Min. : 3.00
## 1st Qu.:0.9101136 1st Qu.:0.119155 1st Qu.:5.00 1st Qu.: 31.00
## Median :0.9566540 Median :0.119155 Median :5.00 Median : 31.00
## Mean :0.8885530 Mean :0.123745 Mean :4.93 Mean : 31.04
## 3rd Qu.:0.9815654 3rd Qu.:0.119155 3rd Qu.:5.00 3rd Qu.: 31.00
## Max. :1.0000000 Max. :0.514698 Max. :7.00 Max. :127.00
## n_divergent__
## Min. :0.00
## 1st Qu.:0.00
## Median :0.00
## Mean :0.01
## 3rd Qu.:0.00
## Max. :1.00
pairs(samps, pars=c('mu_w', 'mu_s'))
We need to use only complete cases. But even here, these simulations take a while.
n.words <- 680
complete <- ws %>%
group_by(data_id) %>%
summarize(complete = sum(!is.na(value)) == n.words) %>%
filter(complete)
n.subs <- 10
model.data <- ws %>%
select(data_id, num_item_id, item, value, age) %>%
filter(data_id %in% complete$data_id) %>%
mutate(data_id = as.numeric(as.factor(data_id))) %>% # hack to renumber
filter(data_id <= n.subs) %>%
rename(produces = value) %>%
arrange(data_id) # critical to get the words nested inside subjects
ages <- model.data %>%
group_by(data_id) %>%
summarise(age = mean(age)) %>%
select(age)
dat <- list(age = ages$age,
produces = model.data$produces,
W = n.words,
S = n.subs,
N = n.words * n.subs)
Run the model. Unfortunately this takes around 45 minutes, even for 100 subjects. So do it for 10 (~90s).
samps <- pstan(model_code = mcmurray, model_name = "mcmurray_simple",
data = dat, iter = 2000, warmup=200, thin=10, chains = 4,
pars = c('mu_w','mu_s','sigma_w', 'sigma_s',
'difficulty', 'ability'),
verbose = F, refresh=2000/4)
Re-merge coefficients with word data.
coefs <- data.frame(summary(samps)$summary)
coefs$name <- rownames(coefs)
word_ids <- ws %>%
group_by(num_item_id) %>%
summarise(item = unique(item))
words <- coefs %>%
filter(str_detect(name, "difficulty")) %>%
separate(name, c("name", "num_item_id"), "\\[") %>%
mutate(num_item_id = as.numeric(str_replace(num_item_id, "]", ""))) %>%
left_join(word_ids) %>%
select(mean, se_mean, sd, item) %>%
arrange(mean) %>%
mutate(item = factor(item,
levels = item,
labels = item))
And plot the first 100 words or so… even within this, you can see that there is some good signal here and we are learning good stuff.
qplot(item, mean, data=words[1:100,]) +
theme(axis.text.x = element_text(angle = 90, hjust = 1))
The problem here is computational complexity. Let’s rewrite the model so that we’re not actually learning anything about each subject, just learning a mean and variance that gets multiplied by age.
mcmurray_nosubs <-'
data {
int<lower=1> W; // number of words
int<lower=1> S; // number of subjects
int<lower=1> N; // number of datapoints (W*S)
vector[S] age; // subject ages
int<lower=0,upper=1> produces[N]; // actual data
}
parameters {
real<lower=0> mu_w; // word mean
real<lower=0> mu_s; // subject mean
real<lower=0> sigma_w; // word SD
real<lower=0> difficulty[W]; // word mean
}
model {
mu_w ~ normal(0, 10);
mu_s ~ normal(0, 10);
sigma_w ~ normal(0, 5);
difficulty ~ normal(mu_w, sigma_w);
for (s in 1:S)
for (w in 1:W)
produces[W*(s-1) + w] ~ bernoulli_logit((mu_s * age[s]) - difficulty[w]);
}
'
Again, simulations with fake data. to begin These are six kids and five words, with the kids gradually increasing in age. Their abilities should be lower and lower, and words 1, 3, and 5 should be estimated as hard.
dat <- list(age = c(12, 14, 16, 18, 20, 22),
produces = rep(c(0, 1, 0, 1, 0), 6),
W = 5,
S = 6,
N = 30)
Run!
samps <- pstan(model_code = mcmurray_nosubs, model_name = "mcmurray_nosubs",
data = dat, iter = 2000, warmup=200, thin=20, chains = 4,
pars = c('mu_w','mu_s','sigma_w', 'difficulty'),
verbose = F, refresh=2000/4)
Now examine output.
samps
## Inference for Stan model: mcmurray_nosubs.
## 4 chains, each with iter=2000; warmup=200; thin=20;
## post-warmup draws per chain=90, total post-warmup draws=360.
##
## mean se_mean sd 2.5% 25% 50% 75% 97.5% n_eff Rhat
## mu_w 11.26 0.30 4.91 2.58 7.84 10.87 14.45 22.69 272 1.02
## mu_s 0.57 0.01 0.25 0.21 0.39 0.53 0.71 1.21 360 1.01
## sigma_w 8.00 0.14 2.74 3.75 6.12 7.60 9.42 14.65 360 1.00
## difficulty[1] 19.19 0.41 7.86 7.41 13.80 17.80 22.79 40.05 360 1.00
## difficulty[2] 3.93 0.16 2.93 0.22 1.75 3.32 5.56 10.77 343 1.01
## difficulty[3] 18.86 0.44 8.37 7.53 13.00 17.67 22.12 40.04 360 1.01
## difficulty[4] 3.97 0.16 3.03 0.06 1.63 3.49 5.57 11.19 339 1.01
## difficulty[5] 19.18 0.42 7.94 8.44 13.26 17.63 23.79 37.46 360 1.00
## lp__ -2.83 0.14 2.74 -8.75 -4.38 -2.59 -0.91 1.67 360 1.00
##
## Samples were drawn using NUTS(diag_e) at Wed Aug 5 09:44:53 2015.
## For each parameter, n_eff is a crude measure of effective sample size,
## and Rhat is the potential scale reduction factor on split chains (at
## convergence, Rhat=1).
Looks fine. On to a subset of the dataset.
n.words <- 680
complete <- ws %>%
group_by(data_id) %>%
summarize(complete = sum(!is.na(value)) == n.words) %>%
filter(complete)
n.total.subs <- length(unique(ws$data_id))
n.subs <- 100
model.data <- ws %>%
select(data_id, num_item_id, item, value, age) %>%
filter(data_id %in% complete$data_id) %>%
mutate(data_id = as.numeric(as.factor(data_id))) %>% # hack to renumber
filter(data_id %in% sample(n.total.subs)[1:n.subs]) %>%
rename(produces = value) %>%
arrange(data_id) # critical to get the words nested inside subjects
ages <- model.data %>%
group_by(data_id) %>%
summarise(age = mean(age)) %>%
select(age)
dat <- list(age = ages$age,
produces = model.data$produces,
W = n.words,
S = n.subs,
N = n.words * n.subs)
samps <- pstan(model_code = mcmurray_nosubs, model_name = "mcmurray_nosubs",
data = dat, iter = 1000, warmup=100, thin=10, chains = 4,
pars = c('mu_w','mu_s','sigma_w','difficulty'),
verbose = F, refresh=2000/4)
samps
## Inference for Stan model: mcmurray_nosubs.
## 4 chains, each with iter=1000; warmup=100; thin=10;
## post-warmup draws per chain=90, total post-warmup draws=360.
##
## mean se_mean sd 2.5% 25% 50%
## mu_w 7.41 0.23 0.51 6.30 7.11 7.36
## mu_s 0.30 0.01 0.02 0.25 0.29 0.30
## sigma_w 1.33 0.03 0.09 1.16 1.25 1.33
## difficulty[1] 5.60 0.20 0.49 4.62 5.30 5.56
## difficulty[2] 5.66 0.21 0.51 4.58 5.33 5.68
## difficulty[3] 7.41 0.22 0.55 6.31 7.04 7.38
## difficulty[4] 4.94 0.22 0.68 3.91 4.69 4.96
## difficulty[5] 4.77 0.25 1.11 0.23 4.56 4.94
## difficulty[6] 3.72 0.64 1.99 0.01 4.04 4.60
## difficulty[7] 5.22 0.19 0.49 4.27 4.88 5.22
## difficulty[8] 5.35 0.20 0.50 4.32 5.01 5.35
## difficulty[9] 4.11 0.22 0.52 3.18 3.70 4.10
## difficulty[10] 5.68 0.18 0.48 4.59 5.40 5.71
## difficulty[11] 5.08 0.20 0.49 4.11 4.78 5.09
## difficulty[12] 4.22 1.72 2.47 0.01 2.94 5.38
## difficulty[13] 7.21 0.20 0.52 6.15 6.87 7.21
## difficulty[14] 6.88 0.38 1.37 0.06 6.72 7.06
## difficulty[15] 7.47 0.21 0.54 6.38 7.10 7.52
## difficulty[16] 5.92 0.19 0.48 4.91 5.61 5.98
## difficulty[17] 6.59 0.23 0.53 5.49 6.25 6.53
## difficulty[18] 5.30 0.20 0.48 4.31 4.97 5.26
## difficulty[19] 5.12 0.72 2.05 0.01 5.42 5.83
## difficulty[20] 6.44 0.20 0.52 5.36 6.11 6.46
## difficulty[21] 6.71 0.23 0.52 5.72 6.34 6.69
## difficulty[22] 5.39 0.21 0.49 4.46 5.08 5.36
## difficulty[23] 6.37 0.21 0.50 5.32 6.03 6.33
## difficulty[24] 5.79 0.20 0.51 4.74 5.48 5.77
## difficulty[25] 8.10 0.23 0.55 7.03 7.76 8.11
## difficulty[26] 4.23 0.18 0.53 3.21 3.86 4.24
## difficulty[27] 8.17 0.24 0.55 7.04 7.80 8.11
## difficulty[28] 4.92 0.17 0.48 3.96 4.58 4.96
## difficulty[29] 6.84 0.20 0.53 5.73 6.50 6.87
## difficulty[30] 5.14 0.67 1.86 0.02 5.31 5.71
## difficulty[31] 6.59 0.22 0.51 5.58 6.23 6.56
## difficulty[32] 7.28 0.22 0.54 6.09 6.95 7.31
## difficulty[33] 8.36 0.24 0.57 7.22 7.98 8.36
## difficulty[34] 9.06 0.23 0.59 7.82 8.69 9.03
## difficulty[35] 6.23 0.33 1.07 5.11 6.01 6.36
## difficulty[36] 5.47 0.19 0.49 4.30 5.18 5.46
## difficulty[37] 8.26 0.23 0.58 6.96 7.86 8.32
## difficulty[38] 6.79 0.20 0.54 5.58 6.47 6.81
## difficulty[39] 6.56 0.20 0.49 5.50 6.28 6.56
## difficulty[40] 8.85 0.22 0.57 7.70 8.46 8.87
## difficulty[41] 6.67 0.19 0.49 5.63 6.34 6.67
## difficulty[42] 7.19 0.22 0.54 6.08 6.85 7.16
## difficulty[43] 8.04 0.24 0.57 6.79 7.66 7.97
## difficulty[44] 6.10 0.17 0.49 5.09 5.76 6.15
## difficulty[45] 8.57 0.24 0.57 7.39 8.16 8.54
## difficulty[46] 6.24 0.20 0.50 5.22 5.91 6.23
## difficulty[47] 8.40 0.24 0.58 7.21 7.99 8.35
## difficulty[48] 6.82 0.20 0.51 5.75 6.47 6.81
## difficulty[49] 7.52 0.22 0.55 6.46 7.17 7.55
## difficulty[50] 7.12 0.19 0.51 6.01 6.83 7.12
## difficulty[51] 7.19 0.21 0.52 6.06 6.84 7.24
## difficulty[52] 7.57 0.20 0.52 6.51 7.20 7.54
## difficulty[53] 6.90 0.21 0.53 5.71 6.58 6.92
## difficulty[54] 8.72 0.24 0.59 7.45 8.32 8.76
## difficulty[55] 7.35 0.23 0.54 6.25 6.98 7.36
## difficulty[56] 6.01 0.19 0.49 5.03 5.70 6.03
## difficulty[57] 6.61 0.21 0.51 5.50 6.27 6.60
## difficulty[58] 6.00 0.21 0.68 4.94 5.69 6.08
## difficulty[59] 6.25 0.19 0.50 5.27 5.94 6.24
## difficulty[60] 4.75 0.25 1.04 0.29 4.61 4.95
## difficulty[61] 7.27 0.20 0.52 6.07 6.95 7.29
## difficulty[62] 7.84 0.22 0.52 6.77 7.51 7.86
## difficulty[63] 7.86 0.23 0.56 6.71 7.49 7.81
## difficulty[64] 9.04 0.24 0.61 7.72 8.66 9.06
## difficulty[65] 7.65 0.22 0.53 6.65 7.32 7.58
## difficulty[66] 7.80 0.23 0.55 6.70 7.48 7.75
## difficulty[67] 6.61 0.20 0.52 5.46 6.26 6.63
## difficulty[68] 8.61 0.22 0.59 7.34 8.22 8.62
## difficulty[69] 5.54 0.18 0.48 4.54 5.23 5.56
## difficulty[70] 3.46 0.32 1.07 0.14 3.27 3.67
## difficulty[71] 5.59 0.19 0.49 4.56 5.30 5.61
## difficulty[72] 7.63 0.20 0.53 6.45 7.30 7.64
## difficulty[73] 6.58 0.20 0.49 5.51 6.27 6.55
## difficulty[74] 5.05 0.19 0.59 4.08 4.79 5.06
## difficulty[75] 5.80 0.19 0.49 4.84 5.49 5.80
## difficulty[76] 8.41 0.22 0.59 7.21 7.96 8.42
## difficulty[77] 7.05 0.20 0.52 5.90 6.70 7.07
## difficulty[78] 6.84 0.20 0.53 5.75 6.50 6.82
## difficulty[79] 7.71 0.22 0.56 6.45 7.36 7.77
## difficulty[80] 8.51 0.24 0.57 7.29 8.13 8.51
## difficulty[81] 7.10 0.21 0.53 5.99 6.75 7.12
## difficulty[82] 7.56 0.20 0.54 6.33 7.24 7.60
## difficulty[83] 8.18 0.21 0.54 7.07 7.86 8.20
## difficulty[84] 7.59 0.21 0.54 6.46 7.26 7.62
## difficulty[85] 7.13 0.21 0.53 5.94 6.81 7.15
## difficulty[86] 7.33 0.21 0.53 6.25 6.97 7.28
## difficulty[87] 6.40 0.19 0.50 5.40 6.09 6.38
## difficulty[88] 5.45 0.16 0.93 3.81 5.23 5.50
## difficulty[89] 7.05 0.36 1.19 5.69 6.85 7.18
## difficulty[90] 5.09 0.19 0.50 4.00 4.72 5.12
## difficulty[91] 7.40 0.22 0.55 6.29 7.08 7.40
## difficulty[92] 6.59 0.21 0.52 5.46 6.24 6.58
## difficulty[93] 7.40 0.23 0.53 6.36 7.05 7.36
## difficulty[94] 6.78 0.19 0.49 5.69 6.47 6.81
## difficulty[95] 5.82 1.01 2.45 0.01 6.33 6.66
## difficulty[96] 7.09 0.21 0.53 5.99 6.75 7.11
## difficulty[97] 6.84 0.25 0.54 5.79 6.47 6.77
## difficulty[98] 7.13 0.21 0.52 6.03 6.83 7.11
## difficulty[99] 5.09 0.62 1.75 0.01 5.22 5.58
## difficulty[100] 6.58 0.19 0.49 5.54 6.25 6.60
## difficulty[101] 7.47 0.20 0.55 6.25 7.14 7.50
## difficulty[102] 7.66 0.23 0.56 6.50 7.35 7.62
## difficulty[103] 8.06 0.21 0.54 6.69 7.73 8.12
## difficulty[104] 5.56 0.19 0.48 4.54 5.26 5.54
## difficulty[105] 7.06 0.20 0.51 6.01 6.78 7.05
## difficulty[106] 5.77 0.22 0.52 4.69 5.46 5.73
## difficulty[107] 7.60 0.22 0.55 6.44 7.28 7.57
## difficulty[108] 6.14 0.18 0.48 5.12 5.84 6.15
## difficulty[109] 6.58 0.20 0.53 5.41 6.30 6.55
## difficulty[110] 6.68 0.21 0.52 5.66 6.30 6.75
## difficulty[111] 7.04 0.22 0.53 5.93 6.70 7.05
## difficulty[112] 6.76 0.19 0.50 5.72 6.42 6.80
## difficulty[113] 6.72 0.20 0.51 5.65 6.40 6.73
## difficulty[114] 8.06 0.23 0.55 6.92 7.71 8.06
## difficulty[115] 7.96 0.21 0.56 6.72 7.57 7.97
## difficulty[116] 7.45 0.21 0.53 6.30 7.11 7.43
## difficulty[117] 6.84 0.21 0.53 5.68 6.47 6.88
## difficulty[118] 6.53 0.21 0.51 5.49 6.21 6.51
## difficulty[119] 8.05 0.22 0.55 6.91 7.70 8.04
## difficulty[120] 8.31 0.21 0.54 7.12 8.00 8.29
## difficulty[121] 4.36 1.71 2.46 0.04 3.27 5.49
## difficulty[122] 8.36 0.22 0.55 7.20 7.98 8.35
## difficulty[123] 7.51 0.23 0.54 6.40 7.16 7.47
## difficulty[124] 8.44 0.23 0.59 7.24 8.05 8.46
## difficulty[125] 3.90 1.60 2.29 0.00 2.55 4.97
## difficulty[126] 7.66 0.23 0.55 6.50 7.28 7.60
## difficulty[127] 7.49 0.23 0.55 6.33 7.11 7.44
## difficulty[128] 8.23 0.22 0.56 7.11 7.85 8.24
## difficulty[129] 6.63 0.19 0.51 5.53 6.25 6.66
## difficulty[130] 7.23 0.23 0.52 6.17 6.94 7.16
## difficulty[131] 7.54 0.22 0.53 6.44 7.25 7.53
## difficulty[132] 7.42 0.21 0.54 6.29 7.07 7.45
## difficulty[133] 7.72 0.26 0.57 6.62 7.33 7.67
## difficulty[134] 6.23 0.21 0.50 5.21 5.92 6.19
## difficulty[135] 7.08 0.20 0.51 5.99 6.75 7.06
## difficulty[136] 7.55 0.21 0.54 6.46 7.18 7.57
## difficulty[137] 7.27 0.20 0.53 6.06 6.91 7.37
## difficulty[138] 7.06 0.22 0.54 5.93 6.75 7.08
## difficulty[139] 7.56 0.21 0.54 6.43 7.22 7.58
## difficulty[140] 8.61 0.24 0.59 7.33 8.20 8.64
## difficulty[141] 7.32 0.24 0.56 6.22 6.95 7.28
## difficulty[142] 7.67 0.21 0.54 6.57 7.31 7.66
## difficulty[143] 8.66 0.23 0.57 7.50 8.28 8.68
## difficulty[144] 7.34 0.21 0.51 6.38 7.01 7.33
## difficulty[145] 8.24 0.21 0.55 7.08 7.88 8.28
## difficulty[146] 7.90 0.24 0.58 6.71 7.54 7.86
## difficulty[147] 7.52 0.22 0.55 6.50 7.14 7.51
## difficulty[148] 6.98 0.20 0.51 5.85 6.66 6.96
## difficulty[149] 7.20 0.22 0.53 6.05 6.88 7.18
## difficulty[150] 7.00 0.21 0.52 5.88 6.67 7.00
## difficulty[151] 9.13 0.23 0.60 7.81 8.77 9.14
## difficulty[152] 9.17 0.22 0.61 7.88 8.83 9.21
## difficulty[153] 8.28 0.24 0.57 7.06 7.91 8.28
## difficulty[154] 6.00 0.20 0.50 5.02 5.70 5.99
## difficulty[155] 7.20 0.22 0.54 6.12 6.85 7.17
## difficulty[156] 8.44 0.24 0.58 7.35 8.02 8.43
## difficulty[157] 7.75 0.22 0.55 6.59 7.40 7.71
## difficulty[158] 7.46 0.21 0.53 6.45 7.06 7.54
## difficulty[159] 7.12 0.21 0.51 6.05 6.79 7.18
## difficulty[160] 6.63 0.21 0.77 5.55 6.35 6.65
## difficulty[161] 6.60 0.20 0.49 5.55 6.30 6.58
## difficulty[162] 5.93 0.20 0.51 4.83 5.61 5.95
## difficulty[163] 7.85 0.20 0.52 6.72 7.53 7.87
## difficulty[164] 7.97 0.23 0.53 6.80 7.63 7.93
## difficulty[165] 5.10 0.21 0.50 4.12 4.72 5.09
## difficulty[166] 7.04 0.22 0.52 5.97 6.67 7.01
## difficulty[167] 7.94 0.22 0.54 6.79 7.56 7.99
## difficulty[168] 8.55 0.23 0.56 7.33 8.20 8.54
## difficulty[169] 7.86 0.22 0.55 6.65 7.55 7.88
## difficulty[170] 7.02 0.19 0.51 5.88 6.71 7.05
## difficulty[171] 6.79 0.22 0.52 5.76 6.43 6.73
## difficulty[172] 9.24 0.21 0.56 8.10 8.87 9.22
## difficulty[173] 6.61 0.20 0.48 5.58 6.29 6.58
## difficulty[174] 3.65 1.34 2.04 0.01 3.56 4.58
## difficulty[175] 7.50 0.22 0.55 6.43 7.13 7.48
## difficulty[176] 8.15 0.24 0.58 6.93 7.76 8.11
## difficulty[177] 8.63 0.22 0.58 7.45 8.24 8.64
## difficulty[178] 9.38 0.23 0.59 8.13 9.01 9.37
## difficulty[179] 6.20 0.19 0.51 5.04 5.90 6.19
## difficulty[180] 7.36 0.21 0.56 6.28 6.97 7.38
## difficulty[181] 9.24 0.22 0.58 8.01 8.87 9.21
## difficulty[182] 8.22 0.23 0.55 7.13 7.86 8.20
## difficulty[183] 7.45 0.23 0.54 6.37 7.10 7.43
## difficulty[184] 8.97 0.23 0.60 7.68 8.59 8.94
## difficulty[185] 6.56 0.19 0.50 5.52 6.27 6.56
## difficulty[186] 6.47 0.20 0.51 5.45 6.17 6.44
## difficulty[187] 6.52 0.21 0.52 5.50 6.17 6.48
## difficulty[188] 7.24 0.21 0.52 6.06 6.91 7.25
## difficulty[189] 7.06 0.21 0.52 5.99 6.71 7.08
## difficulty[190] 5.40 0.17 0.48 4.29 5.09 5.50
## difficulty[191] 4.48 0.66 1.73 0.01 4.63 5.12
## difficulty[192] 7.41 0.20 0.52 6.34 7.06 7.39
## difficulty[193] 6.62 0.20 0.49 5.57 6.31 6.65
## difficulty[194] 6.24 0.21 0.50 5.17 5.93 6.21
## difficulty[195] 5.95 0.19 0.50 4.89 5.62 5.97
## difficulty[196] 6.36 0.22 0.52 5.32 6.03 6.34
## difficulty[197] 6.33 0.25 0.82 5.21 6.09 6.36
## difficulty[198] 6.95 0.22 0.53 5.91 6.62 6.94
## difficulty[199] 6.93 0.21 0.52 5.79 6.63 6.90
## difficulty[200] 7.71 0.22 0.54 6.52 7.41 7.73
## difficulty[201] 6.00 0.18 0.50 4.88 5.69 6.05
## difficulty[202] 5.35 0.18 0.50 4.31 5.00 5.37
## difficulty[203] 4.79 1.01 2.13 0.02 5.20 5.60
## difficulty[204] 7.49 0.21 0.52 6.33 7.13 7.51
## difficulty[205] 7.97 0.22 0.55 6.88 7.62 7.97
## difficulty[206] 6.25 0.20 0.51 5.23 5.90 6.27
## difficulty[207] 6.81 0.20 0.51 5.66 6.49 6.81
## difficulty[208] 6.65 0.19 0.51 5.63 6.34 6.68
## difficulty[209] 6.57 0.21 0.52 5.48 6.22 6.55
## difficulty[210] 8.93 0.21 0.56 7.83 8.56 8.90
## difficulty[211] 7.43 0.21 0.55 6.24 7.05 7.47
## difficulty[212] 6.12 0.19 0.51 5.02 5.81 6.14
## difficulty[213] 6.15 0.21 0.62 5.12 5.86 6.18
## difficulty[214] 6.59 0.22 0.53 5.56 6.26 6.57
## difficulty[215] 6.80 0.21 0.53 5.70 6.47 6.84
## difficulty[216] 7.13 0.23 0.53 6.08 6.76 7.14
## difficulty[217] 6.33 0.34 1.31 0.23 6.21 6.53
## difficulty[218] 7.72 0.23 0.55 6.62 7.40 7.68
## difficulty[219] 7.69 0.21 0.52 6.60 7.35 7.68
## difficulty[220] 7.89 0.21 0.55 6.72 7.54 7.92
## difficulty[221] 7.01 0.20 0.52 5.89 6.68 7.06
## difficulty[222] 7.43 0.21 0.53 6.28 7.09 7.43
## difficulty[223] 4.87 1.06 2.11 0.03 5.13 5.65
## difficulty[224] 7.97 0.23 0.57 6.80 7.59 8.00
## difficulty[225] 6.30 0.20 0.49 5.32 5.98 6.28
## difficulty[226] 7.55 0.21 0.55 6.40 7.23 7.59
## difficulty[227] 7.77 0.24 0.57 6.50 7.41 7.79
## difficulty[228] 5.13 2.10 3.00 0.00 3.92 6.68
## difficulty[229] 7.66 0.22 0.52 6.57 7.30 7.65
## difficulty[230] 7.94 0.23 0.55 6.84 7.57 7.96
## difficulty[231] 6.37 0.20 0.52 5.29 6.06 6.41
## difficulty[232] 7.51 0.21 0.53 6.30 7.17 7.50
## difficulty[233] 8.35 0.22 0.54 7.18 8.01 8.33
## difficulty[234] 5.93 0.20 0.50 4.86 5.65 5.90
## difficulty[235] 7.22 0.22 0.54 6.11 6.87 7.21
## difficulty[236] 7.11 0.22 0.53 6.01 6.76 7.10
## difficulty[237] 8.38 0.24 0.57 7.14 7.99 8.40
## difficulty[238] 8.38 0.24 0.58 7.23 7.97 8.38
## difficulty[239] 7.45 0.21 0.52 6.36 7.13 7.41
## difficulty[240] 7.05 0.20 0.52 5.92 6.72 7.08
## difficulty[241] 7.70 0.21 0.53 6.72 7.34 7.66
## difficulty[242] 7.39 0.22 0.54 6.32 7.02 7.36
## difficulty[243] 6.90 0.21 0.52 5.88 6.57 6.89
## difficulty[244] 8.02 0.23 0.54 6.86 7.67 7.99
## difficulty[245] 7.13 0.20 0.53 5.96 6.83 7.11
## difficulty[246] 7.26 0.21 0.53 6.12 6.93 7.24
## difficulty[247] 8.36 0.23 0.57 7.12 8.05 8.36
## difficulty[248] 7.64 0.24 0.56 6.50 7.29 7.62
## difficulty[249] 6.56 0.21 0.52 5.47 6.23 6.57
## difficulty[250] 4.55 1.86 2.66 0.00 3.32 5.89
## difficulty[251] 7.85 0.22 0.54 6.72 7.49 7.85
## difficulty[252] 6.23 0.28 1.11 1.45 6.01 6.36
## difficulty[253] 7.28 0.21 0.53 6.22 6.92 7.24
## difficulty[254] 6.17 0.27 1.06 4.75 5.94 6.24
## difficulty[255] 6.64 0.20 0.51 5.62 6.28 6.65
## difficulty[256] 6.59 0.30 1.19 0.84 6.44 6.74
## difficulty[257] 9.51 0.22 0.59 8.32 9.13 9.49
## difficulty[258] 7.22 0.21 0.53 6.19 6.86 7.19
## difficulty[259] 9.52 0.23 0.59 8.29 9.12 9.53
## difficulty[260] 7.25 0.21 0.51 6.12 6.92 7.27
## difficulty[261] 9.05 0.24 0.58 7.79 8.68 9.02
## difficulty[262] 7.00 0.21 0.53 5.92 6.68 6.99
## difficulty[263] 6.36 0.19 0.50 5.26 6.10 6.35
## difficulty[264] 6.07 0.20 0.49 5.02 5.77 6.05
## difficulty[265] 7.46 0.22 0.54 6.27 7.11 7.47
## difficulty[266] 9.09 0.23 0.59 7.77 8.71 9.10
## difficulty[267] 6.31 0.19 0.49 5.23 6.01 6.35
## difficulty[268] 7.62 0.20 0.52 6.51 7.27 7.63
## difficulty[269] 7.27 0.22 0.51 6.26 6.94 7.25
## difficulty[270] 7.71 0.24 0.56 6.60 7.34 7.68
## difficulty[271] 5.93 0.19 0.51 4.91 5.60 5.99
## difficulty[272] 7.81 0.23 0.55 6.63 7.48 7.79
## difficulty[273] 8.43 0.24 0.59 7.19 8.02 8.44
## difficulty[274] 8.18 0.22 0.56 7.05 7.83 8.19
## difficulty[275] 7.50 0.21 0.53 6.37 7.19 7.49
## difficulty[276] 7.23 0.21 0.52 6.14 6.91 7.22
## difficulty[277] 7.96 0.23 0.56 6.74 7.62 7.94
## difficulty[278] 8.04 0.23 0.55 6.92 7.70 8.04
## difficulty[279] 8.92 0.22 0.57 7.74 8.58 8.94
## difficulty[280] 8.69 0.23 0.58 7.42 8.32 8.71
## difficulty[281] 6.56 0.19 0.51 5.57 6.20 6.58
## difficulty[282] 7.65 0.22 0.56 6.45 7.30 7.66
## difficulty[283] 7.73 0.22 0.56 6.50 7.36 7.72
## difficulty[284] 7.13 0.20 0.53 5.98 6.81 7.16
## difficulty[285] 7.16 0.19 0.53 5.88 6.83 7.21
## difficulty[286] 7.52 0.22 0.56 6.40 7.12 7.55
## difficulty[287] 9.16 0.23 0.57 8.04 8.79 9.12
## difficulty[288] 7.60 0.21 0.56 6.37 7.24 7.65
## difficulty[289] 7.76 0.21 0.52 6.72 7.44 7.79
## difficulty[290] 7.16 0.20 0.52 6.04 6.83 7.16
## difficulty[291] 6.81 0.21 0.53 5.74 6.42 6.76
## difficulty[292] 7.53 0.22 0.54 6.42 7.16 7.52
## difficulty[293] 7.85 0.22 0.54 6.70 7.51 7.84
## difficulty[294] 8.06 0.23 0.56 6.82 7.72 8.04
## difficulty[295] 7.37 0.22 0.52 6.34 7.00 7.34
## difficulty[296] 7.89 0.20 0.55 6.77 7.54 7.93
## difficulty[297] 5.98 0.20 0.52 4.83 5.71 5.97
## difficulty[298] 8.93 0.23 0.59 7.66 8.58 8.94
## difficulty[299] 7.27 0.22 0.53 6.12 6.92 7.31
## difficulty[300] 8.25 0.21 0.55 7.07 7.87 8.28
## difficulty[301] 7.87 0.22 0.53 6.65 7.53 7.86
## difficulty[302] 8.15 0.24 0.55 7.03 7.81 8.13
## difficulty[303] 6.13 0.18 0.51 5.05 5.82 6.11
## difficulty[304] 6.95 0.21 0.52 5.77 6.65 6.96
## difficulty[305] 6.56 0.20 0.51 5.47 6.21 6.59
## difficulty[306] 6.76 0.21 0.52 5.63 6.44 6.75
## difficulty[307] 8.51 0.21 0.56 7.38 8.13 8.55
## difficulty[308] 8.19 0.22 0.54 7.08 7.80 8.25
## difficulty[309] 7.66 0.21 0.53 6.55 7.32 7.68
## difficulty[310] 8.08 0.22 0.53 6.97 7.76 8.05
## difficulty[311] 7.06 0.20 0.52 5.93 6.72 7.06
## difficulty[312] 6.72 0.21 0.52 5.57 6.39 6.71
## difficulty[313] 7.52 0.21 0.54 6.39 7.18 7.50
## difficulty[314] 8.18 0.23 0.58 6.89 7.81 8.25
## difficulty[315] 8.82 0.23 0.58 7.68 8.44 8.75
## difficulty[316] 6.56 0.22 0.52 5.59 6.22 6.52
## difficulty[317] 7.20 0.20 0.53 6.04 6.85 7.28
## difficulty[318] 9.03 0.22 0.57 7.76 8.72 9.03
## difficulty[319] 7.62 0.22 0.54 6.47 7.28 7.62
## difficulty[320] 6.90 0.21 0.51 5.84 6.57 6.93
## difficulty[321] 6.78 0.20 0.51 5.68 6.44 6.85
## difficulty[322] 5.96 0.18 0.50 4.88 5.66 6.00
## difficulty[323] 6.13 0.20 0.50 5.18 5.81 6.09
## difficulty[324] 7.76 0.23 0.55 6.57 7.41 7.73
## difficulty[325] 8.14 0.24 0.56 7.03 7.75 8.12
## difficulty[326] 9.43 0.22 0.58 8.31 9.05 9.42
## difficulty[327] 8.00 0.23 0.56 6.84 7.62 8.00
## difficulty[328] 9.04 0.25 0.60 7.88 8.62 9.05
## difficulty[329] 10.14 0.21 0.60 8.87 9.79 10.16
## difficulty[330] 9.27 0.22 0.58 7.99 8.91 9.30
## difficulty[331] 8.27 0.24 0.56 7.20 7.87 8.23
## difficulty[332] 8.44 0.21 0.55 7.20 8.15 8.45
## difficulty[333] 6.13 0.19 0.50 5.01 5.82 6.12
## difficulty[334] 6.79 0.20 0.52 5.71 6.46 6.74
## difficulty[335] 7.86 0.21 0.53 6.75 7.54 7.87
## difficulty[336] 5.87 0.18 0.50 4.75 5.57 5.91
## difficulty[337] 6.79 0.19 0.52 5.72 6.47 6.81
## difficulty[338] 7.55 0.22 0.53 6.50 7.18 7.58
## difficulty[339] 9.21 0.22 0.59 7.90 8.81 9.26
## difficulty[340] 7.71 0.22 0.54 6.50 7.38 7.68
## difficulty[341] 6.87 0.21 0.53 5.65 6.56 6.88
## difficulty[342] 7.03 0.22 0.52 5.98 6.72 6.97
## difficulty[343] 9.32 0.23 0.59 8.06 8.94 9.35
## difficulty[344] 6.82 0.21 0.51 5.84 6.47 6.77
## difficulty[345] 8.37 0.25 0.59 7.24 7.99 8.30
## difficulty[346] 7.23 0.21 0.52 6.08 6.94 7.19
## difficulty[347] 7.53 0.22 0.54 6.29 7.21 7.57
## difficulty[348] 4.66 0.18 0.60 3.53 4.35 4.65
## difficulty[349] 9.21 0.25 0.60 7.99 8.85 9.16
## difficulty[350] 7.21 0.23 0.54 6.06 6.86 7.18
## difficulty[351] 7.14 0.20 0.52 5.94 6.80 7.16
## difficulty[352] 7.44 0.20 0.55 6.23 7.08 7.46
## difficulty[353] 9.24 0.23 0.57 8.09 8.89 9.24
## difficulty[354] 7.96 0.22 0.55 6.84 7.59 7.96
## difficulty[355] 8.78 0.22 0.57 7.54 8.43 8.80
## difficulty[356] 2.85 0.23 0.98 0.20 2.55 3.01
## difficulty[357] 7.44 0.22 0.53 6.45 7.10 7.41
## difficulty[358] 8.21 0.22 0.55 7.15 7.89 8.20
## difficulty[359] 7.85 0.21 0.54 6.77 7.52 7.86
## difficulty[360] 7.11 0.22 0.54 6.03 6.78 7.10
## difficulty[361] 5.23 0.21 0.52 4.21 4.91 5.17
## difficulty[362] 5.61 0.19 0.50 4.59 5.26 5.61
## difficulty[363] 8.10 0.23 0.56 6.97 7.74 8.07
## difficulty[364] 8.74 0.24 0.58 7.60 8.35 8.69
## difficulty[365] 7.45 0.22 0.54 6.34 7.11 7.45
## difficulty[366] 1.22 0.70 1.49 0.03 0.10 0.26
## difficulty[367] 9.54 0.23 0.61 8.14 9.19 9.58
## difficulty[368] 6.33 0.21 0.51 5.31 5.96 6.34
## difficulty[369] 7.91 0.24 0.54 6.86 7.56 7.87
## difficulty[370] 9.25 0.22 0.59 7.98 8.89 9.27
## difficulty[371] 5.02 2.05 2.93 0.00 3.87 6.44
## difficulty[372] 8.44 0.23 0.57 7.28 8.11 8.45
## difficulty[373] 7.96 0.21 0.54 6.82 7.61 7.98
## difficulty[374] 8.29 0.22 0.54 7.18 7.97 8.29
## difficulty[375] 7.63 0.20 0.51 6.52 7.28 7.65
## difficulty[376] 5.18 0.18 0.48 4.18 4.88 5.22
## difficulty[377] 7.23 0.21 0.51 6.11 6.94 7.25
## difficulty[378] 2.99 1.18 1.88 0.03 0.15 3.85
## difficulty[379] 6.74 0.21 0.52 5.69 6.43 6.68
## difficulty[380] 7.13 0.21 0.53 6.02 6.78 7.14
## difficulty[381] 7.34 0.22 0.55 6.12 7.02 7.38
## difficulty[382] 7.36 0.22 0.52 6.30 7.04 7.35
## difficulty[383] 6.67 0.19 0.48 5.74 6.35 6.71
## difficulty[384] 5.22 0.14 0.80 3.92 4.99 5.25
## difficulty[385] 4.43 0.46 1.40 0.04 4.43 4.79
## difficulty[386] 7.07 0.22 0.54 5.93 6.72 7.07
## difficulty[387] 6.46 0.21 0.52 5.32 6.15 6.48
## difficulty[388] 4.88 0.50 1.45 0.05 4.86 5.20
## difficulty[389] 4.00 0.17 0.64 2.68 3.67 4.12
## difficulty[390] 7.29 0.20 0.53 6.17 6.95 7.27
## difficulty[391] 5.31 0.43 1.27 0.14 5.24 5.55
## difficulty[392] 4.24 1.73 2.48 0.01 3.13 5.41
## difficulty[393] 5.37 0.20 0.48 4.41 5.06 5.31
## difficulty[394] 7.58 0.23 0.56 6.30 7.24 7.58
## difficulty[395] 7.21 0.22 0.53 6.05 6.85 7.22
## difficulty[396] 7.92 0.23 0.56 6.72 7.56 7.92
## difficulty[397] 3.73 1.58 2.68 0.00 0.03 5.39
## difficulty[398] 7.43 0.21 0.52 6.32 7.12 7.45
## difficulty[399] 7.69 0.23 0.53 6.57 7.33 7.68
## difficulty[400] 5.24 0.18 0.53 4.21 4.94 5.28
## difficulty[401] 6.46 0.22 0.51 5.38 6.11 6.41
## difficulty[402] 7.04 0.20 0.51 5.93 6.70 7.08
## difficulty[403] 7.36 0.21 0.53 6.23 6.99 7.42
## difficulty[404] 7.81 0.22 0.53 6.69 7.51 7.80
## difficulty[405] 8.09 0.22 0.56 6.92 7.73 8.10
## difficulty[406] 7.76 0.21 0.54 6.62 7.42 7.75
## difficulty[407] 8.12 0.21 0.54 7.00 7.78 8.12
## difficulty[408] 7.60 0.21 0.52 6.44 7.25 7.65
## difficulty[409] 7.58 0.24 0.56 6.44 7.21 7.56
## difficulty[410] 8.04 0.23 0.53 7.04 7.71 7.99
## difficulty[411] 6.74 0.19 0.52 5.61 6.40 6.81
## difficulty[412] 5.41 2.21 3.16 0.00 4.01 7.03
## difficulty[413] 7.54 0.22 0.53 6.45 7.18 7.52
## difficulty[414] 7.23 0.20 0.53 6.09 6.91 7.25
## difficulty[415] 7.17 0.20 0.52 5.98 6.85 7.16
## difficulty[416] 8.12 0.23 0.57 6.96 7.76 8.14
## difficulty[417] 6.91 0.22 0.54 5.74 6.55 6.90
## difficulty[418] 7.87 0.22 0.55 6.79 7.49 7.89
## difficulty[419] 6.81 0.20 0.52 5.67 6.49 6.86
## difficulty[420] 7.51 0.22 0.54 6.36 7.18 7.49
## difficulty[421] 5.64 0.54 1.59 0.01 5.69 5.95
## difficulty[422] 7.29 0.22 0.55 6.12 6.92 7.29
## difficulty[423] 7.63 0.22 0.56 6.48 7.26 7.63
## difficulty[424] 7.73 0.23 0.56 6.62 7.39 7.65
## difficulty[425] 8.70 0.24 0.58 7.48 8.36 8.69
## difficulty[426] 5.55 0.35 1.26 0.09 5.47 5.78
## difficulty[427] 7.15 0.22 0.54 5.98 6.79 7.16
## difficulty[428] 7.87 0.21 0.55 6.67 7.56 7.87
## difficulty[429] 7.53 0.21 0.56 6.32 7.17 7.55
## difficulty[430] 8.28 0.24 0.59 7.00 7.89 8.30
## difficulty[431] 8.27 0.23 0.58 7.07 7.89 8.27
## difficulty[432] 7.33 0.21 0.54 6.12 7.03 7.34
## difficulty[433] 6.97 0.20 0.51 5.94 6.66 6.97
## difficulty[434] 7.58 0.23 0.55 6.45 7.21 7.55
## difficulty[435] 5.57 0.18 0.50 4.50 5.21 5.61
## difficulty[436] 9.42 0.24 0.60 8.20 9.03 9.40
## difficulty[437] 7.57 0.22 0.55 6.38 7.20 7.54
## difficulty[438] 7.65 0.20 0.54 6.40 7.30 7.67
## difficulty[439] 6.81 0.21 0.52 5.74 6.49 6.81
## difficulty[440] 7.39 0.21 0.54 6.20 7.02 7.44
## difficulty[441] 7.37 0.21 0.53 6.33 7.00 7.38
## difficulty[442] 7.45 0.22 0.54 6.31 7.12 7.42
## difficulty[443] 6.24 0.43 1.35 0.16 6.12 6.43
## difficulty[444] 7.84 0.22 0.53 6.72 7.50 7.81
## difficulty[445] 7.04 0.22 0.55 5.91 6.67 6.96
## difficulty[446] 7.01 0.21 0.54 5.85 6.68 7.03
## difficulty[447] 6.25 0.27 1.03 5.19 6.04 6.35
## difficulty[448] 7.52 0.23 0.54 6.38 7.18 7.55
## difficulty[449] 7.81 0.23 0.55 6.71 7.45 7.75
## difficulty[450] 7.57 0.22 0.56 6.42 7.21 7.59
## difficulty[451] 8.05 0.22 0.54 6.93 7.71 8.07
## difficulty[452] 6.89 0.23 0.88 5.77 6.61 6.96
## difficulty[453] 6.48 0.41 1.48 0.09 6.41 6.79
## difficulty[454] 7.60 0.24 0.56 6.39 7.27 7.59
## difficulty[455] 6.20 0.32 1.18 0.24 6.05 6.36
## difficulty[456] 8.10 0.23 0.56 6.91 7.73 8.05
## difficulty[457] 8.19 0.22 0.56 6.97 7.86 8.19
## difficulty[458] 6.43 0.20 0.50 5.39 6.11 6.41
## difficulty[459] 8.22 0.24 0.56 6.92 7.91 8.19
## difficulty[460] 9.35 0.24 0.60 8.07 8.96 9.32
## difficulty[461] 7.94 0.22 0.54 6.77 7.62 7.94
## difficulty[462] 7.24 0.21 0.53 6.14 6.92 7.19
## difficulty[463] 7.72 0.22 0.55 6.60 7.37 7.71
## difficulty[464] 6.83 0.24 0.51 5.80 6.49 6.78
## difficulty[465] 6.88 0.23 0.55 5.72 6.51 6.89
## difficulty[466] 9.01 0.23 0.58 7.83 8.66 8.99
## difficulty[467] 7.34 0.22 0.54 6.19 7.03 7.29
## difficulty[468] 7.84 0.21 0.54 6.74 7.47 7.88
## difficulty[469] 6.58 0.24 0.53 5.56 6.22 6.58
## difficulty[470] 7.68 0.23 0.54 6.55 7.34 7.64
## difficulty[471] 7.90 0.21 0.54 6.64 7.59 7.92
## difficulty[472] 8.10 0.23 0.57 6.93 7.75 8.03
## difficulty[473] 6.94 0.20 0.51 5.77 6.62 6.97
## difficulty[474] 6.39 0.21 0.52 5.39 6.05 6.35
## difficulty[475] 9.27 0.23 0.58 7.97 8.93 9.30
## difficulty[476] 6.51 0.20 0.50 5.51 6.15 6.49
## difficulty[477] 7.10 0.21 0.53 5.98 6.74 7.11
## difficulty[478] 7.76 0.22 0.53 6.60 7.41 7.71
## difficulty[479] 7.66 0.22 0.54 6.60 7.32 7.63
## difficulty[480] 7.51 0.21 0.54 6.30 7.16 7.58
## difficulty[481] 7.57 0.22 0.55 6.38 7.21 7.55
## difficulty[482] 7.55 0.23 0.54 6.45 7.20 7.49
## difficulty[483] 6.39 0.19 0.49 5.33 6.10 6.36
## difficulty[484] 7.46 0.20 0.54 6.35 7.16 7.47
## difficulty[485] 7.28 0.21 0.52 6.12 6.97 7.25
## difficulty[486] 6.88 0.21 0.50 5.83 6.54 6.88
## difficulty[487] 7.76 0.21 0.56 6.61 7.38 7.84
## difficulty[488] 7.45 0.23 0.53 6.38 7.11 7.42
## difficulty[489] 8.13 0.23 0.54 7.02 7.78 8.08
## difficulty[490] 8.73 0.24 0.58 7.54 8.35 8.72
## difficulty[491] 9.06 0.24 0.59 7.83 8.71 9.05
## difficulty[492] 7.12 0.21 0.50 6.12 6.79 7.09
## difficulty[493] 6.85 0.20 0.51 5.76 6.54 6.88
## difficulty[494] 7.39 0.21 0.54 6.19 7.05 7.40
## difficulty[495] 7.80 0.23 0.57 6.60 7.46 7.76
## difficulty[496] 7.85 0.22 0.54 6.69 7.55 7.83
## difficulty[497] 6.73 0.20 0.53 5.65 6.38 6.78
## difficulty[498] 7.09 0.23 0.53 6.03 6.74 7.12
## difficulty[499] 7.38 0.24 0.56 6.23 6.97 7.34
## difficulty[500] 7.61 0.20 0.54 6.42 7.25 7.65
## difficulty[501] 10.33 0.22 0.63 9.11 9.88 10.36
## difficulty[502] 7.02 0.22 0.53 6.04 6.67 6.99
## difficulty[503] 7.93 0.23 0.55 6.80 7.58 7.95
## difficulty[504] 5.70 0.17 0.49 4.70 5.36 5.70
## difficulty[505] 6.85 0.20 0.52 5.82 6.50 6.86
## difficulty[506] 7.61 0.22 0.56 6.46 7.26 7.58
## difficulty[507] 6.97 0.20 0.53 5.88 6.60 6.96
## difficulty[508] 8.04 0.22 0.54 6.85 7.69 8.04
## difficulty[509] 6.54 0.22 0.51 5.55 6.23 6.48
## difficulty[510] 7.79 0.21 0.53 6.71 7.46 7.76
## difficulty[511] 6.69 0.22 0.50 5.73 6.36 6.62
## difficulty[512] 7.07 0.22 0.55 5.87 6.70 7.06
## difficulty[513] 8.21 0.23 0.56 7.06 7.87 8.18
## difficulty[514] 7.58 0.21 0.54 6.44 7.25 7.58
## difficulty[515] 7.09 0.22 0.52 6.01 6.78 7.02
## difficulty[516] 6.01 0.21 0.51 4.97 5.68 5.99
## difficulty[517] 7.80 0.21 0.53 6.64 7.48 7.80
## difficulty[518] 7.91 0.23 0.56 6.78 7.53 7.91
## difficulty[519] 6.62 0.21 0.51 5.61 6.28 6.64
## difficulty[520] 7.44 0.25 0.56 6.39 7.04 7.39
## difficulty[521] 7.76 0.22 0.56 6.65 7.41 7.74
## difficulty[522] 7.61 0.23 0.55 6.50 7.22 7.61
## difficulty[523] 9.27 0.22 0.60 8.01 8.89 9.31
## difficulty[524] 8.30 0.21 0.55 7.12 7.94 8.34
## difficulty[525] 8.27 0.21 0.55 7.08 7.91 8.31
## difficulty[526] 7.90 0.22 0.55 6.72 7.55 7.86
## difficulty[527] 6.94 0.22 0.52 5.86 6.60 6.91
## difficulty[528] 7.60 0.22 0.53 6.50 7.26 7.61
## difficulty[529] 7.27 0.22 0.53 6.12 6.91 7.24
## difficulty[530] 8.15 0.24 0.56 6.96 7.78 8.13
## difficulty[531] 7.53 0.21 0.54 6.33 7.18 7.57
## difficulty[532] 7.56 0.23 0.53 6.40 7.21 7.53
## difficulty[533] 4.89 0.17 0.48 3.82 4.64 4.89
## difficulty[534] 7.21 0.22 0.54 6.11 6.88 7.22
## difficulty[535] 6.99 0.21 0.52 5.83 6.68 6.97
## difficulty[536] 9.02 0.21 0.57 7.74 8.62 9.09
## difficulty[537] 7.68 0.21 0.54 6.61 7.36 7.67
## difficulty[538] 8.73 0.22 0.55 7.55 8.40 8.72
## difficulty[539] 7.67 0.21 0.52 6.61 7.33 7.64
## difficulty[540] 8.36 0.22 0.55 7.20 7.99 8.38
## difficulty[541] 9.08 0.23 0.60 7.83 8.71 8.99
## difficulty[542] 8.16 0.21 0.55 6.99 7.83 8.15
## difficulty[543] 7.18 0.21 0.52 6.08 6.84 7.20
## difficulty[544] 8.70 0.22 0.58 7.35 8.33 8.71
## difficulty[545] 8.64 0.24 0.56 7.40 8.29 8.62
## difficulty[546] 7.32 0.23 0.54 6.19 6.96 7.28
## difficulty[547] 9.36 0.21 0.58 8.07 9.01 9.40
## difficulty[548] 6.64 0.21 0.51 5.60 6.32 6.64
## difficulty[549] 7.84 0.20 0.54 6.67 7.53 7.85
## difficulty[550] 7.41 0.21 0.53 6.26 7.06 7.42
## difficulty[551] 7.62 0.22 0.55 6.52 7.27 7.64
## difficulty[552] 7.76 0.22 0.54 6.70 7.39 7.76
## difficulty[553] 7.81 0.25 0.57 6.66 7.44 7.75
## difficulty[554] 7.59 0.23 0.58 6.31 7.26 7.62
## difficulty[555] 8.58 0.23 0.59 7.39 8.19 8.60
## difficulty[556] 7.37 0.20 0.52 6.27 7.06 7.40
## difficulty[557] 7.59 0.22 0.55 6.40 7.27 7.61
## difficulty[558] 7.01 0.20 0.53 5.85 6.64 6.98
## difficulty[559] 7.75 0.21 0.52 6.71 7.42 7.77
## difficulty[560] 8.98 0.25 0.60 7.84 8.56 8.95
## difficulty[561] 7.72 0.21 0.53 6.60 7.40 7.73
## difficulty[562] 6.53 0.22 0.53 5.45 6.20 6.53
## difficulty[563] 8.04 0.23 0.55 6.82 7.68 8.00
## difficulty[564] 8.22 0.21 0.55 6.99 7.90 8.22
## difficulty[565] 7.16 0.21 0.50 6.12 6.87 7.10
## difficulty[566] 6.54 0.20 0.51 5.50 6.19 6.54
## difficulty[567] 8.68 0.22 0.56 7.30 8.31 8.69
## difficulty[568] 9.45 0.22 0.59 8.16 9.08 9.45
## difficulty[569] 8.09 0.22 0.56 6.98 7.75 8.09
## difficulty[570] 8.11 0.21 0.53 6.93 7.78 8.12
## difficulty[571] 7.97 0.21 0.56 6.81 7.62 7.97
## difficulty[572] 7.06 0.21 0.53 5.95 6.73 7.07
## difficulty[573] 7.53 0.21 0.52 6.38 7.19 7.55
## difficulty[574] 9.14 0.24 0.59 7.89 8.70 9.15
## difficulty[575] 8.79 0.23 0.58 7.58 8.43 8.79
## difficulty[576] 8.45 0.22 0.57 7.18 8.08 8.46
## difficulty[577] 8.88 0.26 0.61 7.70 8.49 8.86
## difficulty[578] 9.43 0.23 0.63 8.25 9.03 9.39
## difficulty[579] 8.34 0.23 0.56 7.12 8.00 8.32
## difficulty[580] 8.83 0.22 0.57 7.74 8.43 8.79
## difficulty[581] 9.54 0.24 0.61 8.37 9.15 9.53
## difficulty[582] 8.82 0.24 0.59 7.46 8.45 8.82
## difficulty[583] 8.82 0.25 0.59 7.67 8.43 8.79
## difficulty[584] 7.33 0.20 0.53 6.17 7.00 7.38
## difficulty[585] 7.70 0.23 0.55 6.46 7.36 7.70
## difficulty[586] 6.27 0.20 0.50 5.29 5.96 6.26
## difficulty[587] 5.87 0.21 0.50 4.89 5.51 5.83
## difficulty[588] 7.17 0.21 0.52 5.99 6.83 7.18
## difficulty[589] 8.83 0.23 0.60 7.52 8.48 8.84
## difficulty[590] 9.25 0.22 0.58 8.03 8.88 9.27
## difficulty[591] 8.39 0.22 0.55 7.17 8.06 8.38
## difficulty[592] 6.89 0.19 0.50 5.83 6.59 6.90
## difficulty[593] 9.69 0.24 0.61 8.49 9.29 9.73
## difficulty[594] 9.00 0.23 0.57 7.76 8.64 9.01
## difficulty[595] 8.77 0.23 0.57 7.60 8.40 8.76
## difficulty[596] 9.22 0.25 0.61 7.95 8.80 9.24
## difficulty[597] 7.36 0.20 0.53 6.25 7.00 7.42
## difficulty[598] 8.77 0.22 0.57 7.58 8.44 8.76
## difficulty[599] 9.51 0.24 0.61 8.27 9.14 9.47
## difficulty[600] 8.97 0.21 0.59 7.69 8.60 9.00
## difficulty[601] 7.45 0.23 0.54 6.32 7.07 7.46
## difficulty[602] 8.49 0.22 0.56 7.30 8.15 8.50
## difficulty[603] 10.36 0.19 0.64 9.04 9.95 10.43
## difficulty[604] 9.23 0.24 0.60 8.03 8.82 9.20
## difficulty[605] 7.15 0.22 0.54 6.04 6.78 7.18
## difficulty[606] 9.19 0.22 0.59 7.83 8.84 9.25
## difficulty[607] 7.54 0.21 0.56 6.34 7.16 7.60
## difficulty[608] 9.42 0.25 0.61 8.18 9.04 9.40
## difficulty[609] 8.40 0.25 0.57 7.24 8.02 8.39
## difficulty[610] 8.26 0.24 0.57 7.06 7.90 8.27
## difficulty[611] 10.00 0.22 0.63 8.73 9.59 10.04
## difficulty[612] 9.94 0.24 0.62 8.53 9.53 10.03
## difficulty[613] 9.06 0.23 0.58 7.80 8.71 9.04
## difficulty[614] 8.27 0.23 0.59 7.06 7.89 8.30
## difficulty[615] 8.02 0.22 0.56 6.76 7.68 7.99
## difficulty[616] 7.68 0.26 0.56 6.53 7.31 7.64
## difficulty[617] 8.68 0.23 0.59 7.42 8.32 8.70
## difficulty[618] 9.66 0.23 0.61 8.33 9.24 9.73
## difficulty[619] 8.85 0.23 0.58 7.63 8.51 8.83
## difficulty[620] 5.97 0.19 0.49 4.97 5.59 6.01
## difficulty[621] 8.51 0.22 0.57 7.23 8.15 8.52
## difficulty[622] 7.28 0.22 0.54 6.21 6.91 7.31
## difficulty[623] 6.93 0.21 0.51 5.88 6.59 6.94
## difficulty[624] 9.61 0.24 0.59 8.41 9.24 9.58
## difficulty[625] 9.07 0.24 0.60 7.93 8.64 9.06
## difficulty[626] 9.33 0.23 0.58 8.05 8.98 9.32
## difficulty[627] 6.36 0.19 0.50 5.29 6.06 6.35
## difficulty[628] 6.48 0.20 0.52 5.34 6.14 6.54
## difficulty[629] 8.56 0.23 0.56 7.49 8.18 8.60
## difficulty[630] 6.74 0.19 0.49 5.59 6.47 6.75
## difficulty[631] 8.15 0.25 0.58 6.87 7.80 8.12
## difficulty[632] 7.58 0.22 0.56 6.44 7.21 7.61
## difficulty[633] 8.01 0.21 0.54 6.84 7.66 8.02
## difficulty[634] 7.74 0.24 0.55 6.67 7.35 7.76
## difficulty[635] 5.91 0.19 0.50 4.93 5.51 5.96
## difficulty[636] 8.38 0.22 0.57 7.21 8.04 8.37
## difficulty[637] 7.68 0.20 0.55 6.54 7.36 7.75
## difficulty[638] 7.64 0.21 0.55 6.39 7.32 7.65
## difficulty[639] 8.93 0.23 0.61 7.67 8.50 8.97
## difficulty[640] 10.47 0.25 0.65 9.27 10.06 10.47
## difficulty[641] 8.25 0.22 0.56 7.03 7.91 8.25
## difficulty[642] 8.88 0.23 0.57 7.60 8.52 8.89
## difficulty[643] 10.00 0.24 0.60 8.82 9.59 9.95
## difficulty[644] 9.33 0.22 0.62 7.95 8.99 9.36
## difficulty[645] 5.62 0.25 0.89 4.59 5.42 5.67
## difficulty[646] 8.91 0.23 0.59 7.59 8.55 8.92
## difficulty[647] 9.10 0.24 0.59 7.80 8.72 9.09
## difficulty[648] 8.44 0.24 0.57 7.34 8.09 8.45
## difficulty[649] 8.53 0.21 0.56 7.37 8.15 8.56
## difficulty[650] 8.80 0.25 0.59 7.64 8.38 8.74
## difficulty[651] 7.76 0.20 0.52 6.66 7.42 7.76
## difficulty[652] 8.16 0.21 0.55 6.94 7.84 8.17
## difficulty[653] 7.59 0.22 0.56 6.31 7.25 7.61
## difficulty[654] 8.69 0.23 0.57 7.50 8.32 8.70
## difficulty[655] 8.73 0.22 0.57 7.51 8.40 8.68
## difficulty[656] 9.09 0.22 0.58 7.95 8.71 9.09
## difficulty[657] 8.46 0.23 0.58 7.20 8.12 8.46
## difficulty[658] 9.91 0.23 0.65 8.57 9.47 9.98
## difficulty[659] 8.51 0.21 0.57 7.33 8.15 8.51
## difficulty[660] 7.31 0.20 0.51 6.16 6.99 7.33
## difficulty[661] 9.70 0.22 0.59 8.53 9.34 9.75
## difficulty[662] 7.66 0.23 0.54 6.50 7.32 7.64
## difficulty[663] 8.10 0.21 0.55 6.95 7.75 8.15
## difficulty[664] 8.86 0.23 0.58 7.59 8.46 8.87
## difficulty[665] 8.69 0.23 0.57 7.48 8.33 8.70
## difficulty[666] 8.05 0.23 0.57 6.76 7.66 8.01
## difficulty[667] 7.90 0.21 0.54 6.62 7.58 7.89
## difficulty[668] 8.23 0.21 0.56 7.09 7.88 8.26
## difficulty[669] 8.31 0.23 0.56 7.08 7.92 8.31
## difficulty[670] 7.18 0.20 0.53 6.13 6.85 7.21
## difficulty[671] 9.35 0.23 0.60 8.11 8.98 9.34
## difficulty[672] 9.80 0.21 0.60 8.54 9.40 9.88
## difficulty[673] 9.15 0.25 0.60 7.83 8.77 9.15
## difficulty[674] 10.36 0.20 0.67 8.87 9.90 10.43
## difficulty[675] 8.42 0.23 0.54 7.35 8.10 8.40
## difficulty[676] 8.51 0.22 0.55 7.38 8.15 8.53
## difficulty[677] 9.35 0.23 0.58 8.11 9.00 9.38
## difficulty[678] 9.93 0.21 0.62 8.51 9.49 10.02
## difficulty[679] 9.14 0.23 0.57 7.97 8.78 9.15
## difficulty[680] 9.58 0.24 0.59 8.29 9.21 9.56
## lp__ -30505.97 324.95 726.44 -32156.05 -31010.75 -30254.29
## 75% 97.5% n_eff Rhat
## mu_w 7.92 8.15 5 2.18
## mu_s 0.32 0.33 5 2.20
## sigma_w 1.39 1.48 7 1.80
## difficulty[1] 5.98 6.49 6 1.62
## difficulty[2] 6.02 6.57 6 1.68
## difficulty[3] 7.88 8.36 6 1.77
## difficulty[4] 5.39 5.87 10 1.28
## difficulty[5] 5.35 6.00 20 1.16
## difficulty[6] 4.98 5.59 10 1.74
## difficulty[7] 5.57 6.09 7 1.45
## difficulty[8] 5.71 6.22 6 1.54
## difficulty[9] 4.48 5.09 6 1.52
## difficulty[10] 6.02 6.50 7 1.54
## difficulty[11] 5.48 5.95 6 1.53
## difficulty[12] 5.93 6.49 2 9.73
## difficulty[13] 7.62 8.15 7 1.67
## difficulty[14] 7.51 8.03 13 1.22
## difficulty[15] 7.86 8.47 6 1.75
## difficulty[16] 6.24 6.76 7 1.59
## difficulty[17] 6.99 7.57 5 1.77
## difficulty[18] 5.65 6.12 6 1.61
## difficulty[19] 6.19 6.75 8 2.44
## difficulty[20] 6.81 7.32 7 1.75
## difficulty[21] 7.10 7.61 5 1.71
## difficulty[22] 5.76 6.25 6 1.60
## difficulty[23] 6.74 7.29 6 1.69
## difficulty[24] 6.16 6.74 6 1.59
## difficulty[25] 8.53 9.04 6 1.76
## difficulty[26] 4.51 5.25 8 1.51
## difficulty[27] 8.63 9.04 5 1.70
## difficulty[28] 5.25 5.87 8 1.54
## difficulty[29] 7.24 7.71 7 1.65
## difficulty[30] 6.08 6.57 8 3.01
## difficulty[31] 7.03 7.48 6 1.66
## difficulty[32] 7.68 8.21 6 1.60
## difficulty[33] 8.80 9.43 6 1.70
## difficulty[34] 9.51 10.07 7 1.67
## difficulty[35] 6.75 7.18 11 1.27
## difficulty[36] 5.83 6.32 7 1.54
## difficulty[37] 8.72 9.20 7 1.76
## difficulty[38] 7.21 7.65 7 1.63
## difficulty[39] 6.93 7.38 6 1.64
## difficulty[40] 9.24 9.80 7 1.66
## difficulty[41] 7.02 7.58 7 1.60
## difficulty[42] 7.61 8.12 6 1.81
## difficulty[43] 8.53 8.98 6 1.80
## difficulty[44] 6.47 6.87 8 1.63
## difficulty[45] 9.04 9.51 6 1.73
## difficulty[46] 6.63 7.15 6 1.70
## difficulty[47] 8.87 9.45 6 1.72
## difficulty[48] 7.23 7.71 7 1.74
## difficulty[49] 7.93 8.38 6 1.64
## difficulty[50] 7.53 7.91 7 1.58
## difficulty[51] 7.56 8.11 6 1.63
## difficulty[52] 7.96 8.53 7 1.61
## difficulty[53] 7.30 7.77 7 1.69
## difficulty[54] 9.11 9.77 6 1.72
## difficulty[55] 7.78 8.30 6 1.79
## difficulty[56] 6.35 6.88 7 1.57
## difficulty[57] 6.98 7.50 6 1.64
## difficulty[58] 6.43 6.90 11 1.30
## difficulty[59] 6.61 7.16 7 1.63
## difficulty[60] 5.23 5.86 18 1.19
## difficulty[61] 7.65 8.08 7 1.59
## difficulty[62] 8.23 8.72 6 1.78
## difficulty[63] 8.29 8.83 6 1.86
## difficulty[64] 9.49 10.09 6 1.65
## difficulty[65] 8.09 8.63 6 1.78
## difficulty[66] 8.21 8.74 6 1.84
## difficulty[67] 7.00 7.54 7 1.65
## difficulty[68] 9.08 9.59 7 1.63
## difficulty[69] 5.91 6.39 7 1.59
## difficulty[70] 4.08 4.84 11 1.34
## difficulty[71] 5.94 6.46 7 1.64
## difficulty[72] 8.01 8.50 7 1.61
## difficulty[73] 6.99 7.44 6 1.69
## difficulty[74] 5.43 5.87 10 1.36
## difficulty[75] 6.21 6.68 7 1.60
## difficulty[76] 8.83 9.41 7 1.72
## difficulty[77] 7.46 7.92 7 1.65
## difficulty[78] 7.26 7.74 7 1.68
## difficulty[79] 8.14 8.66 7 1.59
## difficulty[80] 8.93 9.49 6 1.70
## difficulty[81] 7.49 7.97 6 1.73
## difficulty[82] 7.97 8.43 7 1.58
## difficulty[83] 8.58 9.07 7 1.64
## difficulty[84] 7.97 8.55 7 1.70
## difficulty[85] 7.54 8.04 6 1.66
## difficulty[86] 7.75 8.23 6 1.81
## difficulty[87] 6.77 7.34 7 1.63
## difficulty[88] 5.98 6.53 33 1.11
## difficulty[89] 7.59 8.13 11 1.25
## difficulty[90] 5.44 5.97 7 1.45
## difficulty[91] 7.78 8.34 6 1.66
## difficulty[92] 6.98 7.49 6 1.73
## difficulty[93] 7.83 8.35 5 1.75
## difficulty[94] 7.12 7.60 7 1.74
## difficulty[95] 7.13 7.74 6 2.60
## difficulty[96] 7.50 8.04 7 1.71
## difficulty[97] 7.27 7.82 5 1.70
## difficulty[98] 7.52 8.04 6 1.68
## difficulty[99] 5.99 6.44 8 2.37
## difficulty[100] 6.92 7.46 7 1.68
## difficulty[101] 7.88 8.32 7 1.58
## difficulty[102] 8.09 8.68 6 1.74
## difficulty[103] 8.46 8.93 6 1.63
## difficulty[104] 5.90 6.41 6 1.63
## difficulty[105] 7.43 7.92 7 1.55
## difficulty[106] 6.18 6.66 6 1.72
## difficulty[107] 8.02 8.56 6 1.75
## difficulty[108] 6.52 6.95 7 1.59
## difficulty[109] 6.95 7.51 7 1.64
## difficulty[110] 7.08 7.51 6 1.66
## difficulty[111] 7.46 7.91 6 1.69
## difficulty[112] 7.15 7.57 7 1.54
## difficulty[113] 7.08 7.63 6 1.65
## difficulty[114] 8.46 8.99 6 1.78
## difficulty[115] 8.38 8.91 7 1.62
## difficulty[116] 7.87 8.33 6 1.76
## difficulty[117] 7.24 7.69 7 1.68
## difficulty[118] 6.92 7.41 6 1.66
## difficulty[119] 8.49 9.00 6 1.71
## difficulty[120] 8.69 9.25 7 1.56
## difficulty[121] 6.09 6.65 2 9.61
## difficulty[122] 8.79 9.27 6 1.69
## difficulty[123] 7.95 8.50 6 1.70
## difficulty[124] 8.93 9.43 7 1.65
## difficulty[125] 5.48 5.96 2 8.96
## difficulty[126] 8.13 8.58 6 1.78
## difficulty[127] 7.91 8.46 6 1.62
## difficulty[128] 8.63 9.17 6 1.72
## difficulty[129] 7.02 7.45 7 1.62
## difficulty[130] 7.60 8.22 5 1.72
## difficulty[131] 7.96 8.47 6 1.64
## difficulty[132] 7.79 8.35 7 1.75
## difficulty[133] 8.16 8.76 5 1.83
## difficulty[134] 6.63 7.09 6 1.62
## difficulty[135] 7.45 7.96 6 1.76
## difficulty[136] 7.99 8.45 7 1.78
## difficulty[137] 7.65 8.17 7 1.62
## difficulty[138] 7.46 8.03 6 1.67
## difficulty[139] 7.96 8.48 7 1.73
## difficulty[140] 9.09 9.63 6 1.75
## difficulty[141] 7.81 8.27 5 1.77
## difficulty[142] 8.11 8.63 6 1.68
## difficulty[143] 9.13 9.61 6 1.71
## difficulty[144] 7.77 8.23 6 1.70
## difficulty[145] 8.67 9.13 7 1.62
## difficulty[146] 8.37 8.86 6 1.83
## difficulty[147] 7.95 8.45 6 1.73
## difficulty[148] 7.38 7.82 7 1.68
## difficulty[149] 7.58 8.16 6 1.70
## difficulty[150] 7.39 8.02 6 1.68
## difficulty[151] 9.64 10.07 7 1.57
## difficulty[152] 9.58 10.35 7 1.48
## difficulty[153] 8.70 9.32 6 1.63
## difficulty[154] 6.35 6.94 6 1.57
## difficulty[155] 7.61 8.14 6 1.75
## difficulty[156] 8.92 9.39 6 1.62
## difficulty[157] 8.14 8.73 6 1.70
## difficulty[158] 7.91 8.27 6 1.68
## difficulty[159] 7.49 7.99 6 1.66
## difficulty[160] 7.01 7.65 13 1.26
## difficulty[161] 6.98 7.43 6 1.71
## difficulty[162] 6.32 6.77 6 1.68
## difficulty[163] 8.20 8.79 7 1.59
## difficulty[164] 8.39 8.91 6 1.71
## difficulty[165] 5.51 5.99 6 1.60
## difficulty[166] 7.45 8.04 6 1.79
## difficulty[167] 8.33 8.86 6 1.66
## difficulty[168] 9.00 9.46 6 1.71
## difficulty[169] 8.25 8.82 6 1.74
## difficulty[170] 7.42 7.93 8 1.64
## difficulty[171] 7.20 7.74 5 1.75
## difficulty[172] 9.68 10.21 7 1.63
## difficulty[173] 6.94 7.52 6 1.59
## difficulty[174] 4.97 5.58 2 2.92
## difficulty[175] 7.89 8.53 6 1.70
## difficulty[176] 8.60 9.22 6 1.75
## difficulty[177] 9.08 9.61 7 1.67
## difficulty[178] 9.80 10.38 7 1.57
## difficulty[179] 6.56 7.10 7 1.57
## difficulty[180] 7.78 8.28 7 1.66
## difficulty[181] 9.68 10.27 7 1.63
## difficulty[182] 8.67 9.13 6 1.70
## difficulty[183] 7.88 8.32 6 1.72
## difficulty[184] 9.41 9.98 7 1.66
## difficulty[185] 6.92 7.42 7 1.62
## difficulty[186] 6.87 7.42 6 1.61
## difficulty[187] 6.94 7.41 6 1.73
## difficulty[188] 7.65 8.10 6 1.69
## difficulty[189] 7.46 7.93 6 1.71
## difficulty[190] 5.74 6.20 8 1.53
## difficulty[191] 5.38 5.83 7 4.97
## difficulty[192] 7.81 8.31 7 1.66
## difficulty[193] 7.00 7.44 6 1.63
## difficulty[194] 6.61 7.19 6 1.67
## difficulty[195] 6.30 6.88 7 1.66
## difficulty[196] 6.71 7.27 6 1.61
## difficulty[197] 6.78 7.27 11 1.27
## difficulty[198] 7.34 7.90 6 1.71
## difficulty[199] 7.30 7.77 6 1.65
## difficulty[200] 8.11 8.54 6 1.62
## difficulty[201] 6.36 6.85 8 1.60
## difficulty[202] 5.72 6.23 7 1.59
## difficulty[203] 5.96 6.45 4 2.21
## difficulty[204] 7.91 8.39 6 1.72
## difficulty[205] 8.40 8.96 6 1.65
## difficulty[206] 6.63 7.15 7 1.68
## difficulty[207] 7.20 7.61 6 1.74
## difficulty[208] 7.01 7.54 7 1.55
## difficulty[209] 6.99 7.49 6 1.71
## difficulty[210] 9.37 9.87 7 1.64
## difficulty[211] 7.87 8.33 7 1.72
## difficulty[212] 6.47 7.00 7 1.60
## difficulty[213] 6.53 7.03 9 1.32
## difficulty[214] 6.96 7.57 6 1.65
## difficulty[215] 7.17 7.72 7 1.70
## difficulty[216] 7.56 8.07 5 1.81
## difficulty[217] 6.91 7.39 15 1.28
## difficulty[218] 8.09 8.74 6 1.73
## difficulty[219] 8.05 8.57 6 1.72
## difficulty[220] 8.31 8.74 6 1.66
## difficulty[221] 7.40 7.86 7 1.61
## difficulty[222] 7.84 8.33 6 1.87
## difficulty[223] 6.06 6.57 4 2.58
## difficulty[224] 8.39 8.94 6 1.71
## difficulty[225] 6.66 7.20 6 1.69
## difficulty[226] 7.96 8.48 7 1.64
## difficulty[227] 8.20 8.76 6 1.71
## difficulty[228] 7.10 7.60 2 11.43
## difficulty[229] 8.05 8.57 6 1.80
## difficulty[230] 8.36 8.91 5 1.71
## difficulty[231] 6.77 7.24 7 1.66
## difficulty[232] 7.93 8.40 6 1.71
## difficulty[233] 8.78 9.29 6 1.72
## difficulty[234] 6.31 6.75 6 1.61
## difficulty[235] 7.63 8.15 6 1.75
## difficulty[236] 7.50 8.06 6 1.69
## difficulty[237] 8.82 9.33 6 1.73
## difficulty[238] 8.85 9.30 6 1.70
## difficulty[239] 7.86 8.38 6 1.77
## difficulty[240] 7.41 7.97 7 1.68
## difficulty[241] 8.12 8.61 6 1.72
## difficulty[242] 7.82 8.37 6 1.78
## difficulty[243] 7.34 7.76 6 1.75
## difficulty[244] 8.46 8.89 6 1.77
## difficulty[245] 7.53 8.03 7 1.71
## difficulty[246] 7.69 8.14 6 1.71
## difficulty[247] 8.76 9.41 6 1.65
## difficulty[248] 8.09 8.62 5 1.76
## difficulty[249] 6.96 7.43 6 1.67
## difficulty[250] 6.31 6.83 2 9.94
## difficulty[251] 8.31 8.75 6 1.69
## difficulty[252] 6.73 7.25 15 1.25
## difficulty[253] 7.71 8.18 6 1.76
## difficulty[254] 6.71 7.17 16 1.24
## difficulty[255] 7.00 7.57 6 1.59
## difficulty[256] 7.14 7.69 16 1.25
## difficulty[257] 9.96 10.58 7 1.53
## difficulty[258] 7.64 8.14 6 1.67
## difficulty[259] 9.92 10.66 6 1.55
## difficulty[260] 7.65 8.13 6 1.73
## difficulty[261] 9.49 10.10 6 1.58
## difficulty[262] 7.40 7.90 6 1.74
## difficulty[263] 6.72 7.25 7 1.55
## difficulty[264] 6.45 6.99 6 1.66
## difficulty[265] 7.87 8.38 6 1.69
## difficulty[266] 9.56 9.99 7 1.65
## difficulty[267] 6.67 7.16 7 1.56
## difficulty[268] 8.03 8.56 7 1.71
## difficulty[269] 7.63 8.27 5 1.71
## difficulty[270] 8.14 8.71 5 1.78
## difficulty[271] 6.32 6.78 7 1.61
## difficulty[272] 8.25 8.75 6 1.81
## difficulty[273] 8.87 9.40 6 1.72
## difficulty[274] 8.60 9.13 6 1.72
## difficulty[275] 7.89 8.41 6 1.63
## difficulty[276] 7.60 8.19 6 1.66
## difficulty[277] 8.37 8.93 6 1.71
## difficulty[278] 8.49 9.00 6 1.76
## difficulty[279] 9.34 9.92 7 1.52
## difficulty[280] 9.15 9.64 7 1.61
## difficulty[281] 6.99 7.41 7 1.70
## difficulty[282] 8.08 8.64 6 1.62
## difficulty[283] 8.17 8.62 6 1.70
## difficulty[284] 7.53 8.03 7 1.55
## difficulty[285] 7.55 8.01 8 1.61
## difficulty[286] 7.96 8.41 6 1.78
## difficulty[287] 9.57 10.21 6 1.70
## difficulty[288] 8.02 8.54 7 1.67
## difficulty[289] 8.12 8.66 6 1.73
## difficulty[290] 7.55 8.07 7 1.64
## difficulty[291] 7.22 7.71 6 1.73
## difficulty[292] 7.92 8.45 6 1.68
## difficulty[293] 8.29 8.77 6 1.64
## difficulty[294] 8.42 9.10 6 1.78
## difficulty[295] 7.78 8.28 6 1.67
## difficulty[296] 8.31 8.82 7 1.66
## difficulty[297] 6.31 6.95 7 1.62
## difficulty[298] 9.36 9.91 7 1.57
## difficulty[299] 7.63 8.17 6 1.65
## difficulty[300] 8.67 9.17 7 1.66
## difficulty[301] 8.32 8.71 6 1.72
## difficulty[302] 8.57 9.20 5 1.73
## difficulty[303] 6.53 6.95 8 1.56
## difficulty[304] 7.35 7.85 6 1.65
## difficulty[305] 6.90 7.47 6 1.65
## difficulty[306] 7.13 7.65 6 1.68
## difficulty[307] 8.92 9.52 7 1.66
## difficulty[308] 8.61 9.02 6 1.72
## difficulty[309] 8.09 8.53 6 1.71
## difficulty[310] 8.47 9.02 6 1.65
## difficulty[311] 7.46 7.97 7 1.69
## difficulty[312] 7.11 7.67 6 1.69
## difficulty[313] 7.94 8.44 7 1.65
## difficulty[314] 8.63 9.13 7 1.73
## difficulty[315] 9.29 9.81 6 1.69
## difficulty[316] 6.98 7.54 6 1.75
## difficulty[317] 7.61 8.08 7 1.68
## difficulty[318] 9.46 9.97 6 1.65
## difficulty[319] 8.05 8.54 6 1.62
## difficulty[320] 7.27 7.79 6 1.65
## difficulty[321] 7.16 7.61 7 1.70
## difficulty[322] 6.36 6.77 8 1.70
## difficulty[323] 6.55 7.01 6 1.67
## difficulty[324] 8.20 8.66 6 1.74
## difficulty[325] 8.57 9.13 6 1.70
## difficulty[326] 9.88 10.47 7 1.58
## difficulty[327] 8.44 8.94 6 1.73
## difficulty[328] 9.48 10.08 6 1.68
## difficulty[329] 10.54 11.17 8 1.38
## difficulty[330] 9.67 10.31 7 1.58
## difficulty[331] 8.73 9.26 5 1.79
## difficulty[332] 8.87 9.34 7 1.61
## difficulty[333] 6.51 7.02 7 1.52
## difficulty[334] 7.19 7.73 6 1.59
## difficulty[335] 8.25 8.81 6 1.75
## difficulty[336] 6.26 6.64 8 1.60
## difficulty[337] 7.16 7.67 7 1.67
## difficulty[338] 7.96 8.46 6 1.83
## difficulty[339] 9.66 10.21 7 1.59
## difficulty[340] 8.13 8.61 6 1.75
## difficulty[341] 7.27 7.77 6 1.71
## difficulty[342] 7.42 8.01 5 1.72
## difficulty[343] 9.77 10.30 6 1.62
## difficulty[344] 7.25 7.74 6 1.66
## difficulty[345] 8.84 9.45 5 1.83
## difficulty[346] 7.64 8.09 6 1.77
## difficulty[347] 7.93 8.42 6 1.70
## difficulty[348] 5.03 5.61 12 1.24
## difficulty[349] 9.68 10.27 6 1.66
## difficulty[350] 7.62 8.18 6 1.73
## difficulty[351] 7.53 8.04 7 1.63
## difficulty[352] 7.86 8.38 8 1.64
## difficulty[353] 9.69 10.26 6 1.61
## difficulty[354] 8.40 8.90 6 1.67
## difficulty[355] 9.19 9.82 7 1.60
## difficulty[356] 3.46 4.24 18 1.25
## difficulty[357] 7.83 8.38 6 1.72
## difficulty[358] 8.64 9.19 6 1.66
## difficulty[359] 8.27 8.76 7 1.68
## difficulty[360] 7.50 8.03 6 1.79
## difficulty[361] 5.66 6.20 6 1.66
## difficulty[362] 5.99 6.46 7 1.71
## difficulty[363] 8.49 9.09 6 1.69
## difficulty[364] 9.20 9.70 6 1.67
## difficulty[365] 7.90 8.38 6 1.83
## difficulty[366] 2.99 4.03 5 2.20
## difficulty[367] 9.97 10.59 7 1.52
## difficulty[368] 6.69 7.21 6 1.66
## difficulty[369] 8.33 8.85 5 1.79
## difficulty[370] 9.68 10.32 7 1.66
## difficulty[371] 7.02 7.50 2 11.79
## difficulty[372] 8.81 9.43 6 1.67
## difficulty[373] 8.37 8.86 6 1.64
## difficulty[374] 8.71 9.18 6 1.73
## difficulty[375] 8.04 8.49 7 1.68
## difficulty[376] 5.54 5.99 7 1.55
## difficulty[377] 7.64 8.04 6 1.74
## difficulty[378] 4.40 5.07 3 3.02
## difficulty[379] 7.14 7.69 6 1.75
## difficulty[380] 7.54 8.07 6 1.76
## difficulty[381] 7.73 8.25 6 1.70
## difficulty[382] 7.77 8.20 6 1.75
## difficulty[383] 7.02 7.51 6 1.66
## difficulty[384] 5.68 6.21 32 1.11
## difficulty[385] 5.14 5.61 9 1.77
## difficulty[386] 7.50 7.98 6 1.73
## difficulty[387] 6.85 7.38 6 1.62
## difficulty[388] 5.62 6.10 8 1.74
## difficulty[389] 4.46 4.87 14 1.27
## difficulty[390] 7.72 8.17 7 1.69
## difficulty[391] 5.90 6.48 9 1.42
## difficulty[392] 5.94 6.44 2 9.84
## difficulty[393] 5.73 6.21 6 1.66
## difficulty[394] 8.04 8.45 6 1.72
## difficulty[395] 7.60 8.14 6 1.72
## difficulty[396] 8.34 8.95 6 1.65
## difficulty[397] 5.80 6.24 3 3.15
## difficulty[398] 7.79 8.34 6 1.61
## difficulty[399] 8.08 8.60 6 1.70
## difficulty[400] 5.63 6.07 9 1.39
## difficulty[401] 6.84 7.44 5 1.77
## difficulty[402] 7.44 7.86 6 1.79
## difficulty[403] 7.75 8.33 6 1.67
## difficulty[404] 8.20 8.71 6 1.74
## difficulty[405] 8.49 9.01 6 1.71
## difficulty[406] 8.22 8.64 6 1.68
## difficulty[407] 8.56 8.97 7 1.66
## difficulty[408] 7.98 8.50 6 1.67
## difficulty[409] 8.02 8.55 5 1.78
## difficulty[410] 8.48 8.97 5 1.80
## difficulty[411] 7.09 7.69 7 1.69
## difficulty[412] 7.52 7.97 2 11.05
## difficulty[413] 7.92 8.48 6 1.75
## difficulty[414] 7.61 8.21 7 1.66
## difficulty[415] 7.58 8.02 7 1.76
## difficulty[416] 8.52 9.15 6 1.69
## difficulty[417] 7.29 7.85 6 1.71
## difficulty[418] 8.28 8.84 6 1.88
## difficulty[419] 7.17 7.66 6 1.68
## difficulty[420] 7.88 8.43 6 1.66
## difficulty[421] 6.38 6.98 9 1.59
## difficulty[422] 7.68 8.22 6 1.62
## difficulty[423] 8.04 8.67 6 1.81
## difficulty[424] 8.14 8.81 6 1.72
## difficulty[425] 9.17 9.71 6 1.69
## difficulty[426] 6.14 6.58 13 1.32
## difficulty[427] 7.58 8.07 6 1.78
## difficulty[428] 8.30 8.81 7 1.75
## difficulty[429] 7.98 8.50 7 1.59
## difficulty[430] 8.77 9.24 6 1.67
## difficulty[431] 8.69 9.25 6 1.72
## difficulty[432] 7.73 8.22 7 1.70
## difficulty[433] 7.36 7.78 7 1.62
## difficulty[434] 8.04 8.51 6 1.75
## difficulty[435] 5.96 6.41 8 1.69
## difficulty[436] 9.88 10.44 6 1.63
## difficulty[437] 8.02 8.47 6 1.68
## difficulty[438] 8.09 8.51 7 1.59
## difficulty[439] 7.23 7.73 6 1.78
## difficulty[440] 7.78 8.31 7 1.77
## difficulty[441] 7.77 8.28 6 1.71
## difficulty[442] 7.85 8.39 6 1.71
## difficulty[443] 6.90 7.35 10 1.33
## difficulty[444] 8.23 8.78 6 1.71
## difficulty[445] 7.51 7.98 6 1.74
## difficulty[446] 7.44 7.89 6 1.68
## difficulty[447] 6.72 7.28 14 1.20
## difficulty[448] 7.93 8.45 6 1.70
## difficulty[449] 8.29 8.72 6 1.81
## difficulty[450] 7.98 8.55 6 1.66
## difficulty[451] 8.46 8.96 6 1.71
## difficulty[452] 7.36 7.84 14 1.23
## difficulty[453] 7.15 7.60 13 1.34
## difficulty[454] 8.04 8.58 6 1.71
## difficulty[455] 6.76 7.26 14 1.21
## difficulty[456] 8.53 9.07 6 1.69
## difficulty[457] 8.61 9.13 6 1.65
## difficulty[458] 6.82 7.36 6 1.65
## difficulty[459] 8.69 9.24 6 1.71
## difficulty[460] 9.78 10.38 6 1.67
## difficulty[461] 8.32 8.90 6 1.69
## difficulty[462] 7.65 8.15 6 1.71
## difficulty[463] 8.15 8.65 6 1.75
## difficulty[464] 7.24 7.73 5 1.75
## difficulty[465] 7.29 7.83 6 1.62
## difficulty[466] 9.49 10.02 6 1.69
## difficulty[467] 7.77 8.32 6 1.76
## difficulty[468] 8.24 8.78 7 1.71
## difficulty[469] 7.00 7.50 5 1.68
## difficulty[470] 8.10 8.61 5 1.71
## difficulty[471] 8.28 8.80 7 1.66
## difficulty[472] 8.57 9.12 6 1.74
## difficulty[473] 7.32 7.81 6 1.73
## difficulty[474] 6.75 7.34 6 1.79
## difficulty[475] 9.69 10.25 6 1.64
## difficulty[476] 6.92 7.35 6 1.67
## difficulty[477] 7.50 8.00 7 1.69
## difficulty[478] 8.19 8.73 6 1.69
## difficulty[479] 8.05 8.68 6 1.71
## difficulty[480] 7.88 8.42 7 1.65
## difficulty[481] 7.99 8.48 6 1.64
## difficulty[482] 7.99 8.46 6 1.76
## difficulty[483] 6.71 7.30 6 1.60
## difficulty[484] 7.86 8.41 7 1.73
## difficulty[485] 7.68 8.18 6 1.70
## difficulty[486] 7.27 7.78 6 1.76
## difficulty[487] 8.16 8.74 7 1.59
## difficulty[488] 7.88 8.38 5 1.68
## difficulty[489] 8.54 9.09 6 1.82
## difficulty[490] 9.18 9.77 6 1.71
## difficulty[491] 9.50 10.04 6 1.63
## difficulty[492] 7.53 8.04 6 1.78
## difficulty[493] 7.22 7.67 7 1.77
## difficulty[494] 7.79 8.35 7 1.59
## difficulty[495] 8.24 8.77 6 1.73
## difficulty[496] 8.25 8.82 6 1.69
## difficulty[497] 7.14 7.60 7 1.67
## difficulty[498] 7.50 8.02 6 1.68
## difficulty[499] 7.86 8.29 5 1.83
## difficulty[500] 8.04 8.42 7 1.62
## difficulty[501] 10.77 11.47 8 1.39
## difficulty[502] 7.41 7.98 6 1.74
## difficulty[503] 8.31 8.89 6 1.71
## difficulty[504] 6.04 6.56 8 1.60
## difficulty[505] 7.23 7.76 7 1.75
## difficulty[506] 8.08 8.62 6 1.71
## difficulty[507] 7.34 7.85 7 1.72
## difficulty[508] 8.41 9.04 6 1.69
## difficulty[509] 6.96 7.36 5 1.80
## difficulty[510] 8.19 8.70 6 1.68
## difficulty[511] 7.09 7.62 5 1.73
## difficulty[512] 7.54 8.00 6 1.70
## difficulty[513] 8.64 9.19 6 1.74
## difficulty[514] 8.00 8.54 6 1.69
## difficulty[515] 7.52 8.07 6 1.75
## difficulty[516] 6.40 6.92 6 1.57
## difficulty[517] 8.21 8.72 6 1.70
## difficulty[518] 8.32 8.95 6 1.75
## difficulty[519] 6.98 7.52 6 1.62
## difficulty[520] 7.91 8.43 5 1.84
## difficulty[521] 8.18 8.76 7 1.70
## difficulty[522] 8.08 8.48 6 1.74
## difficulty[523] 9.67 10.33 7 1.54
## difficulty[524] 8.71 9.20 7 1.67
## difficulty[525] 8.69 9.14 7 1.64
## difficulty[526] 8.34 8.87 6 1.68
## difficulty[527] 7.37 7.79 5 1.71
## difficulty[528] 8.02 8.53 6 1.70
## difficulty[529] 7.68 8.17 6 1.70
## difficulty[530] 8.60 9.11 6 1.72
## difficulty[531] 7.93 8.44 7 1.65
## difficulty[532] 8.00 8.51 6 1.74
## difficulty[533] 5.21 5.72 8 1.53
## difficulty[534] 7.59 8.18 6 1.67
## difficulty[535] 7.40 7.93 6 1.71
## difficulty[536] 9.43 9.94 7 1.57
## difficulty[537] 8.09 8.62 7 1.71
## difficulty[538] 9.16 9.74 6 1.64
## difficulty[539] 8.04 8.68 6 1.67
## difficulty[540] 8.80 9.27 6 1.75
## difficulty[541] 9.56 10.13 7 1.59
## difficulty[542] 8.54 9.13 7 1.61
## difficulty[543] 7.61 8.01 6 1.61
## difficulty[544] 9.15 9.68 7 1.73
## difficulty[545] 9.08 9.67 6 1.68
## difficulty[546] 7.77 8.28 5 1.80
## difficulty[547] 9.80 10.29 8 1.58
## difficulty[548] 7.01 7.53 6 1.65
## difficulty[549] 8.25 8.73 8 1.63
## difficulty[550] 7.81 8.27 6 1.61
## difficulty[551] 8.06 8.61 6 1.66
## difficulty[552] 8.19 8.72 6 1.66
## difficulty[553] 8.27 8.87 5 1.78
## difficulty[554] 8.02 8.51 6 1.61
## difficulty[555] 9.07 9.54 7 1.69
## difficulty[556] 7.76 8.28 7 1.63
## difficulty[557] 8.00 8.49 6 1.71
## difficulty[558] 7.43 7.89 7 1.72
## difficulty[559] 8.13 8.65 6 1.70
## difficulty[560] 9.40 10.18 6 1.70
## difficulty[561] 8.09 8.62 6 1.73
## difficulty[562] 6.94 7.44 6 1.79
## difficulty[563] 8.47 8.97 6 1.76
## difficulty[564] 8.63 9.17 7 1.64
## difficulty[565] 7.53 8.02 6 1.74
## difficulty[566] 6.87 7.42 6 1.67
## difficulty[567] 9.09 9.65 6 1.63
## difficulty[568] 9.83 10.52 7 1.50
## difficulty[569] 8.47 9.07 6 1.71
## difficulty[570] 8.51 9.00 6 1.67
## difficulty[571] 8.42 8.94 7 1.67
## difficulty[572] 7.48 7.92 6 1.71
## difficulty[573] 7.89 8.50 6 1.64
## difficulty[574] 9.59 10.23 6 1.73
## difficulty[575] 9.22 9.77 6 1.68
## difficulty[576] 8.90 9.40 7 1.64
## difficulty[577] 9.41 9.93 6 1.86
## difficulty[578] 9.90 10.48 7 1.63
## difficulty[579] 8.75 9.33 6 1.66
## difficulty[580] 9.28 9.85 7 1.64
## difficulty[581] 9.96 10.68 7 1.56
## difficulty[582] 9.28 9.87 6 1.68
## difficulty[583] 9.27 9.87 6 1.68
## difficulty[584] 7.72 8.19 7 1.58
## difficulty[585] 8.11 8.63 6 1.73
## difficulty[586] 6.68 7.15 6 1.70
## difficulty[587] 6.24 6.75 5 1.74
## difficulty[588] 7.61 8.01 6 1.73
## difficulty[589] 9.24 9.83 7 1.55
## difficulty[590] 9.67 10.35 7 1.53
## difficulty[591] 8.81 9.34 6 1.61
## difficulty[592] 7.26 7.76 7 1.72
## difficulty[593] 10.15 10.71 7 1.52
## difficulty[594] 9.42 9.98 6 1.76
## difficulty[595] 9.22 9.77 6 1.70
## difficulty[596] 9.66 10.27 6 1.68
## difficulty[597] 7.76 8.25 7 1.66
## difficulty[598] 9.18 9.79 7 1.67
## difficulty[599] 9.94 10.68 6 1.56
## difficulty[600] 9.39 9.98 8 1.55
## difficulty[601] 7.82 8.40 6 1.83
## difficulty[602] 8.90 9.47 6 1.59
## difficulty[603] 10.84 11.39 11 1.34
## difficulty[604] 9.70 10.36 6 1.66
## difficulty[605] 7.54 8.08 6 1.63
## difficulty[606] 9.64 10.06 7 1.56
## difficulty[607] 7.96 8.45 7 1.64
## difficulty[608] 9.87 10.50 6 1.59
## difficulty[609] 8.86 9.40 5 1.72
## difficulty[610] 8.71 9.26 6 1.71
## difficulty[611] 10.47 11.08 9 1.48
## difficulty[612] 10.46 10.87 7 1.58
## difficulty[613] 9.51 10.08 6 1.60
## difficulty[614] 8.76 9.24 7 1.71
## difficulty[615] 8.44 9.00 6 1.73
## difficulty[616] 8.15 8.62 5 1.81
## difficulty[617] 9.11 9.71 7 1.56
## difficulty[618] 10.10 10.68 7 1.56
## difficulty[619] 9.30 9.88 6 1.62
## difficulty[620] 6.34 6.81 7 1.68
## difficulty[621] 8.92 9.49 7 1.64
## difficulty[622] 7.70 8.18 6 1.75
## difficulty[623] 7.30 7.86 6 1.65
## difficulty[624] 10.04 10.71 6 1.47
## difficulty[625] 9.53 10.11 6 1.61
## difficulty[626] 9.74 10.31 7 1.54
## difficulty[627] 6.72 7.25 7 1.60
## difficulty[628] 6.84 7.38 7 1.60
## difficulty[629] 8.98 9.53 6 1.75
## difficulty[630] 7.12 7.63 7 1.57
## difficulty[631] 8.60 9.14 5 1.78
## difficulty[632] 8.00 8.54 7 1.65
## difficulty[633] 8.43 8.89 6 1.76
## difficulty[634] 8.13 8.73 5 1.68
## difficulty[635] 6.29 6.75 7 1.70
## difficulty[636] 8.78 9.40 7 1.71
## difficulty[637] 8.11 8.60 7 1.74
## difficulty[638] 8.08 8.53 7 1.70
## difficulty[639] 9.35 9.96 7 1.63
## difficulty[640] 10.90 11.70 7 1.40
## difficulty[641] 8.66 9.24 6 1.69
## difficulty[642] 9.29 9.87 6 1.67
## difficulty[643] 10.45 11.14 6 1.51
## difficulty[644] 9.76 10.43 8 1.63
## difficulty[645] 6.05 6.61 13 1.22
## difficulty[646] 9.37 9.87 7 1.65
## difficulty[647] 9.53 10.09 6 1.61
## difficulty[648] 8.86 9.40 6 1.69
## difficulty[649] 8.97 9.48 7 1.73
## difficulty[650] 9.22 9.86 5 1.76
## difficulty[651] 8.14 8.67 7 1.72
## difficulty[652] 8.55 9.17 7 1.63
## difficulty[653] 8.02 8.46 7 1.72
## difficulty[654] 9.14 9.75 6 1.60
## difficulty[655] 9.11 9.79 7 1.69
## difficulty[656] 9.53 10.12 7 1.63
## difficulty[657] 8.93 9.39 6 1.73
## difficulty[658] 10.41 10.98 8 1.53
## difficulty[659] 8.95 9.49 7 1.68
## difficulty[660] 7.70 8.18 6 1.64
## difficulty[661] 10.11 10.70 7 1.60
## difficulty[662] 8.08 8.56 5 1.73
## difficulty[663] 8.51 8.97 7 1.64
## difficulty[664] 9.32 9.81 6 1.61
## difficulty[665] 9.10 9.64 6 1.69
## difficulty[666] 8.51 9.05 6 1.71
## difficulty[667] 8.31 8.81 6 1.72
## difficulty[668] 8.65 9.15 7 1.70
## difficulty[669] 8.78 9.25 6 1.73
## difficulty[670] 7.59 8.11 7 1.62
## difficulty[671] 9.79 10.48 7 1.58
## difficulty[672] 10.22 10.83 9 1.49
## difficulty[673] 9.59 10.30 6 1.60
## difficulty[674] 10.86 11.43 11 1.42
## difficulty[675] 8.85 9.39 6 1.70
## difficulty[676] 8.89 9.48 6 1.69
## difficulty[677] 9.77 10.34 7 1.57
## difficulty[678] 10.38 11.00 9 1.44
## difficulty[679] 9.56 10.11 6 1.62
## difficulty[680] 10.04 10.63 6 1.69
## lp__ -29787.17 -29680.00 5 2.17
##
## Samples were drawn using NUTS(diag_e) at Wed Aug 5 10:00:09 2015.
## For each parameter, n_eff is a crude measure of effective sample size,
## and Rhat is the potential scale reduction factor on split chains (at
## convergence, Rhat=1).
Now re-merge.
coefs <- data.frame(summary(samps)$summary)
coefs$name <- rownames(coefs)
word_ids <- ws %>%
group_by(num_item_id) %>%
summarise(item = unique(item))
words <- coefs %>%
filter(str_detect(name, "difficulty")) %>%
separate(name, c("name", "num_item_id"), "\\[") %>%
mutate(num_item_id = as.numeric(str_replace(num_item_id, "]", ""))) %>%
left_join(word_ids) %>%
select(mean, se_mean, sd, item) %>%
arrange(mean) %>%
mutate(item = factor(item,
levels = item,
labels = item))
and plot again:
qplot(item, mean, data=words[1:50,]) +
theme(axis.text.x = element_text(angle = 90, hjust = 1))
So clearly this model is getting us something. The only worry is that it’s still so slow.
Let’s try rewriting it so it is more vectorized? Hard to do under current Stan infrastructure.
But we can do an age aggregation and use binomials. (Since we’re not fitting subjects).
mcmurray_binom <-'
data {
int<lower=1> W; // number of words
int<lower=1> A; // number of ages
int<lower=1> N; // number of datapoints (W*A)
vector[A] age; // subject ages
int produces[N]; // count data
int attempts[N]; // count data
}
parameters {
real<lower=0> mu_w; // word mean
real<lower=0> mu_s; // subject mean
real<lower=0> sigma_w; // word SD
real<lower=0> difficulty[W]; // word mean
}
model {
mu_w ~ normal(0, 10);
mu_s ~ normal(0, 10);
sigma_w ~ normal(0, 5);
difficulty ~ normal(mu_w, sigma_w);
for (a in 1:A)
for (w in 1:W)
produces[W*(a-1) + w] ~ binomial_logit(attempts[W*(a-1) + w], (mu_s * age[a]) - difficulty[w]);
}
'
Now run this with the full dataset. Interestingly, thinning is not recommended by many authors: see [http://doingbayesiandataanalysis.blogspot.ca/2011/11/thinning-to-reduce-autocorrelation.html]
n.words <- 680
complete <- ws %>%
group_by(data_id) %>%
summarize(complete = sum(!is.na(value)) == n.words) %>%
filter(complete)
model.data <- ws %>%
select(data_id, num_item_id, item, value, age) %>%
filter(data_id %in% complete$data_id) %>%
group_by(age, num_item_id) %>%
summarise(n = sum(value),
N = length(value))
ages <- unique(model.data$age)
dat <- list(age = ages,
produces = model.data$n,
attempts = model.data$N,
W = n.words,
A = length(ages),
N = n.words * length(ages))
ptm <- proc.time()
samps <- stan(model_code = mcmurray_binom,
cores = 4,
data = dat, iter = 300, warmup=100, thin=10, chains = 24,
pars = c("mu_w", "mu_s", "sigma_w", "difficulty"))
## COMPILING THE C++ CODE FOR MODEL '5ce82d8c94af70eb89782a919fbc669f' NOW.
proc.time() - ptm
## user system elapsed
## 32.402 2.807 204.931
Diagnostics.
traceplot(samps, pars = c('mu_w','mu_s','sigma_w'))
Success!
coefs <- data.frame(summary(samps)$summary)
coefs$name <- rownames(coefs)
word_ids <- ws %>%
group_by(num_item_id) %>%
summarise(item = unique(item))
words <- coefs %>%
filter(str_detect(name, "difficulty")) %>%
separate(name, c("name", "num_item_id"), "\\[") %>%
mutate(num_item_id = as.numeric(str_replace(num_item_id, "]", ""))) %>%
left_join(word_ids) %>%
select(mean, se_mean, sd, item) %>%
arrange(mean) %>%
mutate(item = factor(item,
levels = item,
labels = item))
and plot again:
qplot(mean, as.numeric(item),
geom = "point", data=words) +
geom_text(aes(x = mean + .2, label = item),
data = words[seq(1,680, 10),],
size = 2)
Check the histogram:
qplot(mean, geom = "blank", data = words) +
geom_histogram(aes(y = ..density..)) +
geom_density(col = "red")
What are the words with means below 1?
filter(words, mean < 1)
## mean se_mean sd item
## 1 0.07866137 0.02970395 0.04227042 daddy
## 2 0.08430639 0.03116399 0.04425437 mommy
## 3 0.10447006 0.01989400 0.02834735 ball
## 4 0.10484346 0.02664622 0.03800157 bye
## 5 0.12863741 0.02971150 0.04219324 uh_oh
## 6 0.13190844 0.03823441 0.05421208 no
## 7 0.13629563 0.05586900 0.07915484 book
## 8 0.13650146 0.03106074 0.04407932 dog
## 9 0.15771244 0.05563103 0.07887128 baby
## 10 0.16074499 0.05847588 0.08304233 hi
## 11 0.17849331 0.07511224 0.10746221 car
## 12 0.18017045 0.02596099 0.03767650 shoe
## 13 0.18602319 0.07130439 0.10204358 juice
## 14 0.18850008 0.07338718 0.10457646 eye
## 15 0.20954523 0.02196423 0.03199990 moo
## 16 0.21262604 0.04603872 0.06738063 bird
## 17 0.21585838 0.07554811 0.10759685 woof_woof
## 18 0.22250346 0.02982616 0.04342450 banana
## 19 0.24575384 0.02708712 0.04170806 duck
## 20 0.25068177 0.10549353 0.15214774 balloon
## 21 0.27378803 0.03022874 0.04759371 meow
## 22 0.29671951 0.11898750 0.17312928 baa_baa
## 23 0.31312457 0.09542164 0.14351618 nose
## 24 0.35050920 0.13096858 0.19123260 apple
## 25 0.35677276 0.13592624 0.19878051 milk
## 26 0.37641563 0.18093183 0.26568744 ouch
## 27 0.38399311 0.06002686 0.09711413 hot
## 28 0.40662639 0.14753957 0.22004622 cheese
## 29 0.40687269 0.15173097 0.22780143 nightnight
## 30 0.46467848 0.20734438 0.30986546 quack_quack
## 31 0.52822860 0.23399173 0.35907858 hat
## 32 0.57959851 0.25838279 0.39580834 kitty
## 33 0.58218936 0.24439748 0.41509839 grandma
## 34 0.63385357 0.26639390 0.46131911 grrr
## 35 0.65212596 0.23823529 0.43062827 cookie
## 36 0.67479705 0.27047432 0.46438231 ear
## 37 0.75866744 0.39814320 0.60867500 water.beverage
## 38 0.79949471 0.53812639 0.78697826 cup
## 39 0.95883248 0.78482962 1.11847386 bubbles
## 40 0.96265875 0.47192226 0.71488456 peekaboo
## 41 0.97274645 0.76826542 1.09251239 yes
## 42 0.97636252 0.52863052 0.77498290 owie