Multivariate Techniques

Department of Statistics

Ronald WESONGA (PhD)

FALL 2024

(2.4) Generalized variance

Area and Volume

Volume cont’d

Example

Given \[n=10,~~ S=\begin{bmatrix}25 & 6 & 3\\ 6 & 16 & 10 \\3 & 10 & 9 \end{bmatrix}\]

Find

  1. \(|S| = 992?\)
  2. Volume
  3. \(|R| = 0.276?\)

(2.5) Sample mean, covariance and correlation as matrix operations

\[\bar{x}_i=\frac{x_{1i}1+\cdots+x_{ni}1}{n}=\frac{y_i^{'}1}{n}\] \[\bar{x}=\begin{bmatrix}\bar{x}_1\\ \vdots \\ \bar{x}_p\end{bmatrix}=\begin{bmatrix}\frac{y_1^{'}1}{n}\\ \vdots \\ \frac{y_p^{'}1}{n}\end{bmatrix}\]

\[\bar{x}=\frac{1}{n}\begin{bmatrix} x_{11} & \cdots & x_{1n} \\ \vdots & \vdots & \vdots \\ x_{p1} & \cdots & x_{pn} \end{bmatrix} \begin{bmatrix} 1 \\ \vdots \\ 1 \end{bmatrix}\]

\[\bar{x} = \frac{1}{n} x^{'} 1\]

Matrix representation

Matrix of Means

\[1\bar{X}^{'}=\frac{1}{n}11^{'}X=\begin{bmatrix} \bar{X}_1 & \cdots & \bar{X}_p \\ \vdots & \ddots & \vdots\\ \bar{X}_1 & \cdots & \bar{X}_p \end{bmatrix}\]

Matrix of Deviations

\[1\bar{X}^{'}=\frac{1}{n}11^{'}X=\begin{bmatrix} X_{11}-\bar{X}_1 & \cdots & X_{1p}-\bar{X}_p \\ \vdots & \ddots & \vdots\\ X_{n1}-\bar{X}_1 & \cdots & X_{np}-\bar{X}_p \end{bmatrix}\]

cont’d

Matrix of SS and CP

\[(n-1)S = (X-\frac{1}{n}11^{'}X)^{'}(X-\frac{1}{n}11^{'}X)\] \[S = \frac{1}{n-1}X^{'}(I-\frac{1}{n}11^{'})X)\] \[S=D^{\frac{1}{2}}~~R~~ D^{\frac{1}{2}}\] \[R=D^{-\frac{1}{2}}~~S~~ D^{-\frac{1}{2}}\]

Sample values of linear combinations

Example

Let \[X=\begin{bmatrix}1 & 2 & 5 \\ 4 & 1 & 6 \\ 4 & 0 & 4 \end{bmatrix}\]

\[b^{'}X=2X_1+2X_2-X_3\] \[c^{'}X=X_1-X_2-3X_3\]

cont’d

Given,

Calculate

  1. Sample means for \(b^{'}X\) and \(c^{'}X\)
  2. Sample variances for \(b^{'}X\) and \(c^{'}X\)
  3. Sample covariance for \(b^{'}X\) and \(c^{'}X\)
  4. Interpret each.

(C3) Matrix Algebra and Random Vectors

Introduction

Vectors (1)

Vectors (2)

Vectors (3)

Matrices (1)

\[ X_{np} = \begin{bmatrix} x_{11} & \cdots & x_{1p} \\ \vdots & \ddots & \vdots \\ x_{n1} & \cdots & x_{np} \end{bmatrix}\]

Matrices (2)

Matrices (3)

Positive Definite Matrices (1)

Positive Definite Matrices (2)

A squareroot Matrix

Random Vectors and Matrices

Question 3.32

Given a random vector \(X^{'}=[X_1,X_2,X_3,X_4,X_5]\) with mean vector \(\mu^{'}=[2,4,-1, 3,0]\) and variance-covariance matrix \[\Sigma_X= \begin{bmatrix}4& -1& \frac{1}{2}& -\frac{1}{2} & 0\\-1&3&1&-1&0 \\ \frac{1}{2} &1&6&1&-1 \\ -\frac{1}{2}&-1&1&4&0 \\ 0&0&-\frac{1}{2}&0&2\end{bmatrix}\] Partition \[X=\begin{bmatrix} X_1 \\ X_2\\... \\ X_3 \\ X_4 \\ X_5\end{bmatrix}=\begin{bmatrix}X^{(1)}\\...\\X^{(2)} \end{bmatrix}\]

Question 3.32 Continued…

Let \[A=\begin{bmatrix}1 & -1\\1&1 \end{bmatrix}~~~B=\begin{bmatrix}1 & 1 & 1\\1&1&-2 \end{bmatrix}\] Suppose linear combinations \(AX^{(1)}, BX^{(2)}\)

Find the following

  1. \(E(X^{(1)})\)
  2. \(E(AX^{(1)})\)
  3. \(Cov(X^{(1)})\)
  4. \(Cov(AX^{(1)})\)
  5. \(E(X^{(2)})\)
  6. \(E(BX^{(2)})\)
  7. \(Cov(X^{(2)})\)
  8. \(Cov(BX^{(2)})\)
  9. \(Cov(X^{(1)}, X^{(2)})\)
  10. \(Cov(AX^{(1)}, BX^{(2)})\)