Path: /Volumes/BL-PSY-gunderson_lab/Main/Studies/2023_manynumbers/materials/mn_psychopy_task/mn_amstask_blocks
3 different spatial trial types resulting from combining equated and non equated dot size, surface area, and perimeter (e.g, perimeter_equated [1], surf_area_equated [2], and dot_size_equated [3]).
2 convex hull (ch) conditions (equated and non equated)
2 side conditions (left correct and right correct)
4 numerical ratios
These results in 48 trials, 16 trials per block
It is not possible to have the 6 trial types resulting from combining 3 spatial conditions x 2 convex hull conditions for each numerical ratio within a block, as only 4 trials for each numerical ratio are presented in a block.
For each numerical ratio, we followed these 3 criteria:
1 We decided to present at least the 3 spatial conditions + a repeated one (randomly selected).
2 In each block, there should be not duplicated trials when considering convex hull. For example, a balanced block could have 1-non_ch, 1-equated_ch, 2-non_ch, 3-equated_ch, BUT not 1-non_ch, 1-non_ch, 2-equated_ch, and 3-equated_ch, as this block would repeat 1-non_ch twice.
3 Blocks should be balanced by equated and non equated trials for
convex hull and left correct and right correct:
1 equated right, 1 equated left, 1 non equated right 1 non equated
left
This pivot table shows that there are not duplicated trials (see criterion 2). There should not be 2s in any block, except for the total row
This pivot table shows that left and right are balanced by side within each ratio and within each block (criterion 3)
Values between blocks are roughly similar
| Surface_Area | threefeat_num | block | N | ts_ratio | sd | se | ci |
|---|---|---|---|---|---|---|---|
| 0 | perimeter_equated | Block 1 | 6 | 0.4870017 | 0.1590036 | 0.0649130 | 0.1668641 |
| 0 | perimeter_equated | Block 2 | 5 | 0.4622875 | 0.1316163 | 0.0588606 | 0.1634233 |
| 0 | perimeter_equated | Block 3 | 5 | 0.4821948 | 0.1257707 | 0.0562464 | 0.1561649 |
| 0 | dot_size_equated | Block 1 | 6 | 2.2500000 | 0.5244044 | 0.2140872 | 0.5503287 |
| 0 | dot_size_equated | Block 2 | 5 | 2.1000000 | 0.6519202 | 0.2915476 | 0.8094659 |
| 0 | dot_size_equated | Block 3 | 5 | 2.4000000 | 0.6519202 | 0.2915476 | 0.8094659 |
| equated | surf_area_equated | Block 1 | 4 | 1.0000000 | 0.0000000 | 0.0000000 | 0.0000000 |
| equated | surf_area_equated | Block 2 | 6 | 1.0000000 | 0.0000000 | 0.0000000 | 0.0000000 |
| equated | surf_area_equated | Block 3 | 6 | 1.0000000 | 0.0000000 | 0.0000000 | 0.0000000 |
| Perimeter | threefeat_num | block | N | cont_ratio | sd | se | ci |
|---|---|---|---|---|---|---|---|
| 0 | surf_area_equated | Block 1 | 4 | 1.485558 | 0.2112315 | 0.1056157 | 0.3361164 |
| 0 | surf_area_equated | Block 2 | 6 | 1.519633 | 0.2043458 | 0.0834238 | 0.2144477 |
| 0 | surf_area_equated | Block 3 | 6 | 1.455395 | 0.2076125 | 0.0847574 | 0.2178760 |
| 0 | dot_size_equated | Block 1 | 6 | 2.245375 | 0.5163093 | 0.2107824 | 0.5418334 |
| 0 | dot_size_equated | Block 2 | 5 | 2.099710 | 0.6510987 | 0.2911802 | 0.8084458 |
| 0 | dot_size_equated | Block 3 | 5 | 2.394582 | 0.6487963 | 0.2901505 | 0.8055870 |
| equated | perimeter_equated | Block 1 | 6 | 1.000000 | 0.0000000 | 0.0000000 | 0.0000000 |
| equated | perimeter_equated | Block 2 | 5 | 1.000000 | 0.0000000 | 0.0000000 | 0.0000000 |
| equated | perimeter_equated | Block 3 | 5 | 1.000000 | 0.0000000 | 0.0000000 | 0.0000000 |
| Avg_Dot_Size | threefeat_num | block | N | diam_ratio | sd | se | ci |
|---|---|---|---|---|---|---|---|
| 0 | perimeter_equated | Block 1 | 6 | 0.4857957 | 0.1555287 | 0.0634943 | 0.1632174 |
| 0 | perimeter_equated | Block 2 | 5 | 0.4647109 | 0.1351699 | 0.0604498 | 0.1678356 |
| 0 | perimeter_equated | Block 3 | 5 | 0.4720571 | 0.1219075 | 0.0545187 | 0.1513681 |
| 0 | surf_area_equated | Block 1 | 4 | 0.6708575 | 0.0908683 | 0.0454341 | 0.1445917 |
| 0 | surf_area_equated | Block 2 | 6 | 0.6668499 | 0.0915880 | 0.0373906 | 0.0961157 |
| 0 | surf_area_equated | Block 3 | 6 | 0.6984359 | 0.0952658 | 0.0388921 | 0.0999753 |
| equated | dot_size_equated | Block 1 | 6 | 1.0000000 | 0.0000000 | 0.0000000 | 0.0000000 |
| equated | dot_size_equated | Block 2 | 5 | 1.0000000 | 0.0000000 | 0.0000000 | 0.0000000 |
| equated | dot_size_equated | Block 3 | 5 | 1.0000000 | 0.0000000 | 0.0000000 | 0.0000000 |
| Convex_Hull | numRatio | block | N | ch_ratio | sd | se | ci |
|---|---|---|---|---|---|---|---|
| 0 | 1.5 | Block 1 | 2 | 1.0361673 | 0.0213754 | 0.0151147 | 0.1920506 |
| 0 | 1.5 | Block 2 | 2 | 1.1218331 | 0.1491142 | 0.1054396 | 1.3397377 |
| 0 | 1.5 | Block 3 | 2 | 1.1204861 | 0.1389661 | 0.0982639 | 1.2485611 |
| 0 | 2.0 | Block 1 | 2 | 1.2134755 | 0.0763199 | 0.0539663 | 0.6857072 |
| 0 | 2.0 | Block 2 | 2 | 1.0622519 | 0.1916971 | 0.1355503 | 1.7223300 |
| 0 | 2.0 | Block 3 | 2 | 1.2507815 | 0.0433537 | 0.0306557 | 0.3895172 |
| 0 | 2.5 | Block 1 | 2 | 1.0251208 | 0.0901817 | 0.0637681 | 0.8102507 |
| 0 | 2.5 | Block 2 | 2 | 1.1052550 | 0.0959146 | 0.0678219 | 0.8617587 |
| 0 | 2.5 | Block 3 | 2 | 1.1968560 | 0.2281876 | 0.1613530 | 2.0501842 |
| 0 | 3.0 | Block 1 | 2 | 1.1762620 | 0.3324611 | 0.2350855 | 2.9870448 |
| 0 | 3.0 | Block 2 | 2 | 1.0627040 | 0.0817103 | 0.0577779 | 0.7341379 |
| 0 | 3.0 | Block 3 | 2 | 1.3605877 | 0.2080373 | 0.1471046 | 1.8691409 |
| equated | 1.5 | Block 1 | 2 | 1.0000236 | 0.0002631 | 0.0001861 | 0.0023643 |
| equated | 1.5 | Block 2 | 2 | 1.0002090 | 0.0002956 | 0.0002090 | 0.0026558 |
| equated | 1.5 | Block 3 | 2 | 1.0000000 | 0.0000000 | 0.0000000 | 0.0000000 |
| equated | 2.0 | Block 1 | 2 | 0.9966185 | 0.0044610 | 0.0031544 | 0.0400808 |
| equated | 2.0 | Block 2 | 2 | 1.0000377 | 0.0000533 | 0.0000377 | 0.0004788 |
| equated | 2.0 | Block 3 | 2 | 1.0003913 | 0.0005261 | 0.0003720 | 0.0047270 |
| equated | 2.5 | Block 1 | 2 | 1.0000000 | 0.0000000 | 0.0000000 | 0.0000000 |
| equated | 2.5 | Block 2 | 2 | 1.0002474 | 0.0005274 | 0.0003729 | 0.0047381 |
| equated | 2.5 | Block 3 | 2 | 0.9998243 | 0.0001421 | 0.0001005 | 0.0012765 |
| equated | 3.0 | Block 1 | 2 | 1.0000000 | 0.0000000 | 0.0000000 | 0.0000000 |
| equated | 3.0 | Block 2 | 2 | 0.9995685 | 0.0000513 | 0.0000363 | 0.0004607 |
| equated | 3.0 | Block 3 | 2 | 1.0000000 | 0.0000000 | 0.0000000 | 0.0000000 |
## # A tibble: 2 × 6
## Surface_Area ts_ratio_mean ts_ratio_sd ts_ratio_min ts_ratio_max
## <chr> <dbl> <dbl> <dbl> <dbl>
## 1 0 1.36 0.990 0.332 3
## 2 equated 1 0 1 1
## # ℹ 1 more variable: ts_ratio_median <dbl>
## # A tibble: 2 × 6
## Perimeter cont_ratio_mean cont_ratio_sd cont_ratio_min cont_ratio_max
## <chr> <dbl> <dbl> <dbl> <dbl>
## 1 0 1.87 0.571 1.22 3.00
## 2 equated 1 0 1 1
## # ℹ 1 more variable: cont_ratio_median <dbl>
## # A tibble: 2 × 6
## Avg_Dot_Size diam_ratio_mean diam_ratio_sd diam_ratio_min diam_ratio_max
## <chr> <dbl> <dbl> <dbl> <dbl>
## 1 0 0.577 0.151 0.327 0.824
## 2 equated 1 0 1 1
## # ℹ 1 more variable: diam_ratio_median <dbl>
## # A tibble: 2 × 6
## Convex_Hull ch_ratio_mean ch_ratio_sd ch_ratio_min ch_ratio_max
## <chr> <dbl> <dbl> <dbl> <dbl>
## 1 0 1.14 0.152 0.927 1.51
## 2 equated 1.00 0.00137 0.993 1.00
## # ℹ 1 more variable: ch_ratio_median <dbl>
There are weak correlations between numerical ratio and convex hull and surface area, but moderate between perimeter (cont_ratio) and dot size (diam_ratio)
##
## Pearson's product-moment correlation
##
## data: trials$numRatio and trials$ch_ratio
## t = 0.76104, df = 46, p-value = 0.4505
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## -0.1782742 0.3834931
## sample estimates:
## cor
## 0.1115088
##
## Pearson's product-moment correlation
##
## data: trials$numRatio and trials$ts_ratio
## t = 1.2251, df = 46, p-value = 0.2268
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## -0.1120413 0.4396805
## sample estimates:
## cor
## 0.1777521
##
## Pearson's product-moment correlation
##
## data: trials$numRatio and trials$cont_ratio
## t = 2.9892, df = 46, p-value = 0.004479
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## 0.1345886 0.6167597
## sample estimates:
## cor
## 0.4033006
##
## Pearson's product-moment correlation
##
## data: trials$numRatio and trials$diam_ratio
## t = -2.0989, df = 46, p-value = 0.04135
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## -0.53483794 -0.01254809
## sample estimates:
## cor
## -0.2956288
## Warning: A numeric `legend.position` argument in `theme()` was deprecated in ggplot2
## 3.5.0.
## ℹ Please use the `legend.position.inside` argument of `theme()` instead.
## This warning is displayed once every 8 hours.
## Call `lifecycle::last_lifecycle_warnings()` to see where this warning was
## generated.
## `geom_smooth()` using formula = 'y ~ x'
## `geom_smooth()` using formula = 'y ~ x'
## `geom_smooth()` using formula = 'y ~ x'
## `geom_smooth()` using formula = 'y ~ x'
This pivot table shows that there are not duplicated trials (see criterion 2). There should not be 2s in any block, except for the total row
This pivot table shows that left and right are balanced by side within each ratio and within each block (criterion 3)
Values between blocks are roughly similar
| Surface_Area | threefeat_num | block | N | ts_ratio | sd | se | ci |
|---|---|---|---|---|---|---|---|
| 0 | perimeter_equated | Block 1 | 4 | 0.5915147 | 0.1748875 | 0.0874437 | 0.2782850 |
| 0 | perimeter_equated | Block 2 | 5 | 0.5732915 | 0.1545943 | 0.0691367 | 0.1919542 |
| 0 | perimeter_equated | Block 3 | 7 | 0.6063682 | 0.1733434 | 0.0655176 | 0.1603159 |
| 0 | dot_size_equated | Block 1 | 6 | 1.6666667 | 0.4915960 | 0.2006932 | 0.5158984 |
| 0 | dot_size_equated | Block 2 | 5 | 1.9500000 | 0.5700877 | 0.2549510 | 0.7078574 |
| 0 | dot_size_equated | Block 3 | 5 | 1.8500000 | 0.4873397 | 0.2179449 | 0.6051122 |
| equated | surf_area_equated | Block 1 | 6 | 1.0000000 | 0.0000000 | 0.0000000 | 0.0000000 |
| equated | surf_area_equated | Block 2 | 6 | 1.0000000 | 0.0000000 | 0.0000000 | 0.0000000 |
| equated | surf_area_equated | Block 3 | 4 | 1.0000000 | 0.0000000 | 0.0000000 | 0.0000000 |
| Perimeter | threefeat_num | block | N | cont_ratio | sd | se | ci |
|---|---|---|---|---|---|---|---|
| 0 | surf_area_equated | Block 1 | 6 | 1.386794 | 0.1879951 | 0.0767487 | 0.1972887 |
| 0 | surf_area_equated | Block 2 | 6 | 1.281919 | 0.1839883 | 0.0751129 | 0.1930839 |
| 0 | surf_area_equated | Block 3 | 4 | 1.335546 | 0.2005059 | 0.1002530 | 0.3190497 |
| 0 | dot_size_equated | Block 1 | 6 | 1.665770 | 0.4915435 | 0.2006718 | 0.5158433 |
| 0 | dot_size_equated | Block 2 | 5 | 1.947637 | 0.5665855 | 0.2533848 | 0.7035088 |
| 0 | dot_size_equated | Block 3 | 5 | 1.851074 | 0.4903520 | 0.2192921 | 0.6088524 |
| equated | perimeter_equated | Block 1 | 4 | 1.000000 | 0.0000000 | 0.0000000 | 0.0000000 |
| equated | perimeter_equated | Block 2 | 5 | 1.000000 | 0.0000000 | 0.0000000 | 0.0000000 |
| equated | perimeter_equated | Block 3 | 7 | 1.000000 | 0.0000000 | 0.0000000 | 0.0000000 |
| Avg_Dot_Size | threefeat_num | block | N | diam_ratio | sd | se | ci |
|---|---|---|---|---|---|---|---|
| 0 | perimeter_equated | Block 1 | 4 | 0.5965074 | 0.1880116 | 0.0940058 | 0.2991684 |
| 0 | perimeter_equated | Block 2 | 5 | 0.5774547 | 0.1619330 | 0.0724186 | 0.2010663 |
| 0 | perimeter_equated | Block 3 | 7 | 0.6009113 | 0.1740842 | 0.0657976 | 0.1610010 |
| 0 | surf_area_equated | Block 1 | 6 | 0.7302612 | 0.1212461 | 0.0494985 | 0.1272400 |
| 0 | surf_area_equated | Block 2 | 6 | 0.7949973 | 0.1002257 | 0.0409170 | 0.1051805 |
| 0 | surf_area_equated | Block 3 | 4 | 0.7488566 | 0.1225625 | 0.0612812 | 0.1950243 |
| equated | dot_size_equated | Block 1 | 6 | 1.0000000 | 0.0000000 | 0.0000000 | 0.0000000 |
| equated | dot_size_equated | Block 2 | 5 | 1.0000000 | 0.0000000 | 0.0000000 | 0.0000000 |
| equated | dot_size_equated | Block 3 | 5 | 1.0000000 | 0.0000000 | 0.0000000 | 0.0000000 |
| Convex_Hull | numRatio | block | N | ch_ratio | sd | se | ci |
|---|---|---|---|---|---|---|---|
| 0 | 1.25 | Block 1 | 2 | 1.0080985 | 0.1010412 | 0.0714469 | 0.9078194 |
| 0 | 1.25 | Block 2 | 2 | 1.1080679 | 0.0425023 | 0.0300537 | 0.3818682 |
| 0 | 1.25 | Block 3 | 2 | 1.1033307 | 0.1386093 | 0.0980116 | 1.2453550 |
| 0 | 1.50 | Block 1 | 2 | 1.0386760 | 0.0937090 | 0.0662622 | 0.8419416 |
| 0 | 1.50 | Block 2 | 2 | 0.8106436 | 0.0857630 | 0.0606436 | 0.7705495 |
| 0 | 1.50 | Block 3 | 2 | 0.9698836 | 0.0216914 | 0.0153381 | 0.1948892 |
| 0 | 2.00 | Block 1 | 2 | 1.0785958 | 0.0920403 | 0.0650823 | 0.8269493 |
| 0 | 2.00 | Block 2 | 2 | 1.1083766 | 0.1956941 | 0.1383766 | 1.7582417 |
| 0 | 2.00 | Block 3 | 2 | 1.0225569 | 0.2833160 | 0.2003347 | 2.5454934 |
| 0 | 2.50 | Block 1 | 2 | 1.4153646 | 0.1749353 | 0.1236979 | 1.5717311 |
| 0 | 2.50 | Block 2 | 2 | 1.1736598 | 0.1361589 | 0.0962788 | 1.2233388 |
| 0 | 2.50 | Block 3 | 2 | 1.2298851 | 0.1462980 | 0.1034483 | 1.3144350 |
| equated | 1.25 | Block 1 | 2 | 0.9999331 | 0.0006157 | 0.0004354 | 0.0055318 |
| equated | 1.25 | Block 2 | 2 | 1.0002404 | 0.0005157 | 0.0003647 | 0.0046335 |
| equated | 1.25 | Block 3 | 2 | 1.0000898 | 0.0001270 | 0.0000898 | 0.0011413 |
| equated | 1.50 | Block 1 | 2 | 1.0000235 | 0.0000333 | 0.0000235 | 0.0002988 |
| equated | 1.50 | Block 2 | 2 | 1.0000248 | 0.0000351 | 0.0000248 | 0.0003155 |
| equated | 1.50 | Block 3 | 2 | 0.9997887 | 0.0002988 | 0.0002113 | 0.0026842 |
| equated | 2.00 | Block 1 | 2 | 1.0000355 | 0.0000502 | 0.0000355 | 0.0004510 |
| equated | 2.00 | Block 2 | 2 | 0.9995051 | 0.0000314 | 0.0000222 | 0.0002824 |
| equated | 2.00 | Block 3 | 2 | 1.0003577 | 0.0005058 | 0.0003577 | 0.0045446 |
| equated | 2.50 | Block 1 | 2 | 1.0001601 | 0.0002264 | 0.0001601 | 0.0020342 |
| equated | 2.50 | Block 2 | 2 | 1.0001016 | 0.0001436 | 0.0001016 | 0.0012903 |
| equated | 2.50 | Block 3 | 2 | 0.9997024 | 0.0004209 | 0.0002976 | 0.0037813 |
## # A tibble: 2 × 6
## Surface_Area ts_ratio_mean ts_ratio_sd ts_ratio_min ts_ratio_max
## <chr> <dbl> <dbl> <dbl> <dbl>
## 1 0 1.20 0.718 0.397 2.5
## 2 equated 1 0 1 1
## # ℹ 1 more variable: ts_ratio_median <dbl>
## # A tibble: 2 × 6
## Perimeter cont_ratio_mean cont_ratio_sd cont_ratio_min cont_ratio_max
## <chr> <dbl> <dbl> <dbl> <dbl>
## 1 0 1.57 0.440 1.11 2.51
## 2 equated 1 0 1 1
## # ℹ 1 more variable: cont_ratio_median <dbl>
## # A tibble: 2 × 6
## Avg_Dot_Size diam_ratio_mean diam_ratio_sd diam_ratio_min diam_ratio_max
## <chr> <dbl> <dbl> <dbl> <dbl>
## 1 0 0.676 0.161 0.393 0.938
## 2 equated 1 0 1 1
## # ℹ 1 more variable: diam_ratio_median <dbl>
## # A tibble: 2 × 6
## Convex_Hull ch_ratio_mean ch_ratio_sd ch_ratio_min ch_ratio_max
## <chr> <dbl> <dbl> <dbl> <dbl>
## 1 0 1.09 0.178 0.75 1.54
## 2 equated 1.00 0.000329 0.999 1.00
## # ℹ 1 more variable: ch_ratio_median <dbl>
There are weak correlations between numerical ratio and convex hull and surface area, but moderate between perimeter (cont_ratio) and dot size (diam_ratio)
##
## Pearson's product-moment correlation
##
## data: trials$numRatio and trials$ch_ratio
## t = 2.579, df = 46, p-value = 0.01317
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## 0.07929453 0.58089317
## sample estimates:
## cor
## 0.3554215
##
## Pearson's product-moment correlation
##
## data: trials$numRatio and trials$ts_ratio
## t = 1.3015, df = 46, p-value = 0.1996
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## -0.1010902 0.4485724
## sample estimates:
## cor
## 0.1884576
##
## Pearson's product-moment correlation
##
## data: trials$numRatio and trials$cont_ratio
## t = 3.827, df = 46, p-value = 0.0003898
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## 0.2409308 0.6805353
## sample estimates:
## cor
## 0.4914242
##
## Pearson's product-moment correlation
##
## data: trials$numRatio and trials$diam_ratio
## t = -3.2162, df = 46, p-value = 0.00238
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## -0.6352613 -0.1643361
## sample estimates:
## cor
## -0.4284643
## `geom_smooth()` using formula = 'y ~ x'
## `geom_smooth()` using formula = 'y ~ x'
## `geom_smooth()` using formula = 'y ~ x'
## `geom_smooth()` using formula = 'y ~ x'
This pivot table shows that there are not duplicated trials (see criterion 2). There should not be 2s in any block, except for the total row
This pivot table shows that left and right are balanced by side within each ratio and within each block (criterion 3)
Values between blocks are roughly similar
| Surface_Area | threefeat_num | block | N | ts_ratio | sd | se | ci |
|---|---|---|---|---|---|---|---|
| 0 | perimeter_equated | Block 1 | 5 | 0.6960457 | 0.1364216 | 0.0610096 | 0.1693898 |
| 0 | perimeter_equated | Block 2 | 6 | 0.6879983 | 0.1585332 | 0.0647209 | 0.1663704 |
| 0 | perimeter_equated | Block 3 | 5 | 0.7291996 | 0.1514249 | 0.0677193 | 0.1880189 |
| 0 | dot_size_equated | Block 1 | 4 | 1.4791667 | 0.3750000 | 0.1875000 | 0.5967087 |
| 0 | dot_size_equated | Block 2 | 6 | 1.4321800 | 0.3165587 | 0.1292345 | 0.3322080 |
| 0 | dot_size_equated | Block 3 | 6 | 1.5294118 | 0.3806523 | 0.1554007 | 0.3994701 |
| equated | surf_area_equated | Block 1 | 7 | 1.0000000 | 0.0000000 | 0.0000000 | 0.0000000 |
| equated | surf_area_equated | Block 2 | 4 | 1.0000000 | 0.0000000 | 0.0000000 | 0.0000000 |
| equated | surf_area_equated | Block 3 | 5 | 1.0000000 | 0.0000000 | 0.0000000 | 0.0000000 |
| Perimeter | threefeat_num | block | N | cont_ratio | sd | se | ci |
|---|---|---|---|---|---|---|---|
| 0 | surf_area_equated | Block 1 | 7 | 1.210772 | 0.1462943 | 0.0552940 | 0.1352996 |
| 0 | surf_area_equated | Block 2 | 4 | 1.210699 | 0.1538857 | 0.0769429 | 0.2448665 |
| 0 | surf_area_equated | Block 3 | 5 | 1.209676 | 0.1280824 | 0.0572802 | 0.1590353 |
| 0 | dot_size_equated | Block 1 | 4 | 1.481770 | 0.3792876 | 0.1896438 | 0.6035312 |
| 0 | dot_size_equated | Block 2 | 6 | 1.432343 | 0.3134727 | 0.1279747 | 0.3289694 |
| 0 | dot_size_equated | Block 3 | 6 | 1.527121 | 0.3838672 | 0.1567131 | 0.4028439 |
| equated | perimeter_equated | Block 1 | 5 | 1.000000 | 0.0000000 | 0.0000000 | 0.0000000 |
| equated | perimeter_equated | Block 2 | 6 | 1.000000 | 0.0000000 | 0.0000000 | 0.0000000 |
| equated | perimeter_equated | Block 3 | 5 | 1.000000 | 0.0000000 | 0.0000000 | 0.0000000 |
| Avg_Dot_Size | threefeat_num | block | N | diam_ratio | sd | se | ci |
|---|---|---|---|---|---|---|---|
| 0 | perimeter_equated | Block 1 | 5 | 0.6961677 | 0.1207576 | 0.0540044 | 0.1499404 |
| 0 | perimeter_equated | Block 2 | 6 | 0.6881884 | 0.1626055 | 0.0663834 | 0.1706440 |
| 0 | perimeter_equated | Block 3 | 5 | 0.7360039 | 0.1482116 | 0.0662822 | 0.1840290 |
| 0 | surf_area_equated | Block 1 | 7 | 0.8491564 | 0.1071139 | 0.0404853 | 0.0990638 |
| 0 | surf_area_equated | Block 2 | 4 | 0.8276720 | 0.0895263 | 0.0447631 | 0.1424562 |
| 0 | surf_area_equated | Block 3 | 5 | 0.8390951 | 0.0945888 | 0.0423014 | 0.1174475 |
| equated | dot_size_equated | Block 1 | 4 | 1.0000000 | 0.0000000 | 0.0000000 | 0.0000000 |
| equated | dot_size_equated | Block 2 | 6 | 1.0000000 | 0.0000000 | 0.0000000 | 0.0000000 |
| equated | dot_size_equated | Block 3 | 6 | 1.0000000 | 0.0000000 | 0.0000000 | 0.0000000 |
| Convex_Hull | numRatio | block | N | ch_ratio | sd | se | ci |
|---|---|---|---|---|---|---|---|
| 0 | 1.17 | Block 1 | 2 | 1.1458028 | 0.1022110 | 0.0722741 | 0.9183291 |
| 0 | 1.17 | Block 2 | 2 | 1.0411961 | 0.0552888 | 0.0390951 | 0.4967499 |
| 0 | 1.17 | Block 3 | 2 | 1.1344989 | 0.0321832 | 0.0227569 | 0.2891542 |
| 0 | 1.25 | Block 1 | 2 | 0.9353226 | 0.0948770 | 0.0670882 | 0.8524364 |
| 0 | 1.25 | Block 2 | 2 | 0.9614341 | 0.0584632 | 0.0413397 | 0.5252707 |
| 0 | 1.25 | Block 3 | 2 | 1.1053120 | 0.2533626 | 0.1791544 | 2.2763726 |
| 0 | 1.50 | Block 1 | 2 | 1.2020843 | 0.0575542 | 0.0406969 | 0.5171037 |
| 0 | 1.50 | Block 2 | 2 | 0.9477903 | 0.0223520 | 0.0158052 | 0.2008243 |
| 0 | 1.50 | Block 3 | 2 | 1.1044432 | 0.1324961 | 0.0936889 | 1.1904299 |
| 0 | 2.00 | Block 1 | 2 | 1.0594021 | 0.0474557 | 0.0335563 | 0.4263726 |
| 0 | 2.00 | Block 2 | 2 | 0.9858172 | 0.1273336 | 0.0900385 | 1.1440470 |
| 0 | 2.00 | Block 3 | 2 | 1.5845542 | 0.5777303 | 0.4085170 | 5.1907009 |
| equated | 1.17 | Block 1 | 2 | 0.9997531 | 0.0000958 | 0.0000678 | 0.0008610 |
| equated | 1.17 | Block 2 | 2 | 1.0001517 | 0.0005421 | 0.0003833 | 0.0048709 |
| equated | 1.17 | Block 3 | 2 | 1.0003244 | 0.0004588 | 0.0003244 | 0.0041219 |
| equated | 1.25 | Block 1 | 2 | 0.9996477 | 0.0004605 | 0.0003256 | 0.0041374 |
| equated | 1.25 | Block 2 | 2 | 1.0001167 | 0.0002686 | 0.0001900 | 0.0024136 |
| equated | 1.25 | Block 3 | 2 | 1.0002204 | 0.0004195 | 0.0002966 | 0.0037690 |
| equated | 1.50 | Block 1 | 2 | 0.9999812 | 0.0006313 | 0.0004464 | 0.0056723 |
| equated | 1.50 | Block 2 | 2 | 0.9996234 | 0.0000019 | 0.0000013 | 0.0000170 |
| equated | 1.50 | Block 3 | 2 | 0.9998978 | 0.0003207 | 0.0002268 | 0.0028812 |
| equated | 2.00 | Block 1 | 2 | 0.9997917 | 0.0000628 | 0.0000444 | 0.0005644 |
| equated | 2.00 | Block 2 | 2 | 0.9999457 | 0.0004340 | 0.0003069 | 0.0038996 |
| equated | 2.00 | Block 3 | 2 | 0.9999023 | 0.0002217 | 0.0001568 | 0.0019922 |
## # A tibble: 2 × 6
## Surface_Area ts_ratio_mean ts_ratio_sd ts_ratio_min ts_ratio_max
## <chr> <dbl> <dbl> <dbl> <dbl>
## 1 0 1.09 0.468 0.498 2
## 2 equated 1 0 1 1
## # ℹ 1 more variable: ts_ratio_median <dbl>
## # A tibble: 2 × 6
## Perimeter cont_ratio_mean cont_ratio_sd cont_ratio_min cont_ratio_max
## <chr> <dbl> <dbl> <dbl> <dbl>
## 1 0 1.35 0.286 1.08 2.01
## 2 equated 1 0 1 1
## # ℹ 1 more variable: cont_ratio_median <dbl>
## # A tibble: 2 × 6
## Avg_Dot_Size diam_ratio_mean diam_ratio_sd diam_ratio_min diam_ratio_max
## <chr> <dbl> <dbl> <dbl> <dbl>
## 1 0 0.773 0.135 0.5 0.947
## 2 equated 1 0 1 1
## # ℹ 1 more variable: diam_ratio_median <dbl>
## # A tibble: 2 × 6
## Convex_Hull ch_ratio_mean ch_ratio_sd ch_ratio_min ch_ratio_max
## <chr> <dbl> <dbl> <dbl> <dbl>
## 1 0 1.10 0.222 0.868 1.99
## 2 equated 1.00 0.000350 0.999 1.00
## # ℹ 1 more variable: ch_ratio_median <dbl>
There are weak correlations between numerical ratio and convex hull and surface area, but moderate between perimeter (cont_ratio) and dot size (diam_ratio)
##
## Pearson's product-moment correlation
##
## data: trials$numRatio and trials$ch_ratio
## t = 1.2724, df = 46, p-value = 0.2096
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## -0.1052593 0.4452001
## sample estimates:
## cor
## 0.1843901
##
## Pearson's product-moment correlation
##
## data: trials$numRatio and trials$ts_ratio
## t = 1.1427, df = 46, p-value = 0.2591
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## -0.1238455 0.4299732
## sample estimates:
## cor
## 0.1661353
##
## Pearson's product-moment correlation
##
## data: trials$numRatio and trials$cont_ratio
## t = 4.3119, df = 46, p-value = 8.468e-05
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## 0.2977620 0.7120897
## sample estimates:
## cor
## 0.5365059
##
## Pearson's product-moment correlation
##
## data: trials$numRatio and trials$diam_ratio
## t = -3.7201, df = 46, p-value = 0.0005404
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## -0.6730701 -0.2279126
## sample estimates:
## cor
## -0.4809049
## `geom_smooth()` using formula = 'y ~ x'
## `geom_smooth()` using formula = 'y ~ x'
## `geom_smooth()` using formula = 'y ~ x'
## `geom_smooth()` using formula = 'y ~ x'
To check whether there were differences in the strength of the relationship between numerical ratio and the perceptual features, I ran a linear model with the perceptual feature ratio as the dependent variable and age and numerical ratio, and their interaction as predictors. If there are differences in the strength between ages, we should observe an interaction between numerical ratio and age. There were no main effects of age or interactions, suggesting that the strength is similar across the three stimulus schedules.
##
## Call:
## lm(formula = ch_ratio ~ numRatio * age, data = trials)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.28744 -0.07594 -0.03074 0.02124 0.90023
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.05454 0.22444 4.698 6.2e-06 ***
## numRatio -0.03060 0.11399 -0.268 0.789
## age -0.03091 0.05543 -0.558 0.578
## numRatio:age 0.02540 0.03039 0.836 0.405
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.1398 on 140 degrees of freedom
## Multiple R-squared: 0.05075, Adjusted R-squared: 0.03041
## F-statistic: 2.495 on 3 and 140 DF, p-value: 0.06243
##
## Call:
## lm(formula = ts_ratio ~ numRatio * age, data = trials)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.1053 -0.3867 -0.1035 0.2939 1.5632
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.52055 0.99067 0.525 0.600
## numRatio 0.33940 0.50316 0.675 0.501
## age 0.04899 0.24468 0.200 0.842
## numRatio:age -0.02766 0.13412 -0.206 0.837
##
## Residual standard error: 0.6171 on 140 degrees of freedom
## Multiple R-squared: 0.04606, Adjusted R-squared: 0.02562
## F-statistic: 2.253 on 3 and 140 DF, p-value: 0.08485
##
## Call:
## lm(formula = cont_ratio ~ numRatio * age, data = trials)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.91060 -0.20383 -0.03662 0.15825 1.09390
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.63050 0.67972 0.928 0.355
## numRatio 0.41374 0.34522 1.198 0.233
## age -0.01786 0.16788 -0.106 0.915
## numRatio:age 0.01027 0.09202 0.112 0.911
##
## Residual standard error: 0.4234 on 140 degrees of freedom
## Multiple R-squared: 0.2694, Adjusted R-squared: 0.2537
## F-statistic: 17.21 on 3 and 140 DF, p-value: 1.441e-09
##
## Call:
## lm(formula = diam_ratio ~ numRatio * age, data = trials)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.30005 -0.12387 -0.03257 0.13099 0.37551
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.760791 0.297454 2.558 0.0116 *
## numRatio 0.008551 0.151075 0.057 0.9549
## age 0.083457 0.073467 1.136 0.2579
## numRatio:age -0.045813 0.040271 -1.138 0.2572
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.1853 on 140 degrees of freedom
## Multiple R-squared: 0.2055, Adjusted R-squared: 0.1884
## F-statistic: 12.07 on 3 and 140 DF, p-value: 4.496e-07
## `geom_smooth()` using formula = 'y ~ x'
## `geom_smooth()` using formula = 'y ~ x'
## `geom_smooth()` using formula = 'y ~ x'
## `geom_smooth()` using formula = 'y ~ x'