Goal: Build a regression model to predict the average movie rating Click [here for the data] https://github.com/rfordatascience/tidytuesday/tree/master/data/2022/2022-11-01
horror_movies <- readr::read_csv('https://raw.githubusercontent.com/rfordatascience/tidytuesday/master/data/2022/2022-11-01/horror_movies.csv')
skimr:: skim(horror_movies)
| Name | horror_movies |
| Number of rows | 32540 |
| Number of columns | 20 |
| _______________________ | |
| Column type frequency: | |
| character | 10 |
| Date | 1 |
| logical | 1 |
| numeric | 8 |
| ________________________ | |
| Group variables | None |
Variable type: character
| skim_variable | n_missing | complete_rate | min | max | empty | n_unique | whitespace |
|---|---|---|---|---|---|---|---|
| original_title | 0 | 1.00 | 1 | 191 | 0 | 30296 | 0 |
| title | 0 | 1.00 | 1 | 191 | 0 | 29563 | 0 |
| original_language | 0 | 1.00 | 2 | 2 | 0 | 97 | 0 |
| overview | 1286 | 0.96 | 1 | 1000 | 0 | 31020 | 0 |
| tagline | 19835 | 0.39 | 1 | 237 | 0 | 12513 | 0 |
| poster_path | 4474 | 0.86 | 30 | 32 | 0 | 28048 | 0 |
| status | 0 | 1.00 | 7 | 15 | 0 | 4 | 0 |
| backdrop_path | 18995 | 0.42 | 29 | 32 | 0 | 13536 | 0 |
| genre_names | 0 | 1.00 | 6 | 144 | 0 | 772 | 0 |
| collection_name | 30234 | 0.07 | 4 | 56 | 0 | 815 | 0 |
Variable type: Date
| skim_variable | n_missing | complete_rate | min | max | median | n_unique |
|---|---|---|---|---|---|---|
| release_date | 0 | 1 | 1950-01-01 | 2022-12-31 | 2012-12-09 | 10999 |
Variable type: logical
| skim_variable | n_missing | complete_rate | mean | count |
|---|---|---|---|---|
| adult | 0 | 1 | 0 | FAL: 32540 |
Variable type: numeric
| skim_variable | n_missing | complete_rate | mean | sd | p0 | p25 | p50 | p75 | p100 | hist |
|---|---|---|---|---|---|---|---|---|---|---|
| id | 0 | 1.00 | 445910.83 | 305744.67 | 17 | 146494.8 | 426521.00 | 707534.00 | 1033095.00 | ▇▆▆▅▅ |
| popularity | 0 | 1.00 | 4.01 | 37.51 | 0 | 0.6 | 0.84 | 2.24 | 5088.58 | ▇▁▁▁▁ |
| vote_count | 0 | 1.00 | 62.69 | 420.89 | 0 | 0.0 | 2.00 | 11.00 | 16900.00 | ▇▁▁▁▁ |
| vote_average | 0 | 1.00 | 3.34 | 2.88 | 0 | 0.0 | 4.00 | 5.70 | 10.00 | ▇▂▆▃▁ |
| budget | 0 | 1.00 | 543126.59 | 4542667.81 | 0 | 0.0 | 0.00 | 0.00 | 200000000.00 | ▇▁▁▁▁ |
| revenue | 0 | 1.00 | 1349746.73 | 14430479.15 | 0 | 0.0 | 0.00 | 0.00 | 701842551.00 | ▇▁▁▁▁ |
| runtime | 0 | 1.00 | 62.14 | 41.00 | 0 | 14.0 | 80.00 | 91.00 | 683.00 | ▇▁▁▁▁ |
| collection | 30234 | 0.07 | 481534.88 | 324498.16 | 656 | 155421.0 | 471259.00 | 759067.25 | 1033032.00 | ▇▅▅▅▅ |
data <- horror_movies %>%
# Remove unnecessary variables
select(-id, -title, -original_language, -overview, -tagline, -release_date, -poster_path, -budget, -revenue, -runtime, -status, -adult, -status, -backdrop_path, -genre_names, -collection, -collection_name) %>%
na.omit()
skimr:: skim(data)
| Name | data |
| Number of rows | 32540 |
| Number of columns | 4 |
| _______________________ | |
| Column type frequency: | |
| character | 1 |
| numeric | 3 |
| ________________________ | |
| Group variables | None |
Variable type: character
| skim_variable | n_missing | complete_rate | min | max | empty | n_unique | whitespace |
|---|---|---|---|---|---|---|---|
| original_title | 0 | 1 | 1 | 191 | 0 | 30296 | 0 |
Variable type: numeric
| skim_variable | n_missing | complete_rate | mean | sd | p0 | p25 | p50 | p75 | p100 | hist |
|---|---|---|---|---|---|---|---|---|---|---|
| popularity | 0 | 1 | 4.01 | 37.51 | 0 | 0.6 | 0.84 | 2.24 | 5088.58 | ▇▁▁▁▁ |
| vote_count | 0 | 1 | 62.69 | 420.89 | 0 | 0.0 | 2.00 | 11.00 | 16900.00 | ▇▁▁▁▁ |
| vote_average | 0 | 1 | 3.34 | 2.88 | 0 | 0.0 | 4.00 | 5.70 | 10.00 | ▇▂▆▃▁ |
data %>%
ggplot(aes(vote_count, vote_average)) +
geom_point()
data %>%
group_by(vote_count, vote_average) %>%
summarise(mean_group = mean(vote_average)) -> data2
data2 %>%
ggplot(aes(x= vote_count, y= mean_group,
color= vote_count, shape= vote_average,
group = vote_count,
label = round(mean_group, 2))) +
scale_shape_binned() +
geom_point()
data_binarized_tbl <- data %>%
select(-original_title, -popularity) %>%
binarize()
data_binarized_tbl %>% glimpse()
## Rows: 32,540
## Columns: 6
## $ `vote_count__-Inf_2` <dbl> 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ vote_count__2_11 <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ vote_count__11_Inf <dbl> 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,…
## $ `vote_average__-Inf_4` <dbl> 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ vote_average__4_5.7 <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ vote_average__5.7_Inf <dbl> 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,…
data_corr_tbl <- data_binarized_tbl %>%
correlate( `vote_average__-Inf_4`)
data_corr_tbl
## # A tibble: 6 × 3
## feature bin correlation
## <fct> <chr> <dbl>
## 1 vote_average -Inf_4 1
## 2 vote_average 4_5.7 -0.588
## 3 vote_average 5.7_Inf -0.579
## 4 vote_count -Inf_2 0.575
## 5 vote_count 11_Inf -0.467
## 6 vote_count 2_11 -0.214
data_corr_tbl %>%
plot_correlation_funnel()