1.0 Introduction

This markdown file is working through the creation of a multiple-layer map of Massachusetts. This project is mostly about improving my map creation skills and maybe understand my home state better. I will be using data from 2023 tigerline shape files, MassGIS, and the American Community Survey.

This will be an on going project where I come back periodically to add more maps and refine the code. For right now there will be some maps of selected population statistics. The data will be maped by census tract and city/town borders. The main package that will be used for the map creation is the sf package.

2.0 Data Cleaning

The data is in relatively good condition, thanks to the American Community Survey (ACS), which typically does a good job of formatting and organizing. However, some minor cleaning is still necessary.

2.1 Reading Data

Each data table from the ACS comes with a metadata table that explains the column names. In this case, we are using the 2022 five-year summary tables for all of the data from the ACS. We Will print out the metadata table for each data set so that we can examine what variables we have.

The name of each variable includes the table name and starts with S. For example, S1902 is the ACS table name. If you would like to find the source of this data, you can search for it on the Census website.

inc_data <- read.csv("Data/ACSST5Y2022.S1902_2024-09-30T115303/ACSST5Y2022.S1902-Data.csv")

inc_MetaData <- read.csv("Data/ACSST5Y2022.S1902_2024-09-30T115303/ACSST5Y2022.S1902-Column-Metadata.csv")
# View Data definitions 
inc_MetaData |>
  filter(grepl("E$", Column.Name)) |>
  kable(Caption = "Income Data Variable Codes") |>
  kable_material(lightable_options = "striped") |>
  scroll_box(width = "100%", height = "400px") 
Column.Name Label
NAME Geographic Area Name
S1902_C01_001E Estimate!!Number!!HOUSEHOLD INCOME!!All households
S1902_C01_002E Estimate!!Number!!HOUSEHOLD INCOME!!All households!!With earnings
S1902_C01_003E Estimate!!Number!!HOUSEHOLD INCOME!!All households!!With earnings!!With wages or salary income
S1902_C01_004E Estimate!!Number!!HOUSEHOLD INCOME!!All households!!With earnings!!With self-employment income
S1902_C01_005E Estimate!!Number!!HOUSEHOLD INCOME!!All households!!With interest, dividends, or net rental income
S1902_C01_006E Estimate!!Number!!HOUSEHOLD INCOME!!All households!!With Social Security income
S1902_C01_007E Estimate!!Number!!HOUSEHOLD INCOME!!All households!!With Supplemental Security Income (SSI)
S1902_C01_008E Estimate!!Number!!HOUSEHOLD INCOME!!All households!!With cash public assistance income or Food Stamps/SNAP
S1902_C01_009E Estimate!!Number!!HOUSEHOLD INCOME!!All households!!With cash public assistance income or Food Stamps/SNAP!!With cash public assistance
S1902_C01_010E Estimate!!Number!!HOUSEHOLD INCOME!!All households!!With retirement income
S1902_C01_011E Estimate!!Number!!HOUSEHOLD INCOME!!All households!!With other types of income
S1902_C01_012E Estimate!!Number!!FAMILY INCOME BY NUMBER OF WORKERS IN FAMILY!!All families
S1902_C01_013E Estimate!!Number!!FAMILY INCOME BY NUMBER OF WORKERS IN FAMILY!!All families!!No workers
S1902_C01_014E Estimate!!Number!!FAMILY INCOME BY NUMBER OF WORKERS IN FAMILY!!All families!!1 worker
S1902_C01_015E Estimate!!Number!!FAMILY INCOME BY NUMBER OF WORKERS IN FAMILY!!All families!!2 workers, both spouses worked
S1902_C01_016E Estimate!!Number!!FAMILY INCOME BY NUMBER OF WORKERS IN FAMILY!!All families!!2 workers, other
S1902_C01_017E Estimate!!Number!!FAMILY INCOME BY NUMBER OF WORKERS IN FAMILY!!All families!!3 or more workers, both spouses worked
S1902_C01_018E Estimate!!Number!!FAMILY INCOME BY NUMBER OF WORKERS IN FAMILY!!All families!!3 or more workers, other
S1902_C01_019E Estimate!!Number!!PER CAPITA INCOME BY RACE AND HISPANIC OR LATINO ORIGIN!!Total population
S1902_C01_020E Estimate!!Number!!PER CAPITA INCOME BY RACE AND HISPANIC OR LATINO ORIGIN!!Total population!!One race–!!White
S1902_C01_021E Estimate!!Number!!PER CAPITA INCOME BY RACE AND HISPANIC OR LATINO ORIGIN!!Total population!!One race–!!Black or African American
S1902_C01_022E Estimate!!Number!!PER CAPITA INCOME BY RACE AND HISPANIC OR LATINO ORIGIN!!Total population!!One race–!!American Indian and Alaska Native
S1902_C01_023E Estimate!!Number!!PER CAPITA INCOME BY RACE AND HISPANIC OR LATINO ORIGIN!!Total population!!One race–!!Asian
S1902_C01_024E Estimate!!Number!!PER CAPITA INCOME BY RACE AND HISPANIC OR LATINO ORIGIN!!Total population!!One race–!!Native Hawaiian and Other Pacific Islander
S1902_C01_025E Estimate!!Number!!PER CAPITA INCOME BY RACE AND HISPANIC OR LATINO ORIGIN!!Total population!!One race–!!Some other race
S1902_C01_026E Estimate!!Number!!PER CAPITA INCOME BY RACE AND HISPANIC OR LATINO ORIGIN!!Total population!!Two or more races
S1902_C01_027E Estimate!!Number!!PER CAPITA INCOME BY RACE AND HISPANIC OR LATINO ORIGIN!!Total population!!Hispanic or Latino origin (of any race)
S1902_C01_028E Estimate!!Number!!PER CAPITA INCOME BY RACE AND HISPANIC OR LATINO ORIGIN!!Total population!!White alone, not Hispanic or Latino
S1902_C02_001E Estimate!!Percent Distribution!!HOUSEHOLD INCOME!!All households
S1902_C02_002E Estimate!!Percent Distribution!!HOUSEHOLD INCOME!!All households!!With earnings
S1902_C02_003E Estimate!!Percent Distribution!!HOUSEHOLD INCOME!!All households!!With earnings!!With wages or salary income
S1902_C02_004E Estimate!!Percent Distribution!!HOUSEHOLD INCOME!!All households!!With earnings!!With self-employment income
S1902_C02_005E Estimate!!Percent Distribution!!HOUSEHOLD INCOME!!All households!!With interest, dividends, or net rental income
S1902_C02_006E Estimate!!Percent Distribution!!HOUSEHOLD INCOME!!All households!!With Social Security income
S1902_C02_007E Estimate!!Percent Distribution!!HOUSEHOLD INCOME!!All households!!With Supplemental Security Income (SSI)
S1902_C02_008E Estimate!!Percent Distribution!!HOUSEHOLD INCOME!!All households!!With cash public assistance income or Food Stamps/SNAP
S1902_C02_009E Estimate!!Percent Distribution!!HOUSEHOLD INCOME!!All households!!With cash public assistance income or Food Stamps/SNAP!!With cash public assistance
S1902_C02_010E Estimate!!Percent Distribution!!HOUSEHOLD INCOME!!All households!!With retirement income
S1902_C02_011E Estimate!!Percent Distribution!!HOUSEHOLD INCOME!!All households!!With other types of income
S1902_C02_012E Estimate!!Percent Distribution!!FAMILY INCOME BY NUMBER OF WORKERS IN FAMILY!!All families
S1902_C02_013E Estimate!!Percent Distribution!!FAMILY INCOME BY NUMBER OF WORKERS IN FAMILY!!All families!!No workers
S1902_C02_014E Estimate!!Percent Distribution!!FAMILY INCOME BY NUMBER OF WORKERS IN FAMILY!!All families!!1 worker
S1902_C02_015E Estimate!!Percent Distribution!!FAMILY INCOME BY NUMBER OF WORKERS IN FAMILY!!All families!!2 workers, both spouses worked
S1902_C02_016E Estimate!!Percent Distribution!!FAMILY INCOME BY NUMBER OF WORKERS IN FAMILY!!All families!!2 workers, other
S1902_C02_017E Estimate!!Percent Distribution!!FAMILY INCOME BY NUMBER OF WORKERS IN FAMILY!!All families!!3 or more workers, both spouses worked
S1902_C02_018E Estimate!!Percent Distribution!!FAMILY INCOME BY NUMBER OF WORKERS IN FAMILY!!All families!!3 or more workers, other
S1902_C02_019E Estimate!!Percent Distribution!!PER CAPITA INCOME BY RACE AND HISPANIC OR LATINO ORIGIN!!Total population
S1902_C02_020E Estimate!!Percent Distribution!!PER CAPITA INCOME BY RACE AND HISPANIC OR LATINO ORIGIN!!Total population!!One race–!!White
S1902_C02_021E Estimate!!Percent Distribution!!PER CAPITA INCOME BY RACE AND HISPANIC OR LATINO ORIGIN!!Total population!!One race–!!Black or African American
S1902_C02_022E Estimate!!Percent Distribution!!PER CAPITA INCOME BY RACE AND HISPANIC OR LATINO ORIGIN!!Total population!!One race–!!American Indian and Alaska Native
S1902_C02_023E Estimate!!Percent Distribution!!PER CAPITA INCOME BY RACE AND HISPANIC OR LATINO ORIGIN!!Total population!!One race–!!Asian
S1902_C02_024E Estimate!!Percent Distribution!!PER CAPITA INCOME BY RACE AND HISPANIC OR LATINO ORIGIN!!Total population!!One race–!!Native Hawaiian and Other Pacific Islander
S1902_C02_025E Estimate!!Percent Distribution!!PER CAPITA INCOME BY RACE AND HISPANIC OR LATINO ORIGIN!!Total population!!One race–!!Some other race
S1902_C02_026E Estimate!!Percent Distribution!!PER CAPITA INCOME BY RACE AND HISPANIC OR LATINO ORIGIN!!Total population!!Two or more races
S1902_C02_027E Estimate!!Percent Distribution!!PER CAPITA INCOME BY RACE AND HISPANIC OR LATINO ORIGIN!!Total population!!Hispanic or Latino origin (of any race)
S1902_C02_028E Estimate!!Percent Distribution!!PER CAPITA INCOME BY RACE AND HISPANIC OR LATINO ORIGIN!!Total population!!White alone, not Hispanic or Latino
S1902_C03_001E Estimate!!Mean income (dollars)!!HOUSEHOLD INCOME!!All households
S1902_C03_002E Estimate!!Mean income (dollars)!!HOUSEHOLD INCOME!!All households!!With earnings
S1902_C03_003E Estimate!!Mean income (dollars)!!HOUSEHOLD INCOME!!All households!!With earnings!!With wages or salary income
S1902_C03_004E Estimate!!Mean income (dollars)!!HOUSEHOLD INCOME!!All households!!With earnings!!With self-employment income
S1902_C03_005E Estimate!!Mean income (dollars)!!HOUSEHOLD INCOME!!All households!!With interest, dividends, or net rental income
S1902_C03_006E Estimate!!Mean income (dollars)!!HOUSEHOLD INCOME!!All households!!With Social Security income
S1902_C03_007E Estimate!!Mean income (dollars)!!HOUSEHOLD INCOME!!All households!!With Supplemental Security Income (SSI)
S1902_C03_008E Estimate!!Mean income (dollars)!!HOUSEHOLD INCOME!!All households!!With cash public assistance income or Food Stamps/SNAP
S1902_C03_009E Estimate!!Mean income (dollars)!!HOUSEHOLD INCOME!!All households!!With cash public assistance income or Food Stamps/SNAP!!With cash public assistance
S1902_C03_010E Estimate!!Mean income (dollars)!!HOUSEHOLD INCOME!!All households!!With retirement income
S1902_C03_011E Estimate!!Mean income (dollars)!!HOUSEHOLD INCOME!!All households!!With other types of income
S1902_C03_012E Estimate!!Mean income (dollars)!!FAMILY INCOME BY NUMBER OF WORKERS IN FAMILY!!All families
S1902_C03_013E Estimate!!Mean income (dollars)!!FAMILY INCOME BY NUMBER OF WORKERS IN FAMILY!!All families!!No workers
S1902_C03_014E Estimate!!Mean income (dollars)!!FAMILY INCOME BY NUMBER OF WORKERS IN FAMILY!!All families!!1 worker
S1902_C03_015E Estimate!!Mean income (dollars)!!FAMILY INCOME BY NUMBER OF WORKERS IN FAMILY!!All families!!2 workers, both spouses worked
S1902_C03_016E Estimate!!Mean income (dollars)!!FAMILY INCOME BY NUMBER OF WORKERS IN FAMILY!!All families!!2 workers, other
S1902_C03_017E Estimate!!Mean income (dollars)!!FAMILY INCOME BY NUMBER OF WORKERS IN FAMILY!!All families!!3 or more workers, both spouses worked
S1902_C03_018E Estimate!!Mean income (dollars)!!FAMILY INCOME BY NUMBER OF WORKERS IN FAMILY!!All families!!3 or more workers, other
S1902_C03_019E Estimate!!Mean income (dollars)!!PER CAPITA INCOME BY RACE AND HISPANIC OR LATINO ORIGIN!!Total population
S1902_C03_020E Estimate!!Mean income (dollars)!!PER CAPITA INCOME BY RACE AND HISPANIC OR LATINO ORIGIN!!Total population!!One race–!!White
S1902_C03_021E Estimate!!Mean income (dollars)!!PER CAPITA INCOME BY RACE AND HISPANIC OR LATINO ORIGIN!!Total population!!One race–!!Black or African American
S1902_C03_022E Estimate!!Mean income (dollars)!!PER CAPITA INCOME BY RACE AND HISPANIC OR LATINO ORIGIN!!Total population!!One race–!!American Indian and Alaska Native
S1902_C03_023E Estimate!!Mean income (dollars)!!PER CAPITA INCOME BY RACE AND HISPANIC OR LATINO ORIGIN!!Total population!!One race–!!Asian
S1902_C03_024E Estimate!!Mean income (dollars)!!PER CAPITA INCOME BY RACE AND HISPANIC OR LATINO ORIGIN!!Total population!!One race–!!Native Hawaiian and Other Pacific Islander
S1902_C03_025E Estimate!!Mean income (dollars)!!PER CAPITA INCOME BY RACE AND HISPANIC OR LATINO ORIGIN!!Total population!!One race–!!Some other race
S1902_C03_026E Estimate!!Mean income (dollars)!!PER CAPITA INCOME BY RACE AND HISPANIC OR LATINO ORIGIN!!Total population!!Two or more races
S1902_C03_027E Estimate!!Mean income (dollars)!!PER CAPITA INCOME BY RACE AND HISPANIC OR LATINO ORIGIN!!Total population!!Hispanic or Latino origin (of any race)
S1902_C03_028E Estimate!!Mean income (dollars)!!PER CAPITA INCOME BY RACE AND HISPANIC OR LATINO ORIGIN!!Total population!!White alone, not Hispanic or Latino
pop_data <-  read.csv("Data/ACSST5Y2022.S0101_2024-10-08T171910/ACSST5Y2022.S0101-Data.csv")

pop_MetaData <- read.csv("Data/ACSST5Y2022.S0101_2024-10-08T171910/ACSST5Y2022.S0101-Column-Metadata.csv")
pop_MetaData |>
  filter(grepl("E$", Column.Name)) |>
  kable(Caption = "Income Data Variable Codes") |>
  kable_material(lightable_options = "striped") |>
  scroll_box(width = "100%", height = "400px") 
Column.Name Label
NAME Geographic Area Name
S0101_C01_001E Estimate!!Total!!Total population
S0101_C01_002E Estimate!!Total!!Total population!!AGE!!Under 5 years
S0101_C01_003E Estimate!!Total!!Total population!!AGE!!5 to 9 years
S0101_C01_004E Estimate!!Total!!Total population!!AGE!!10 to 14 years
S0101_C01_005E Estimate!!Total!!Total population!!AGE!!15 to 19 years
S0101_C01_006E Estimate!!Total!!Total population!!AGE!!20 to 24 years
S0101_C01_007E Estimate!!Total!!Total population!!AGE!!25 to 29 years
S0101_C01_008E Estimate!!Total!!Total population!!AGE!!30 to 34 years
S0101_C01_009E Estimate!!Total!!Total population!!AGE!!35 to 39 years
S0101_C01_010E Estimate!!Total!!Total population!!AGE!!40 to 44 years
S0101_C01_011E Estimate!!Total!!Total population!!AGE!!45 to 49 years
S0101_C01_012E Estimate!!Total!!Total population!!AGE!!50 to 54 years
S0101_C01_013E Estimate!!Total!!Total population!!AGE!!55 to 59 years
S0101_C01_014E Estimate!!Total!!Total population!!AGE!!60 to 64 years
S0101_C01_015E Estimate!!Total!!Total population!!AGE!!65 to 69 years
S0101_C01_016E Estimate!!Total!!Total population!!AGE!!70 to 74 years
S0101_C01_017E Estimate!!Total!!Total population!!AGE!!75 to 79 years
S0101_C01_018E Estimate!!Total!!Total population!!AGE!!80 to 84 years
S0101_C01_019E Estimate!!Total!!Total population!!AGE!!85 years and over
S0101_C01_020E Estimate!!Total!!Total population!!SELECTED AGE CATEGORIES!!5 to 14 years
S0101_C01_021E Estimate!!Total!!Total population!!SELECTED AGE CATEGORIES!!15 to 17 years
S0101_C01_022E Estimate!!Total!!Total population!!SELECTED AGE CATEGORIES!!Under 18 years
S0101_C01_023E Estimate!!Total!!Total population!!SELECTED AGE CATEGORIES!!18 to 24 years
S0101_C01_024E Estimate!!Total!!Total population!!SELECTED AGE CATEGORIES!!15 to 44 years
S0101_C01_025E Estimate!!Total!!Total population!!SELECTED AGE CATEGORIES!!16 years and over
S0101_C01_026E Estimate!!Total!!Total population!!SELECTED AGE CATEGORIES!!18 years and over
S0101_C01_027E Estimate!!Total!!Total population!!SELECTED AGE CATEGORIES!!21 years and over
S0101_C01_028E Estimate!!Total!!Total population!!SELECTED AGE CATEGORIES!!60 years and over
S0101_C01_029E Estimate!!Total!!Total population!!SELECTED AGE CATEGORIES!!62 years and over
S0101_C01_030E Estimate!!Total!!Total population!!SELECTED AGE CATEGORIES!!65 years and over
S0101_C01_031E Estimate!!Total!!Total population!!SELECTED AGE CATEGORIES!!75 years and over
S0101_C01_032E Estimate!!Total!!Total population!!SUMMARY INDICATORS!!Median age (years)
S0101_C01_033E Estimate!!Total!!Total population!!SUMMARY INDICATORS!!Sex ratio (males per 100 females)
S0101_C01_034E Estimate!!Total!!Total population!!SUMMARY INDICATORS!!Age dependency ratio
S0101_C01_035E Estimate!!Total!!Total population!!SUMMARY INDICATORS!!Old-age dependency ratio
S0101_C01_036E Estimate!!Total!!Total population!!SUMMARY INDICATORS!!Child dependency ratio
S0101_C01_037E Estimate!!Total!!Total population!!PERCENT ALLOCATED!!Sex
S0101_C01_038E Estimate!!Total!!Total population!!PERCENT ALLOCATED!!Age
S0101_C02_001E Estimate!!Percent!!Total population
S0101_C02_002E Estimate!!Percent!!Total population!!AGE!!Under 5 years
S0101_C02_003E Estimate!!Percent!!Total population!!AGE!!5 to 9 years
S0101_C02_004E Estimate!!Percent!!Total population!!AGE!!10 to 14 years
S0101_C02_005E Estimate!!Percent!!Total population!!AGE!!15 to 19 years
S0101_C02_006E Estimate!!Percent!!Total population!!AGE!!20 to 24 years
S0101_C02_007E Estimate!!Percent!!Total population!!AGE!!25 to 29 years
S0101_C02_008E Estimate!!Percent!!Total population!!AGE!!30 to 34 years
S0101_C02_009E Estimate!!Percent!!Total population!!AGE!!35 to 39 years
S0101_C02_010E Estimate!!Percent!!Total population!!AGE!!40 to 44 years
S0101_C02_011E Estimate!!Percent!!Total population!!AGE!!45 to 49 years
S0101_C02_012E Estimate!!Percent!!Total population!!AGE!!50 to 54 years
S0101_C02_013E Estimate!!Percent!!Total population!!AGE!!55 to 59 years
S0101_C02_014E Estimate!!Percent!!Total population!!AGE!!60 to 64 years
S0101_C02_015E Estimate!!Percent!!Total population!!AGE!!65 to 69 years
S0101_C02_016E Estimate!!Percent!!Total population!!AGE!!70 to 74 years
S0101_C02_017E Estimate!!Percent!!Total population!!AGE!!75 to 79 years
S0101_C02_018E Estimate!!Percent!!Total population!!AGE!!80 to 84 years
S0101_C02_019E Estimate!!Percent!!Total population!!AGE!!85 years and over
S0101_C02_020E Estimate!!Percent!!Total population!!SELECTED AGE CATEGORIES!!5 to 14 years
S0101_C02_021E Estimate!!Percent!!Total population!!SELECTED AGE CATEGORIES!!15 to 17 years
S0101_C02_022E Estimate!!Percent!!Total population!!SELECTED AGE CATEGORIES!!Under 18 years
S0101_C02_023E Estimate!!Percent!!Total population!!SELECTED AGE CATEGORIES!!18 to 24 years
S0101_C02_024E Estimate!!Percent!!Total population!!SELECTED AGE CATEGORIES!!15 to 44 years
S0101_C02_025E Estimate!!Percent!!Total population!!SELECTED AGE CATEGORIES!!16 years and over
S0101_C02_026E Estimate!!Percent!!Total population!!SELECTED AGE CATEGORIES!!18 years and over
S0101_C02_027E Estimate!!Percent!!Total population!!SELECTED AGE CATEGORIES!!21 years and over
S0101_C02_028E Estimate!!Percent!!Total population!!SELECTED AGE CATEGORIES!!60 years and over
S0101_C02_029E Estimate!!Percent!!Total population!!SELECTED AGE CATEGORIES!!62 years and over
S0101_C02_030E Estimate!!Percent!!Total population!!SELECTED AGE CATEGORIES!!65 years and over
S0101_C02_031E Estimate!!Percent!!Total population!!SELECTED AGE CATEGORIES!!75 years and over
S0101_C02_032E Estimate!!Percent!!Total population!!SUMMARY INDICATORS!!Median age (years)
S0101_C02_033E Estimate!!Percent!!Total population!!SUMMARY INDICATORS!!Sex ratio (males per 100 females)
S0101_C02_034E Estimate!!Percent!!Total population!!SUMMARY INDICATORS!!Age dependency ratio
S0101_C02_035E Estimate!!Percent!!Total population!!SUMMARY INDICATORS!!Old-age dependency ratio
S0101_C02_036E Estimate!!Percent!!Total population!!SUMMARY INDICATORS!!Child dependency ratio
S0101_C02_037E Estimate!!Percent!!Total population!!PERCENT ALLOCATED!!Sex
S0101_C02_038E Estimate!!Percent!!Total population!!PERCENT ALLOCATED!!Age
S0101_C03_001E Estimate!!Male!!Total population
S0101_C03_002E Estimate!!Male!!Total population!!AGE!!Under 5 years
S0101_C03_003E Estimate!!Male!!Total population!!AGE!!5 to 9 years
S0101_C03_004E Estimate!!Male!!Total population!!AGE!!10 to 14 years
S0101_C03_005E Estimate!!Male!!Total population!!AGE!!15 to 19 years
S0101_C03_006E Estimate!!Male!!Total population!!AGE!!20 to 24 years
S0101_C03_007E Estimate!!Male!!Total population!!AGE!!25 to 29 years
S0101_C03_008E Estimate!!Male!!Total population!!AGE!!30 to 34 years
S0101_C03_009E Estimate!!Male!!Total population!!AGE!!35 to 39 years
S0101_C03_010E Estimate!!Male!!Total population!!AGE!!40 to 44 years
S0101_C03_011E Estimate!!Male!!Total population!!AGE!!45 to 49 years
S0101_C03_012E Estimate!!Male!!Total population!!AGE!!50 to 54 years
S0101_C03_013E Estimate!!Male!!Total population!!AGE!!55 to 59 years
S0101_C03_014E Estimate!!Male!!Total population!!AGE!!60 to 64 years
S0101_C03_015E Estimate!!Male!!Total population!!AGE!!65 to 69 years
S0101_C03_016E Estimate!!Male!!Total population!!AGE!!70 to 74 years
S0101_C03_017E Estimate!!Male!!Total population!!AGE!!75 to 79 years
S0101_C03_018E Estimate!!Male!!Total population!!AGE!!80 to 84 years
S0101_C03_019E Estimate!!Male!!Total population!!AGE!!85 years and over
S0101_C03_020E Estimate!!Male!!Total population!!SELECTED AGE CATEGORIES!!5 to 14 years
S0101_C03_021E Estimate!!Male!!Total population!!SELECTED AGE CATEGORIES!!15 to 17 years
S0101_C03_022E Estimate!!Male!!Total population!!SELECTED AGE CATEGORIES!!Under 18 years
S0101_C03_023E Estimate!!Male!!Total population!!SELECTED AGE CATEGORIES!!18 to 24 years
S0101_C03_024E Estimate!!Male!!Total population!!SELECTED AGE CATEGORIES!!15 to 44 years
S0101_C03_025E Estimate!!Male!!Total population!!SELECTED AGE CATEGORIES!!16 years and over
S0101_C03_026E Estimate!!Male!!Total population!!SELECTED AGE CATEGORIES!!18 years and over
S0101_C03_027E Estimate!!Male!!Total population!!SELECTED AGE CATEGORIES!!21 years and over
S0101_C03_028E Estimate!!Male!!Total population!!SELECTED AGE CATEGORIES!!60 years and over
S0101_C03_029E Estimate!!Male!!Total population!!SELECTED AGE CATEGORIES!!62 years and over
S0101_C03_030E Estimate!!Male!!Total population!!SELECTED AGE CATEGORIES!!65 years and over
S0101_C03_031E Estimate!!Male!!Total population!!SELECTED AGE CATEGORIES!!75 years and over
S0101_C03_032E Estimate!!Male!!Total population!!SUMMARY INDICATORS!!Median age (years)
S0101_C03_033E Estimate!!Male!!Total population!!SUMMARY INDICATORS!!Sex ratio (males per 100 females)
S0101_C03_034E Estimate!!Male!!Total population!!SUMMARY INDICATORS!!Age dependency ratio
S0101_C03_035E Estimate!!Male!!Total population!!SUMMARY INDICATORS!!Old-age dependency ratio
S0101_C03_036E Estimate!!Male!!Total population!!SUMMARY INDICATORS!!Child dependency ratio
S0101_C03_037E Estimate!!Male!!Total population!!PERCENT ALLOCATED!!Sex
S0101_C03_038E Estimate!!Male!!Total population!!PERCENT ALLOCATED!!Age
S0101_C04_001E Estimate!!Percent Male!!Total population
S0101_C04_002E Estimate!!Percent Male!!Total population!!AGE!!Under 5 years
S0101_C04_003E Estimate!!Percent Male!!Total population!!AGE!!5 to 9 years
S0101_C04_004E Estimate!!Percent Male!!Total population!!AGE!!10 to 14 years
S0101_C04_005E Estimate!!Percent Male!!Total population!!AGE!!15 to 19 years
S0101_C04_006E Estimate!!Percent Male!!Total population!!AGE!!20 to 24 years
S0101_C04_007E Estimate!!Percent Male!!Total population!!AGE!!25 to 29 years
S0101_C04_008E Estimate!!Percent Male!!Total population!!AGE!!30 to 34 years
S0101_C04_009E Estimate!!Percent Male!!Total population!!AGE!!35 to 39 years
S0101_C04_010E Estimate!!Percent Male!!Total population!!AGE!!40 to 44 years
S0101_C04_011E Estimate!!Percent Male!!Total population!!AGE!!45 to 49 years
S0101_C04_012E Estimate!!Percent Male!!Total population!!AGE!!50 to 54 years
S0101_C04_013E Estimate!!Percent Male!!Total population!!AGE!!55 to 59 years
S0101_C04_014E Estimate!!Percent Male!!Total population!!AGE!!60 to 64 years
S0101_C04_015E Estimate!!Percent Male!!Total population!!AGE!!65 to 69 years
S0101_C04_016E Estimate!!Percent Male!!Total population!!AGE!!70 to 74 years
S0101_C04_017E Estimate!!Percent Male!!Total population!!AGE!!75 to 79 years
S0101_C04_018E Estimate!!Percent Male!!Total population!!AGE!!80 to 84 years
S0101_C04_019E Estimate!!Percent Male!!Total population!!AGE!!85 years and over
S0101_C04_020E Estimate!!Percent Male!!Total population!!SELECTED AGE CATEGORIES!!5 to 14 years
S0101_C04_021E Estimate!!Percent Male!!Total population!!SELECTED AGE CATEGORIES!!15 to 17 years
S0101_C04_022E Estimate!!Percent Male!!Total population!!SELECTED AGE CATEGORIES!!Under 18 years
S0101_C04_023E Estimate!!Percent Male!!Total population!!SELECTED AGE CATEGORIES!!18 to 24 years
S0101_C04_024E Estimate!!Percent Male!!Total population!!SELECTED AGE CATEGORIES!!15 to 44 years
S0101_C04_025E Estimate!!Percent Male!!Total population!!SELECTED AGE CATEGORIES!!16 years and over
S0101_C04_026E Estimate!!Percent Male!!Total population!!SELECTED AGE CATEGORIES!!18 years and over
S0101_C04_027E Estimate!!Percent Male!!Total population!!SELECTED AGE CATEGORIES!!21 years and over
S0101_C04_028E Estimate!!Percent Male!!Total population!!SELECTED AGE CATEGORIES!!60 years and over
S0101_C04_029E Estimate!!Percent Male!!Total population!!SELECTED AGE CATEGORIES!!62 years and over
S0101_C04_030E Estimate!!Percent Male!!Total population!!SELECTED AGE CATEGORIES!!65 years and over
S0101_C04_031E Estimate!!Percent Male!!Total population!!SELECTED AGE CATEGORIES!!75 years and over
S0101_C04_032E Estimate!!Percent Male!!Total population!!SUMMARY INDICATORS!!Median age (years)
S0101_C04_033E Estimate!!Percent Male!!Total population!!SUMMARY INDICATORS!!Sex ratio (males per 100 females)
S0101_C04_034E Estimate!!Percent Male!!Total population!!SUMMARY INDICATORS!!Age dependency ratio
S0101_C04_035E Estimate!!Percent Male!!Total population!!SUMMARY INDICATORS!!Old-age dependency ratio
S0101_C04_036E Estimate!!Percent Male!!Total population!!SUMMARY INDICATORS!!Child dependency ratio
S0101_C04_037E Estimate!!Percent Male!!Total population!!PERCENT ALLOCATED!!Sex
S0101_C04_038E Estimate!!Percent Male!!Total population!!PERCENT ALLOCATED!!Age
S0101_C05_001E Estimate!!Female!!Total population
S0101_C05_002E Estimate!!Female!!Total population!!AGE!!Under 5 years
S0101_C05_003E Estimate!!Female!!Total population!!AGE!!5 to 9 years
S0101_C05_004E Estimate!!Female!!Total population!!AGE!!10 to 14 years
S0101_C05_005E Estimate!!Female!!Total population!!AGE!!15 to 19 years
S0101_C05_006E Estimate!!Female!!Total population!!AGE!!20 to 24 years
S0101_C05_007E Estimate!!Female!!Total population!!AGE!!25 to 29 years
S0101_C05_008E Estimate!!Female!!Total population!!AGE!!30 to 34 years
S0101_C05_009E Estimate!!Female!!Total population!!AGE!!35 to 39 years
S0101_C05_010E Estimate!!Female!!Total population!!AGE!!40 to 44 years
S0101_C05_011E Estimate!!Female!!Total population!!AGE!!45 to 49 years
S0101_C05_012E Estimate!!Female!!Total population!!AGE!!50 to 54 years
S0101_C05_013E Estimate!!Female!!Total population!!AGE!!55 to 59 years
S0101_C05_014E Estimate!!Female!!Total population!!AGE!!60 to 64 years
S0101_C05_015E Estimate!!Female!!Total population!!AGE!!65 to 69 years
S0101_C05_016E Estimate!!Female!!Total population!!AGE!!70 to 74 years
S0101_C05_017E Estimate!!Female!!Total population!!AGE!!75 to 79 years
S0101_C05_018E Estimate!!Female!!Total population!!AGE!!80 to 84 years
S0101_C05_019E Estimate!!Female!!Total population!!AGE!!85 years and over
S0101_C05_020E Estimate!!Female!!Total population!!SELECTED AGE CATEGORIES!!5 to 14 years
S0101_C05_021E Estimate!!Female!!Total population!!SELECTED AGE CATEGORIES!!15 to 17 years
S0101_C05_022E Estimate!!Female!!Total population!!SELECTED AGE CATEGORIES!!Under 18 years
S0101_C05_023E Estimate!!Female!!Total population!!SELECTED AGE CATEGORIES!!18 to 24 years
S0101_C05_024E Estimate!!Female!!Total population!!SELECTED AGE CATEGORIES!!15 to 44 years
S0101_C05_025E Estimate!!Female!!Total population!!SELECTED AGE CATEGORIES!!16 years and over
S0101_C05_026E Estimate!!Female!!Total population!!SELECTED AGE CATEGORIES!!18 years and over
S0101_C05_027E Estimate!!Female!!Total population!!SELECTED AGE CATEGORIES!!21 years and over
S0101_C05_028E Estimate!!Female!!Total population!!SELECTED AGE CATEGORIES!!60 years and over
S0101_C05_029E Estimate!!Female!!Total population!!SELECTED AGE CATEGORIES!!62 years and over
S0101_C05_030E Estimate!!Female!!Total population!!SELECTED AGE CATEGORIES!!65 years and over
S0101_C05_031E Estimate!!Female!!Total population!!SELECTED AGE CATEGORIES!!75 years and over
S0101_C05_032E Estimate!!Female!!Total population!!SUMMARY INDICATORS!!Median age (years)
S0101_C05_033E Estimate!!Female!!Total population!!SUMMARY INDICATORS!!Sex ratio (males per 100 females)
S0101_C05_034E Estimate!!Female!!Total population!!SUMMARY INDICATORS!!Age dependency ratio
S0101_C05_035E Estimate!!Female!!Total population!!SUMMARY INDICATORS!!Old-age dependency ratio
S0101_C05_036E Estimate!!Female!!Total population!!SUMMARY INDICATORS!!Child dependency ratio
S0101_C05_037E Estimate!!Female!!Total population!!PERCENT ALLOCATED!!Sex
S0101_C05_038E Estimate!!Female!!Total population!!PERCENT ALLOCATED!!Age
S0101_C06_001E Estimate!!Percent Female!!Total population
S0101_C06_002E Estimate!!Percent Female!!Total population!!AGE!!Under 5 years
S0101_C06_003E Estimate!!Percent Female!!Total population!!AGE!!5 to 9 years
S0101_C06_004E Estimate!!Percent Female!!Total population!!AGE!!10 to 14 years
S0101_C06_005E Estimate!!Percent Female!!Total population!!AGE!!15 to 19 years
S0101_C06_006E Estimate!!Percent Female!!Total population!!AGE!!20 to 24 years
S0101_C06_007E Estimate!!Percent Female!!Total population!!AGE!!25 to 29 years
S0101_C06_008E Estimate!!Percent Female!!Total population!!AGE!!30 to 34 years
S0101_C06_009E Estimate!!Percent Female!!Total population!!AGE!!35 to 39 years
S0101_C06_010E Estimate!!Percent Female!!Total population!!AGE!!40 to 44 years
S0101_C06_011E Estimate!!Percent Female!!Total population!!AGE!!45 to 49 years
S0101_C06_012E Estimate!!Percent Female!!Total population!!AGE!!50 to 54 years
S0101_C06_013E Estimate!!Percent Female!!Total population!!AGE!!55 to 59 years
S0101_C06_014E Estimate!!Percent Female!!Total population!!AGE!!60 to 64 years
S0101_C06_015E Estimate!!Percent Female!!Total population!!AGE!!65 to 69 years
S0101_C06_016E Estimate!!Percent Female!!Total population!!AGE!!70 to 74 years
S0101_C06_017E Estimate!!Percent Female!!Total population!!AGE!!75 to 79 years
S0101_C06_018E Estimate!!Percent Female!!Total population!!AGE!!80 to 84 years
S0101_C06_019E Estimate!!Percent Female!!Total population!!AGE!!85 years and over
S0101_C06_020E Estimate!!Percent Female!!Total population!!SELECTED AGE CATEGORIES!!5 to 14 years
S0101_C06_021E Estimate!!Percent Female!!Total population!!SELECTED AGE CATEGORIES!!15 to 17 years
S0101_C06_022E Estimate!!Percent Female!!Total population!!SELECTED AGE CATEGORIES!!Under 18 years
S0101_C06_023E Estimate!!Percent Female!!Total population!!SELECTED AGE CATEGORIES!!18 to 24 years
S0101_C06_024E Estimate!!Percent Female!!Total population!!SELECTED AGE CATEGORIES!!15 to 44 years
S0101_C06_025E Estimate!!Percent Female!!Total population!!SELECTED AGE CATEGORIES!!16 years and over
S0101_C06_026E Estimate!!Percent Female!!Total population!!SELECTED AGE CATEGORIES!!18 years and over
S0101_C06_027E Estimate!!Percent Female!!Total population!!SELECTED AGE CATEGORIES!!21 years and over
S0101_C06_028E Estimate!!Percent Female!!Total population!!SELECTED AGE CATEGORIES!!60 years and over
S0101_C06_029E Estimate!!Percent Female!!Total population!!SELECTED AGE CATEGORIES!!62 years and over
S0101_C06_030E Estimate!!Percent Female!!Total population!!SELECTED AGE CATEGORIES!!65 years and over
S0101_C06_031E Estimate!!Percent Female!!Total population!!SELECTED AGE CATEGORIES!!75 years and over
S0101_C06_032E Estimate!!Percent Female!!Total population!!SUMMARY INDICATORS!!Median age (years)
S0101_C06_033E Estimate!!Percent Female!!Total population!!SUMMARY INDICATORS!!Sex ratio (males per 100 females)
S0101_C06_034E Estimate!!Percent Female!!Total population!!SUMMARY INDICATORS!!Age dependency ratio
S0101_C06_035E Estimate!!Percent Female!!Total population!!SUMMARY INDICATORS!!Old-age dependency ratio
S0101_C06_036E Estimate!!Percent Female!!Total population!!SUMMARY INDICATORS!!Child dependency ratio
S0101_C06_037E Estimate!!Percent Female!!Total population!!PERCENT ALLOCATED!!Sex
S0101_C06_038E Estimate!!Percent Female!!Total population!!PERCENT ALLOCATED!!Age
com_data <- read.csv("Data/ACSST5Y2022.S0801_2024-10-09T003539/ACSST5Y2022.S0801-Data.csv")|>
  dplyr::select(-NAME)

com_MetaData <- read.csv("Data/ACSST5Y2022.S0801_2024-10-09T003539/ACSST5Y2022.S0801-Column-Metadata.csv") 
# Filter out Margins of Error to make viewing easier
com_MetaData |>
  filter(grepl(pattern = "E$", Column.Name)) |>
  kable(Caption = "Comm Data Variable Codes") |>
  kable_material(lightable_options = "striped") |>
  scroll_box(width = "100%", height = "400px") 
Column.Name Label
NAME Geographic Area Name
S0801_C01_001E Estimate!!Total!!Workers 16 years and over
S0801_C01_002E Estimate!!Total!!Workers 16 years and over!!MEANS OF TRANSPORTATION TO WORK!!Car, truck, or van
S0801_C01_003E Estimate!!Total!!Workers 16 years and over!!MEANS OF TRANSPORTATION TO WORK!!Car, truck, or van!!Drove alone
S0801_C01_004E Estimate!!Total!!Workers 16 years and over!!MEANS OF TRANSPORTATION TO WORK!!Car, truck, or van!!Carpooled
S0801_C01_005E Estimate!!Total!!Workers 16 years and over!!MEANS OF TRANSPORTATION TO WORK!!Car, truck, or van!!Carpooled!!In 2-person carpool
S0801_C01_006E Estimate!!Total!!Workers 16 years and over!!MEANS OF TRANSPORTATION TO WORK!!Car, truck, or van!!Carpooled!!In 3-person carpool
S0801_C01_007E Estimate!!Total!!Workers 16 years and over!!MEANS OF TRANSPORTATION TO WORK!!Car, truck, or van!!Carpooled!!In 4-or-more person carpool
S0801_C01_008E Estimate!!Total!!Workers 16 years and over!!MEANS OF TRANSPORTATION TO WORK!!Car, truck, or van!!Workers per car, truck, or van
S0801_C01_009E Estimate!!Total!!Workers 16 years and over!!MEANS OF TRANSPORTATION TO WORK!!Public transportation (excluding taxicab)
S0801_C01_010E Estimate!!Total!!Workers 16 years and over!!MEANS OF TRANSPORTATION TO WORK!!Walked
S0801_C01_011E Estimate!!Total!!Workers 16 years and over!!MEANS OF TRANSPORTATION TO WORK!!Bicycle
S0801_C01_012E Estimate!!Total!!Workers 16 years and over!!MEANS OF TRANSPORTATION TO WORK!!Taxicab, motorcycle, or other means
S0801_C01_013E Estimate!!Total!!Workers 16 years and over!!MEANS OF TRANSPORTATION TO WORK!!Worked from home
S0801_C01_014E Estimate!!Total!!Workers 16 years and over!!PLACE OF WORK!!Worked in state of residence
S0801_C01_015E Estimate!!Total!!Workers 16 years and over!!PLACE OF WORK!!Worked in state of residence!!Worked in county of residence
S0801_C01_016E Estimate!!Total!!Workers 16 years and over!!PLACE OF WORK!!Worked in state of residence!!Worked outside county of residence
S0801_C01_017E Estimate!!Total!!Workers 16 years and over!!PLACE OF WORK!!Worked outside state of residence
S0801_C01_018E Estimate!!Total!!Workers 16 years and over!!PLACE OF WORK!!Living in a place
S0801_C01_019E Estimate!!Total!!Workers 16 years and over!!PLACE OF WORK!!Living in a place!!Worked in place of residence
S0801_C01_020E Estimate!!Total!!Workers 16 years and over!!PLACE OF WORK!!Living in a place!!Worked outside place of residence
S0801_C01_021E Estimate!!Total!!Workers 16 years and over!!PLACE OF WORK!!Not living in a place
S0801_C01_022E Estimate!!Total!!Workers 16 years and over!!PLACE OF WORK!!Living in 12 selected states
S0801_C01_023E Estimate!!Total!!Workers 16 years and over!!PLACE OF WORK!!Living in 12 selected states!!Worked in minor civil division of residence
S0801_C01_024E Estimate!!Total!!Workers 16 years and over!!PLACE OF WORK!!Living in 12 selected states!!Worked outside minor civil division of residence
S0801_C01_025E Estimate!!Total!!Workers 16 years and over!!PLACE OF WORK!!Not living in 12 selected states
S0801_C01_026E Estimate!!Total!!Workers 16 years and over who did not work from home
S0801_C01_027E Estimate!!Total!!Workers 16 years and over who did not work from home!!TIME OF DEPARTURE TO GO TO WORK!!12:00 a.m. to 4:59 a.m.
S0801_C01_028E Estimate!!Total!!Workers 16 years and over who did not work from home!!TIME OF DEPARTURE TO GO TO WORK!!5:00 a.m. to 5:29 a.m.
S0801_C01_029E Estimate!!Total!!Workers 16 years and over who did not work from home!!TIME OF DEPARTURE TO GO TO WORK!!5:30 a.m. to 5:59 a.m.
S0801_C01_030E Estimate!!Total!!Workers 16 years and over who did not work from home!!TIME OF DEPARTURE TO GO TO WORK!!6:00 a.m. to 6:29 a.m.
S0801_C01_031E Estimate!!Total!!Workers 16 years and over who did not work from home!!TIME OF DEPARTURE TO GO TO WORK!!6:30 a.m. to 6:59 a.m.
S0801_C01_032E Estimate!!Total!!Workers 16 years and over who did not work from home!!TIME OF DEPARTURE TO GO TO WORK!!7:00 a.m. to 7:29 a.m.
S0801_C01_033E Estimate!!Total!!Workers 16 years and over who did not work from home!!TIME OF DEPARTURE TO GO TO WORK!!7:30 a.m. to 7:59 a.m.
S0801_C01_034E Estimate!!Total!!Workers 16 years and over who did not work from home!!TIME OF DEPARTURE TO GO TO WORK!!8:00 a.m. to 8:29 a.m.
S0801_C01_035E Estimate!!Total!!Workers 16 years and over who did not work from home!!TIME OF DEPARTURE TO GO TO WORK!!8:30 a.m. to 8:59 a.m.
S0801_C01_036E Estimate!!Total!!Workers 16 years and over who did not work from home!!TIME OF DEPARTURE TO GO TO WORK!!9:00 a.m. to 11:59 p.m.
S0801_C01_037E Estimate!!Total!!Workers 16 years and over who did not work from home!!TRAVEL TIME TO WORK!!Less than 10 minutes
S0801_C01_038E Estimate!!Total!!Workers 16 years and over who did not work from home!!TRAVEL TIME TO WORK!!10 to 14 minutes
S0801_C01_039E Estimate!!Total!!Workers 16 years and over who did not work from home!!TRAVEL TIME TO WORK!!15 to 19 minutes
S0801_C01_040E Estimate!!Total!!Workers 16 years and over who did not work from home!!TRAVEL TIME TO WORK!!20 to 24 minutes
S0801_C01_041E Estimate!!Total!!Workers 16 years and over who did not work from home!!TRAVEL TIME TO WORK!!25 to 29 minutes
S0801_C01_042E Estimate!!Total!!Workers 16 years and over who did not work from home!!TRAVEL TIME TO WORK!!30 to 34 minutes
S0801_C01_043E Estimate!!Total!!Workers 16 years and over who did not work from home!!TRAVEL TIME TO WORK!!35 to 44 minutes
S0801_C01_044E Estimate!!Total!!Workers 16 years and over who did not work from home!!TRAVEL TIME TO WORK!!45 to 59 minutes
S0801_C01_045E Estimate!!Total!!Workers 16 years and over who did not work from home!!TRAVEL TIME TO WORK!!60 or more minutes
S0801_C01_046E Estimate!!Total!!Workers 16 years and over who did not work from home!!TRAVEL TIME TO WORK!!Mean travel time to work (minutes)
S0801_C01_047E Estimate!!Total!!VEHICLES AVAILABLE!!Workers 16 years and over in households
S0801_C01_048E Estimate!!Total!!VEHICLES AVAILABLE!!Workers 16 years and over in households!!No vehicle available
S0801_C01_049E Estimate!!Total!!VEHICLES AVAILABLE!!Workers 16 years and over in households!!1 vehicle available
S0801_C01_050E Estimate!!Total!!VEHICLES AVAILABLE!!Workers 16 years and over in households!!2 vehicles available
S0801_C01_051E Estimate!!Total!!VEHICLES AVAILABLE!!Workers 16 years and over in households!!3 or more vehicles available
S0801_C01_052E Estimate!!Total!!PERCENT ALLOCATED!!Means of transportation to work
S0801_C01_053E Estimate!!Total!!PERCENT ALLOCATED!!Private vehicle occupancy
S0801_C01_054E Estimate!!Total!!PERCENT ALLOCATED!!Place of work
S0801_C01_055E Estimate!!Total!!PERCENT ALLOCATED!!Time of departure to go to work
S0801_C01_056E Estimate!!Total!!PERCENT ALLOCATED!!Travel time to work
S0801_C01_057E Estimate!!Total!!PERCENT ALLOCATED!!Vehicles available
S0801_C02_001E Estimate!!Male!!Workers 16 years and over
S0801_C02_002E Estimate!!Male!!Workers 16 years and over!!MEANS OF TRANSPORTATION TO WORK!!Car, truck, or van
S0801_C02_003E Estimate!!Male!!Workers 16 years and over!!MEANS OF TRANSPORTATION TO WORK!!Car, truck, or van!!Drove alone
S0801_C02_004E Estimate!!Male!!Workers 16 years and over!!MEANS OF TRANSPORTATION TO WORK!!Car, truck, or van!!Carpooled
S0801_C02_005E Estimate!!Male!!Workers 16 years and over!!MEANS OF TRANSPORTATION TO WORK!!Car, truck, or van!!Carpooled!!In 2-person carpool
S0801_C02_006E Estimate!!Male!!Workers 16 years and over!!MEANS OF TRANSPORTATION TO WORK!!Car, truck, or van!!Carpooled!!In 3-person carpool
S0801_C02_007E Estimate!!Male!!Workers 16 years and over!!MEANS OF TRANSPORTATION TO WORK!!Car, truck, or van!!Carpooled!!In 4-or-more person carpool
S0801_C02_008E Estimate!!Male!!Workers 16 years and over!!MEANS OF TRANSPORTATION TO WORK!!Car, truck, or van!!Workers per car, truck, or van
S0801_C02_009E Estimate!!Male!!Workers 16 years and over!!MEANS OF TRANSPORTATION TO WORK!!Public transportation (excluding taxicab)
S0801_C02_010E Estimate!!Male!!Workers 16 years and over!!MEANS OF TRANSPORTATION TO WORK!!Walked
S0801_C02_011E Estimate!!Male!!Workers 16 years and over!!MEANS OF TRANSPORTATION TO WORK!!Bicycle
S0801_C02_012E Estimate!!Male!!Workers 16 years and over!!MEANS OF TRANSPORTATION TO WORK!!Taxicab, motorcycle, or other means
S0801_C02_013E Estimate!!Male!!Workers 16 years and over!!MEANS OF TRANSPORTATION TO WORK!!Worked from home
S0801_C02_014E Estimate!!Male!!Workers 16 years and over!!PLACE OF WORK!!Worked in state of residence
S0801_C02_015E Estimate!!Male!!Workers 16 years and over!!PLACE OF WORK!!Worked in state of residence!!Worked in county of residence
S0801_C02_016E Estimate!!Male!!Workers 16 years and over!!PLACE OF WORK!!Worked in state of residence!!Worked outside county of residence
S0801_C02_017E Estimate!!Male!!Workers 16 years and over!!PLACE OF WORK!!Worked outside state of residence
S0801_C02_018E Estimate!!Male!!Workers 16 years and over!!PLACE OF WORK!!Living in a place
S0801_C02_019E Estimate!!Male!!Workers 16 years and over!!PLACE OF WORK!!Living in a place!!Worked in place of residence
S0801_C02_020E Estimate!!Male!!Workers 16 years and over!!PLACE OF WORK!!Living in a place!!Worked outside place of residence
S0801_C02_021E Estimate!!Male!!Workers 16 years and over!!PLACE OF WORK!!Not living in a place
S0801_C02_022E Estimate!!Male!!Workers 16 years and over!!PLACE OF WORK!!Living in 12 selected states
S0801_C02_023E Estimate!!Male!!Workers 16 years and over!!PLACE OF WORK!!Living in 12 selected states!!Worked in minor civil division of residence
S0801_C02_024E Estimate!!Male!!Workers 16 years and over!!PLACE OF WORK!!Living in 12 selected states!!Worked outside minor civil division of residence
S0801_C02_025E Estimate!!Male!!Workers 16 years and over!!PLACE OF WORK!!Not living in 12 selected states
S0801_C02_026E Estimate!!Male!!Workers 16 years and over who did not work from home
S0801_C02_027E Estimate!!Male!!Workers 16 years and over who did not work from home!!TIME OF DEPARTURE TO GO TO WORK!!12:00 a.m. to 4:59 a.m.
S0801_C02_028E Estimate!!Male!!Workers 16 years and over who did not work from home!!TIME OF DEPARTURE TO GO TO WORK!!5:00 a.m. to 5:29 a.m.
S0801_C02_029E Estimate!!Male!!Workers 16 years and over who did not work from home!!TIME OF DEPARTURE TO GO TO WORK!!5:30 a.m. to 5:59 a.m.
S0801_C02_030E Estimate!!Male!!Workers 16 years and over who did not work from home!!TIME OF DEPARTURE TO GO TO WORK!!6:00 a.m. to 6:29 a.m.
S0801_C02_031E Estimate!!Male!!Workers 16 years and over who did not work from home!!TIME OF DEPARTURE TO GO TO WORK!!6:30 a.m. to 6:59 a.m.
S0801_C02_032E Estimate!!Male!!Workers 16 years and over who did not work from home!!TIME OF DEPARTURE TO GO TO WORK!!7:00 a.m. to 7:29 a.m.
S0801_C02_033E Estimate!!Male!!Workers 16 years and over who did not work from home!!TIME OF DEPARTURE TO GO TO WORK!!7:30 a.m. to 7:59 a.m.
S0801_C02_034E Estimate!!Male!!Workers 16 years and over who did not work from home!!TIME OF DEPARTURE TO GO TO WORK!!8:00 a.m. to 8:29 a.m.
S0801_C02_035E Estimate!!Male!!Workers 16 years and over who did not work from home!!TIME OF DEPARTURE TO GO TO WORK!!8:30 a.m. to 8:59 a.m.
S0801_C02_036E Estimate!!Male!!Workers 16 years and over who did not work from home!!TIME OF DEPARTURE TO GO TO WORK!!9:00 a.m. to 11:59 p.m.
S0801_C02_037E Estimate!!Male!!Workers 16 years and over who did not work from home!!TRAVEL TIME TO WORK!!Less than 10 minutes
S0801_C02_038E Estimate!!Male!!Workers 16 years and over who did not work from home!!TRAVEL TIME TO WORK!!10 to 14 minutes
S0801_C02_039E Estimate!!Male!!Workers 16 years and over who did not work from home!!TRAVEL TIME TO WORK!!15 to 19 minutes
S0801_C02_040E Estimate!!Male!!Workers 16 years and over who did not work from home!!TRAVEL TIME TO WORK!!20 to 24 minutes
S0801_C02_041E Estimate!!Male!!Workers 16 years and over who did not work from home!!TRAVEL TIME TO WORK!!25 to 29 minutes
S0801_C02_042E Estimate!!Male!!Workers 16 years and over who did not work from home!!TRAVEL TIME TO WORK!!30 to 34 minutes
S0801_C02_043E Estimate!!Male!!Workers 16 years and over who did not work from home!!TRAVEL TIME TO WORK!!35 to 44 minutes
S0801_C02_044E Estimate!!Male!!Workers 16 years and over who did not work from home!!TRAVEL TIME TO WORK!!45 to 59 minutes
S0801_C02_045E Estimate!!Male!!Workers 16 years and over who did not work from home!!TRAVEL TIME TO WORK!!60 or more minutes
S0801_C02_046E Estimate!!Male!!Workers 16 years and over who did not work from home!!TRAVEL TIME TO WORK!!Mean travel time to work (minutes)
S0801_C02_047E Estimate!!Male!!VEHICLES AVAILABLE!!Workers 16 years and over in households
S0801_C02_048E Estimate!!Male!!VEHICLES AVAILABLE!!Workers 16 years and over in households!!No vehicle available
S0801_C02_049E Estimate!!Male!!VEHICLES AVAILABLE!!Workers 16 years and over in households!!1 vehicle available
S0801_C02_050E Estimate!!Male!!VEHICLES AVAILABLE!!Workers 16 years and over in households!!2 vehicles available
S0801_C02_051E Estimate!!Male!!VEHICLES AVAILABLE!!Workers 16 years and over in households!!3 or more vehicles available
S0801_C02_052E Estimate!!Male!!PERCENT ALLOCATED!!Means of transportation to work
S0801_C02_053E Estimate!!Male!!PERCENT ALLOCATED!!Private vehicle occupancy
S0801_C02_054E Estimate!!Male!!PERCENT ALLOCATED!!Place of work
S0801_C02_055E Estimate!!Male!!PERCENT ALLOCATED!!Time of departure to go to work
S0801_C02_056E Estimate!!Male!!PERCENT ALLOCATED!!Travel time to work
S0801_C02_057E Estimate!!Male!!PERCENT ALLOCATED!!Vehicles available
S0801_C03_001E Estimate!!Female!!Workers 16 years and over
S0801_C03_002E Estimate!!Female!!Workers 16 years and over!!MEANS OF TRANSPORTATION TO WORK!!Car, truck, or van
S0801_C03_003E Estimate!!Female!!Workers 16 years and over!!MEANS OF TRANSPORTATION TO WORK!!Car, truck, or van!!Drove alone
S0801_C03_004E Estimate!!Female!!Workers 16 years and over!!MEANS OF TRANSPORTATION TO WORK!!Car, truck, or van!!Carpooled
S0801_C03_005E Estimate!!Female!!Workers 16 years and over!!MEANS OF TRANSPORTATION TO WORK!!Car, truck, or van!!Carpooled!!In 2-person carpool
S0801_C03_006E Estimate!!Female!!Workers 16 years and over!!MEANS OF TRANSPORTATION TO WORK!!Car, truck, or van!!Carpooled!!In 3-person carpool
S0801_C03_007E Estimate!!Female!!Workers 16 years and over!!MEANS OF TRANSPORTATION TO WORK!!Car, truck, or van!!Carpooled!!In 4-or-more person carpool
S0801_C03_008E Estimate!!Female!!Workers 16 years and over!!MEANS OF TRANSPORTATION TO WORK!!Car, truck, or van!!Workers per car, truck, or van
S0801_C03_009E Estimate!!Female!!Workers 16 years and over!!MEANS OF TRANSPORTATION TO WORK!!Public transportation (excluding taxicab)
S0801_C03_010E Estimate!!Female!!Workers 16 years and over!!MEANS OF TRANSPORTATION TO WORK!!Walked
S0801_C03_011E Estimate!!Female!!Workers 16 years and over!!MEANS OF TRANSPORTATION TO WORK!!Bicycle
S0801_C03_012E Estimate!!Female!!Workers 16 years and over!!MEANS OF TRANSPORTATION TO WORK!!Taxicab, motorcycle, or other means
S0801_C03_013E Estimate!!Female!!Workers 16 years and over!!MEANS OF TRANSPORTATION TO WORK!!Worked from home
S0801_C03_014E Estimate!!Female!!Workers 16 years and over!!PLACE OF WORK!!Worked in state of residence
S0801_C03_015E Estimate!!Female!!Workers 16 years and over!!PLACE OF WORK!!Worked in state of residence!!Worked in county of residence
S0801_C03_016E Estimate!!Female!!Workers 16 years and over!!PLACE OF WORK!!Worked in state of residence!!Worked outside county of residence
S0801_C03_017E Estimate!!Female!!Workers 16 years and over!!PLACE OF WORK!!Worked outside state of residence
S0801_C03_018E Estimate!!Female!!Workers 16 years and over!!PLACE OF WORK!!Living in a place
S0801_C03_019E Estimate!!Female!!Workers 16 years and over!!PLACE OF WORK!!Living in a place!!Worked in place of residence
S0801_C03_020E Estimate!!Female!!Workers 16 years and over!!PLACE OF WORK!!Living in a place!!Worked outside place of residence
S0801_C03_021E Estimate!!Female!!Workers 16 years and over!!PLACE OF WORK!!Not living in a place
S0801_C03_022E Estimate!!Female!!Workers 16 years and over!!PLACE OF WORK!!Living in 12 selected states
S0801_C03_023E Estimate!!Female!!Workers 16 years and over!!PLACE OF WORK!!Living in 12 selected states!!Worked in minor civil division of residence
S0801_C03_024E Estimate!!Female!!Workers 16 years and over!!PLACE OF WORK!!Living in 12 selected states!!Worked outside minor civil division of residence
S0801_C03_025E Estimate!!Female!!Workers 16 years and over!!PLACE OF WORK!!Not living in 12 selected states
S0801_C03_026E Estimate!!Female!!Workers 16 years and over who did not work from home
S0801_C03_027E Estimate!!Female!!Workers 16 years and over who did not work from home!!TIME OF DEPARTURE TO GO TO WORK!!12:00 a.m. to 4:59 a.m.
S0801_C03_028E Estimate!!Female!!Workers 16 years and over who did not work from home!!TIME OF DEPARTURE TO GO TO WORK!!5:00 a.m. to 5:29 a.m.
S0801_C03_029E Estimate!!Female!!Workers 16 years and over who did not work from home!!TIME OF DEPARTURE TO GO TO WORK!!5:30 a.m. to 5:59 a.m.
S0801_C03_030E Estimate!!Female!!Workers 16 years and over who did not work from home!!TIME OF DEPARTURE TO GO TO WORK!!6:00 a.m. to 6:29 a.m.
S0801_C03_031E Estimate!!Female!!Workers 16 years and over who did not work from home!!TIME OF DEPARTURE TO GO TO WORK!!6:30 a.m. to 6:59 a.m.
S0801_C03_032E Estimate!!Female!!Workers 16 years and over who did not work from home!!TIME OF DEPARTURE TO GO TO WORK!!7:00 a.m. to 7:29 a.m.
S0801_C03_033E Estimate!!Female!!Workers 16 years and over who did not work from home!!TIME OF DEPARTURE TO GO TO WORK!!7:30 a.m. to 7:59 a.m.
S0801_C03_034E Estimate!!Female!!Workers 16 years and over who did not work from home!!TIME OF DEPARTURE TO GO TO WORK!!8:00 a.m. to 8:29 a.m.
S0801_C03_035E Estimate!!Female!!Workers 16 years and over who did not work from home!!TIME OF DEPARTURE TO GO TO WORK!!8:30 a.m. to 8:59 a.m.
S0801_C03_036E Estimate!!Female!!Workers 16 years and over who did not work from home!!TIME OF DEPARTURE TO GO TO WORK!!9:00 a.m. to 11:59 p.m.
S0801_C03_037E Estimate!!Female!!Workers 16 years and over who did not work from home!!TRAVEL TIME TO WORK!!Less than 10 minutes
S0801_C03_038E Estimate!!Female!!Workers 16 years and over who did not work from home!!TRAVEL TIME TO WORK!!10 to 14 minutes
S0801_C03_039E Estimate!!Female!!Workers 16 years and over who did not work from home!!TRAVEL TIME TO WORK!!15 to 19 minutes
S0801_C03_040E Estimate!!Female!!Workers 16 years and over who did not work from home!!TRAVEL TIME TO WORK!!20 to 24 minutes
S0801_C03_041E Estimate!!Female!!Workers 16 years and over who did not work from home!!TRAVEL TIME TO WORK!!25 to 29 minutes
S0801_C03_042E Estimate!!Female!!Workers 16 years and over who did not work from home!!TRAVEL TIME TO WORK!!30 to 34 minutes
S0801_C03_043E Estimate!!Female!!Workers 16 years and over who did not work from home!!TRAVEL TIME TO WORK!!35 to 44 minutes
S0801_C03_044E Estimate!!Female!!Workers 16 years and over who did not work from home!!TRAVEL TIME TO WORK!!45 to 59 minutes
S0801_C03_045E Estimate!!Female!!Workers 16 years and over who did not work from home!!TRAVEL TIME TO WORK!!60 or more minutes
S0801_C03_046E Estimate!!Female!!Workers 16 years and over who did not work from home!!TRAVEL TIME TO WORK!!Mean travel time to work (minutes)
S0801_C03_047E Estimate!!Female!!VEHICLES AVAILABLE!!Workers 16 years and over in households
S0801_C03_048E Estimate!!Female!!VEHICLES AVAILABLE!!Workers 16 years and over in households!!No vehicle available
S0801_C03_049E Estimate!!Female!!VEHICLES AVAILABLE!!Workers 16 years and over in households!!1 vehicle available
S0801_C03_050E Estimate!!Female!!VEHICLES AVAILABLE!!Workers 16 years and over in households!!2 vehicles available
S0801_C03_051E Estimate!!Female!!VEHICLES AVAILABLE!!Workers 16 years and over in households!!3 or more vehicles available
S0801_C03_052E Estimate!!Female!!PERCENT ALLOCATED!!Means of transportation to work
S0801_C03_053E Estimate!!Female!!PERCENT ALLOCATED!!Private vehicle occupancy
S0801_C03_054E Estimate!!Female!!PERCENT ALLOCATED!!Place of work
S0801_C03_055E Estimate!!Female!!PERCENT ALLOCATED!!Time of departure to go to work
S0801_C03_056E Estimate!!Female!!PERCENT ALLOCATED!!Travel time to work
S0801_C03_057E Estimate!!Female!!PERCENT ALLOCATED!!Vehicles available
# Read tract shapes
TractShapes <- st_read(dsn =  "Data/tl_2023_25_tract/tl_2023_25_tract.shp") 
## Reading layer `tl_2023_25_tract' from data source 
##   `/Users/avery/Documents/Rpubs_Projects/Maps/MA/Data/tl_2023_25_tract/tl_2023_25_tract.shp' 
##   using driver `ESRI Shapefile'
## Simple feature collection with 1620 features and 13 fields
## Geometry type: MULTIPOLYGON
## Dimension:     XY
## Bounding box:  xmin: -73.50821 ymin: 41.18705 xmax: -69.85886 ymax: 42.88678
## Geodetic CRS:  NAD83
# City shapes comes from MASSGIS in a slightly different format. 
CityShapes <- st_read(dsn = "Data/townssurvey_shp/TOWNSSURVEY_POLYM.shp")
## Reading layer `TOWNSSURVEY_POLYM' from data source 
##   `/Users/avery/Documents/Rpubs_Projects/Maps/MA/Data/townssurvey_shp/TOWNSSURVEY_POLYM.shp' 
##   using driver `ESRI Shapefile'
## Simple feature collection with 351 features and 18 fields
## Geometry type: MULTIPOLYGON
## Dimension:     XY
## Bounding box:  xmin: 33863.73 ymin: 777606.4 xmax: 330837 ymax: 959743
## Projected CRS: NAD83 / Massachusetts Mainland
# rename and numeric-ify Long and Lat
TractShapes <- TractShapes |> 
  mutate(INTPTLAT = as.numeric(INTPTLAT),
         INTPTLON = as.numeric(INTPTLON)) |> 
  rename(Latitude = INTPTLAT,
         Longitude = INTPTLON)

CityShapes <- CityShapes |> 
  st_as_sf()

2.2 Join data

We can now jump right into merging the data. We will do this using the dplyr::inner_join function. This function returns all of the rows that match in each data frame. We will join together pop_data, inc_data, and com_data into a single data frame called inc_map_data.

# Join Population and Income data, Tract Level
inc_map_data <- inner_join(pop_data, inc_data,  by = c("GEO_ID" ))


# Join Pop/inc data with Commute data, Tract Level 
inc_map_data <- inner_join(inc_map_data ,com_data, by = c("GEO_ID"))

Next, we must coerce the data into a numeric format. For this, we will use base::as.numeric. This function has the useful side effect of converting observations that can’t be interpreted as numbers into NA values. This is beneficial because we have some missing values are represented as blanks, '-', and 'N'. We are leveraging this side effect to ensure consistency in our missing values.

# we want to coerce NAs so that missing values are consistent
inc_map_data <- inc_map_data |>
  slice(-1) |>
  mutate(across(c(-GEO_ID, -NAME.x, -NAME.y), ~as.numeric(.)))
## Warning: There were 704 warnings in `mutate()`.
## The first warning was:
## ℹ In argument: `across(c(-GEO_ID, -NAME.x, -NAME.y), ~as.numeric(.))`.
## Caused by warning:
## ! NAs introduced by coercion
## ℹ Run `dplyr::last_dplyr_warnings()` to see the 703 remaining warnings.

Finally, we have one more join to complete. This will involve the inc_map_data, which contains most of the data we want to map, and the TractShapes, which contains the shapes of Census tracts. After this step, we will have our complete map data named map_data.

# join incomplete map data with the Tract shapes 
map_data <- inner_join(inc_map_data, TractShapes,by = c('GEO_ID' = "GEOIDFQ")) 


map_data |>
  head() |>
  kable(caption = 'Map Data') |>
  kable_material(lightable_options = "striped") |>
  scroll_box(width = "100 |> %", height = "400px") 
Map Data
GEO_ID NAME.x S0101_C01_001E S0101_C01_001M S0101_C01_002E S0101_C01_002M S0101_C01_003E S0101_C01_003M S0101_C01_004E S0101_C01_004M S0101_C01_005E S0101_C01_005M S0101_C01_006E S0101_C01_006M S0101_C01_007E S0101_C01_007M S0101_C01_008E S0101_C01_008M S0101_C01_009E S0101_C01_009M S0101_C01_010E S0101_C01_010M S0101_C01_011E S0101_C01_011M S0101_C01_012E S0101_C01_012M S0101_C01_013E S0101_C01_013M S0101_C01_014E S0101_C01_014M S0101_C01_015E S0101_C01_015M S0101_C01_016E S0101_C01_016M S0101_C01_017E S0101_C01_017M S0101_C01_018E S0101_C01_018M S0101_C01_019E S0101_C01_019M S0101_C01_020E S0101_C01_020M S0101_C01_021E S0101_C01_021M S0101_C01_022E S0101_C01_022M S0101_C01_023E S0101_C01_023M S0101_C01_024E S0101_C01_024M S0101_C01_025E S0101_C01_025M S0101_C01_026E S0101_C01_026M S0101_C01_027E S0101_C01_027M S0101_C01_028E S0101_C01_028M S0101_C01_029E S0101_C01_029M S0101_C01_030E S0101_C01_030M S0101_C01_031E S0101_C01_031M S0101_C01_032E S0101_C01_032M S0101_C01_033E S0101_C01_033M S0101_C01_034E S0101_C01_034M S0101_C01_035E S0101_C01_035M S0101_C01_036E S0101_C01_036M S0101_C01_037E S0101_C01_037M S0101_C01_038E S0101_C01_038M S0101_C02_001E S0101_C02_001M S0101_C02_002E S0101_C02_002M S0101_C02_003E S0101_C02_003M S0101_C02_004E S0101_C02_004M S0101_C02_005E S0101_C02_005M S0101_C02_006E S0101_C02_006M S0101_C02_007E S0101_C02_007M S0101_C02_008E S0101_C02_008M S0101_C02_009E S0101_C02_009M S0101_C02_010E S0101_C02_010M S0101_C02_011E S0101_C02_011M S0101_C02_012E S0101_C02_012M S0101_C02_013E S0101_C02_013M S0101_C02_014E S0101_C02_014M S0101_C02_015E S0101_C02_015M S0101_C02_016E S0101_C02_016M S0101_C02_017E S0101_C02_017M S0101_C02_018E S0101_C02_018M S0101_C02_019E S0101_C02_019M S0101_C02_020E S0101_C02_020M S0101_C02_021E S0101_C02_021M S0101_C02_022E S0101_C02_022M S0101_C02_023E S0101_C02_023M S0101_C02_024E S0101_C02_024M S0101_C02_025E S0101_C02_025M S0101_C02_026E S0101_C02_026M S0101_C02_027E S0101_C02_027M S0101_C02_028E S0101_C02_028M S0101_C02_029E S0101_C02_029M S0101_C02_030E S0101_C02_030M S0101_C02_031E S0101_C02_031M S0101_C02_032E S0101_C02_032M S0101_C02_033E S0101_C02_033M S0101_C02_034E S0101_C02_034M S0101_C02_035E S0101_C02_035M S0101_C02_036E S0101_C02_036M S0101_C02_037E S0101_C02_037M S0101_C02_038E S0101_C02_038M S0101_C03_001E S0101_C03_001M S0101_C03_002E S0101_C03_002M S0101_C03_003E S0101_C03_003M S0101_C03_004E S0101_C03_004M S0101_C03_005E S0101_C03_005M S0101_C03_006E S0101_C03_006M S0101_C03_007E S0101_C03_007M S0101_C03_008E S0101_C03_008M S0101_C03_009E S0101_C03_009M S0101_C03_010E S0101_C03_010M S0101_C03_011E S0101_C03_011M S0101_C03_012E S0101_C03_012M S0101_C03_013E S0101_C03_013M S0101_C03_014E S0101_C03_014M S0101_C03_015E S0101_C03_015M S0101_C03_016E S0101_C03_016M S0101_C03_017E S0101_C03_017M S0101_C03_018E S0101_C03_018M S0101_C03_019E S0101_C03_019M S0101_C03_020E S0101_C03_020M S0101_C03_021E S0101_C03_021M S0101_C03_022E S0101_C03_022M S0101_C03_023E S0101_C03_023M S0101_C03_024E S0101_C03_024M S0101_C03_025E S0101_C03_025M S0101_C03_026E S0101_C03_026M S0101_C03_027E S0101_C03_027M S0101_C03_028E S0101_C03_028M S0101_C03_029E S0101_C03_029M S0101_C03_030E S0101_C03_030M S0101_C03_031E S0101_C03_031M S0101_C03_032E S0101_C03_032M S0101_C03_033E S0101_C03_033M S0101_C03_034E S0101_C03_034M S0101_C03_035E S0101_C03_035M S0101_C03_036E S0101_C03_036M S0101_C03_037E S0101_C03_037M S0101_C03_038E S0101_C03_038M S0101_C04_001E S0101_C04_001M S0101_C04_002E S0101_C04_002M S0101_C04_003E S0101_C04_003M S0101_C04_004E S0101_C04_004M S0101_C04_005E S0101_C04_005M S0101_C04_006E S0101_C04_006M S0101_C04_007E S0101_C04_007M S0101_C04_008E S0101_C04_008M S0101_C04_009E S0101_C04_009M S0101_C04_010E S0101_C04_010M S0101_C04_011E S0101_C04_011M S0101_C04_012E S0101_C04_012M S0101_C04_013E S0101_C04_013M S0101_C04_014E S0101_C04_014M S0101_C04_015E S0101_C04_015M S0101_C04_016E S0101_C04_016M S0101_C04_017E S0101_C04_017M S0101_C04_018E S0101_C04_018M S0101_C04_019E S0101_C04_019M S0101_C04_020E S0101_C04_020M S0101_C04_021E S0101_C04_021M S0101_C04_022E S0101_C04_022M S0101_C04_023E S0101_C04_023M S0101_C04_024E S0101_C04_024M S0101_C04_025E S0101_C04_025M S0101_C04_026E S0101_C04_026M S0101_C04_027E S0101_C04_027M S0101_C04_028E S0101_C04_028M S0101_C04_029E S0101_C04_029M S0101_C04_030E S0101_C04_030M S0101_C04_031E S0101_C04_031M S0101_C04_032E S0101_C04_032M S0101_C04_033E S0101_C04_033M S0101_C04_034E S0101_C04_034M S0101_C04_035E S0101_C04_035M S0101_C04_036E S0101_C04_036M S0101_C04_037E S0101_C04_037M S0101_C04_038E S0101_C04_038M S0101_C05_001E S0101_C05_001M S0101_C05_002E S0101_C05_002M S0101_C05_003E S0101_C05_003M S0101_C05_004E S0101_C05_004M S0101_C05_005E S0101_C05_005M S0101_C05_006E S0101_C05_006M S0101_C05_007E S0101_C05_007M S0101_C05_008E S0101_C05_008M S0101_C05_009E S0101_C05_009M S0101_C05_010E S0101_C05_010M S0101_C05_011E S0101_C05_011M S0101_C05_012E S0101_C05_012M S0101_C05_013E S0101_C05_013M S0101_C05_014E S0101_C05_014M S0101_C05_015E S0101_C05_015M S0101_C05_016E S0101_C05_016M S0101_C05_017E S0101_C05_017M S0101_C05_018E S0101_C05_018M S0101_C05_019E S0101_C05_019M S0101_C05_020E S0101_C05_020M S0101_C05_021E S0101_C05_021M S0101_C05_022E S0101_C05_022M S0101_C05_023E S0101_C05_023M S0101_C05_024E S0101_C05_024M S0101_C05_025E S0101_C05_025M S0101_C05_026E S0101_C05_026M S0101_C05_027E S0101_C05_027M S0101_C05_028E S0101_C05_028M S0101_C05_029E S0101_C05_029M S0101_C05_030E S0101_C05_030M S0101_C05_031E S0101_C05_031M S0101_C05_032E S0101_C05_032M S0101_C05_033E S0101_C05_033M S0101_C05_034E S0101_C05_034M S0101_C05_035E S0101_C05_035M S0101_C05_036E S0101_C05_036M S0101_C05_037E S0101_C05_037M S0101_C05_038E S0101_C05_038M S0101_C06_001E S0101_C06_001M S0101_C06_002E S0101_C06_002M S0101_C06_003E S0101_C06_003M S0101_C06_004E S0101_C06_004M S0101_C06_005E S0101_C06_005M S0101_C06_006E S0101_C06_006M S0101_C06_007E S0101_C06_007M S0101_C06_008E S0101_C06_008M S0101_C06_009E S0101_C06_009M S0101_C06_010E S0101_C06_010M S0101_C06_011E S0101_C06_011M S0101_C06_012E S0101_C06_012M S0101_C06_013E S0101_C06_013M S0101_C06_014E S0101_C06_014M S0101_C06_015E S0101_C06_015M S0101_C06_016E S0101_C06_016M S0101_C06_017E S0101_C06_017M S0101_C06_018E S0101_C06_018M S0101_C06_019E S0101_C06_019M S0101_C06_020E S0101_C06_020M S0101_C06_021E S0101_C06_021M S0101_C06_022E S0101_C06_022M S0101_C06_023E S0101_C06_023M S0101_C06_024E S0101_C06_024M S0101_C06_025E S0101_C06_025M S0101_C06_026E S0101_C06_026M S0101_C06_027E S0101_C06_027M S0101_C06_028E S0101_C06_028M S0101_C06_029E S0101_C06_029M S0101_C06_030E S0101_C06_030M S0101_C06_031E S0101_C06_031M S0101_C06_032E S0101_C06_032M S0101_C06_033E S0101_C06_033M S0101_C06_034E S0101_C06_034M S0101_C06_035E S0101_C06_035M S0101_C06_036E S0101_C06_036M S0101_C06_037E S0101_C06_037M S0101_C06_038E S0101_C06_038M X.x NAME.y S1902_C01_001E S1902_C01_001M S1902_C01_002E S1902_C01_002M S1902_C01_003E S1902_C01_003M S1902_C01_004E S1902_C01_004M S1902_C01_005E S1902_C01_005M S1902_C01_006E S1902_C01_006M S1902_C01_007E S1902_C01_007M S1902_C01_008E S1902_C01_008M S1902_C01_009E S1902_C01_009M S1902_C01_010E S1902_C01_010M S1902_C01_011E S1902_C01_011M S1902_C01_012E S1902_C01_012M S1902_C01_013E S1902_C01_013M S1902_C01_014E S1902_C01_014M S1902_C01_015E S1902_C01_015M S1902_C01_016E S1902_C01_016M S1902_C01_017E S1902_C01_017M S1902_C01_018E S1902_C01_018M S1902_C01_019E S1902_C01_019M S1902_C01_020E S1902_C01_020M S1902_C01_021E S1902_C01_021M S1902_C01_022E S1902_C01_022M S1902_C01_023E S1902_C01_023M S1902_C01_024E S1902_C01_024M S1902_C01_025E S1902_C01_025M S1902_C01_026E S1902_C01_026M S1902_C01_027E S1902_C01_027M S1902_C01_028E S1902_C01_028M S1902_C02_001E S1902_C02_001M S1902_C02_002E S1902_C02_002M S1902_C02_003E S1902_C02_003M S1902_C02_004E S1902_C02_004M S1902_C02_005E S1902_C02_005M S1902_C02_006E S1902_C02_006M S1902_C02_007E S1902_C02_007M S1902_C02_008E S1902_C02_008M S1902_C02_009E S1902_C02_009M S1902_C02_010E S1902_C02_010M S1902_C02_011E S1902_C02_011M S1902_C02_012E S1902_C02_012M S1902_C02_013E S1902_C02_013M S1902_C02_014E S1902_C02_014M S1902_C02_015E S1902_C02_015M S1902_C02_016E S1902_C02_016M S1902_C02_017E S1902_C02_017M S1902_C02_018E S1902_C02_018M S1902_C02_019E S1902_C02_019M S1902_C02_020E S1902_C02_020M S1902_C02_021E S1902_C02_021M S1902_C02_022E S1902_C02_022M S1902_C02_023E S1902_C02_023M S1902_C02_024E S1902_C02_024M S1902_C02_025E S1902_C02_025M S1902_C02_026E S1902_C02_026M S1902_C02_027E S1902_C02_027M S1902_C02_028E S1902_C02_028M S1902_C03_001E S1902_C03_001M S1902_C03_002E S1902_C03_002M S1902_C03_003E S1902_C03_003M S1902_C03_004E S1902_C03_004M S1902_C03_005E S1902_C03_005M S1902_C03_006E S1902_C03_006M S1902_C03_007E S1902_C03_007M S1902_C03_008E S1902_C03_008M S1902_C03_009E S1902_C03_009M S1902_C03_010E S1902_C03_010M S1902_C03_011E S1902_C03_011M S1902_C03_012E S1902_C03_012M S1902_C03_013E S1902_C03_013M S1902_C03_014E S1902_C03_014M S1902_C03_015E S1902_C03_015M S1902_C03_016E S1902_C03_016M S1902_C03_017E S1902_C03_017M S1902_C03_018E S1902_C03_018M S1902_C03_019E S1902_C03_019M S1902_C03_020E S1902_C03_020M S1902_C03_021E S1902_C03_021M S1902_C03_022E S1902_C03_022M S1902_C03_023E S1902_C03_023M S1902_C03_024E S1902_C03_024M S1902_C03_025E S1902_C03_025M S1902_C03_026E S1902_C03_026M S1902_C03_027E S1902_C03_027M S1902_C03_028E S1902_C03_028M X.y S0801_C01_001E S0801_C01_001M S0801_C01_002E S0801_C01_002M S0801_C01_003E S0801_C01_003M S0801_C01_004E S0801_C01_004M S0801_C01_005E S0801_C01_005M S0801_C01_006E S0801_C01_006M S0801_C01_007E S0801_C01_007M S0801_C01_008E S0801_C01_008M S0801_C01_009E S0801_C01_009M S0801_C01_010E S0801_C01_010M S0801_C01_011E S0801_C01_011M S0801_C01_012E S0801_C01_012M S0801_C01_013E S0801_C01_013M S0801_C01_014E S0801_C01_014M S0801_C01_015E S0801_C01_015M S0801_C01_016E S0801_C01_016M S0801_C01_017E S0801_C01_017M S0801_C01_018E S0801_C01_018M S0801_C01_019E S0801_C01_019M S0801_C01_020E S0801_C01_020M S0801_C01_021E S0801_C01_021M S0801_C01_022E S0801_C01_022M S0801_C01_023E S0801_C01_023M S0801_C01_024E S0801_C01_024M S0801_C01_025E S0801_C01_025M S0801_C01_026E S0801_C01_026M S0801_C01_027E S0801_C01_027M S0801_C01_028E S0801_C01_028M S0801_C01_029E S0801_C01_029M S0801_C01_030E S0801_C01_030M S0801_C01_031E S0801_C01_031M S0801_C01_032E S0801_C01_032M S0801_C01_033E S0801_C01_033M S0801_C01_034E S0801_C01_034M S0801_C01_035E S0801_C01_035M S0801_C01_036E S0801_C01_036M S0801_C01_037E S0801_C01_037M S0801_C01_038E S0801_C01_038M S0801_C01_039E S0801_C01_039M S0801_C01_040E S0801_C01_040M S0801_C01_041E S0801_C01_041M S0801_C01_042E S0801_C01_042M S0801_C01_043E S0801_C01_043M S0801_C01_044E S0801_C01_044M S0801_C01_045E S0801_C01_045M S0801_C01_046E S0801_C01_046M S0801_C01_047E S0801_C01_047M S0801_C01_048E S0801_C01_048M S0801_C01_049E S0801_C01_049M S0801_C01_050E S0801_C01_050M S0801_C01_051E S0801_C01_051M S0801_C01_052E S0801_C01_052M S0801_C01_053E S0801_C01_053M S0801_C01_054E S0801_C01_054M S0801_C01_055E S0801_C01_055M S0801_C01_056E S0801_C01_056M S0801_C01_057E S0801_C01_057M S0801_C02_001E S0801_C02_001M S0801_C02_002E S0801_C02_002M S0801_C02_003E S0801_C02_003M S0801_C02_004E S0801_C02_004M S0801_C02_005E S0801_C02_005M S0801_C02_006E S0801_C02_006M S0801_C02_007E S0801_C02_007M S0801_C02_008E S0801_C02_008M S0801_C02_009E S0801_C02_009M S0801_C02_010E S0801_C02_010M S0801_C02_011E S0801_C02_011M S0801_C02_012E S0801_C02_012M S0801_C02_013E S0801_C02_013M S0801_C02_014E S0801_C02_014M S0801_C02_015E S0801_C02_015M S0801_C02_016E S0801_C02_016M S0801_C02_017E S0801_C02_017M S0801_C02_018E S0801_C02_018M S0801_C02_019E S0801_C02_019M S0801_C02_020E S0801_C02_020M S0801_C02_021E S0801_C02_021M S0801_C02_022E S0801_C02_022M S0801_C02_023E S0801_C02_023M S0801_C02_024E S0801_C02_024M S0801_C02_025E S0801_C02_025M S0801_C02_026E S0801_C02_026M S0801_C02_027E S0801_C02_027M S0801_C02_028E S0801_C02_028M S0801_C02_029E S0801_C02_029M S0801_C02_030E S0801_C02_030M S0801_C02_031E S0801_C02_031M S0801_C02_032E S0801_C02_032M S0801_C02_033E S0801_C02_033M S0801_C02_034E S0801_C02_034M S0801_C02_035E S0801_C02_035M S0801_C02_036E S0801_C02_036M S0801_C02_037E S0801_C02_037M S0801_C02_038E S0801_C02_038M S0801_C02_039E S0801_C02_039M S0801_C02_040E S0801_C02_040M S0801_C02_041E S0801_C02_041M S0801_C02_042E S0801_C02_042M S0801_C02_043E S0801_C02_043M S0801_C02_044E S0801_C02_044M S0801_C02_045E S0801_C02_045M S0801_C02_046E S0801_C02_046M S0801_C02_047E S0801_C02_047M S0801_C02_048E S0801_C02_048M S0801_C02_049E S0801_C02_049M S0801_C02_050E S0801_C02_050M S0801_C02_051E S0801_C02_051M S0801_C02_052E S0801_C02_052M S0801_C02_053E S0801_C02_053M S0801_C02_054E S0801_C02_054M S0801_C02_055E S0801_C02_055M S0801_C02_056E S0801_C02_056M S0801_C02_057E S0801_C02_057M S0801_C03_001E S0801_C03_001M S0801_C03_002E S0801_C03_002M S0801_C03_003E S0801_C03_003M S0801_C03_004E S0801_C03_004M S0801_C03_005E S0801_C03_005M S0801_C03_006E S0801_C03_006M S0801_C03_007E S0801_C03_007M S0801_C03_008E S0801_C03_008M S0801_C03_009E S0801_C03_009M S0801_C03_010E S0801_C03_010M S0801_C03_011E S0801_C03_011M S0801_C03_012E S0801_C03_012M S0801_C03_013E S0801_C03_013M S0801_C03_014E S0801_C03_014M S0801_C03_015E S0801_C03_015M S0801_C03_016E S0801_C03_016M S0801_C03_017E S0801_C03_017M S0801_C03_018E S0801_C03_018M S0801_C03_019E S0801_C03_019M S0801_C03_020E S0801_C03_020M S0801_C03_021E S0801_C03_021M S0801_C03_022E S0801_C03_022M S0801_C03_023E S0801_C03_023M S0801_C03_024E S0801_C03_024M S0801_C03_025E S0801_C03_025M S0801_C03_026E S0801_C03_026M S0801_C03_027E S0801_C03_027M S0801_C03_028E S0801_C03_028M S0801_C03_029E S0801_C03_029M S0801_C03_030E S0801_C03_030M S0801_C03_031E S0801_C03_031M S0801_C03_032E S0801_C03_032M S0801_C03_033E S0801_C03_033M S0801_C03_034E S0801_C03_034M S0801_C03_035E S0801_C03_035M S0801_C03_036E S0801_C03_036M S0801_C03_037E S0801_C03_037M S0801_C03_038E S0801_C03_038M S0801_C03_039E S0801_C03_039M S0801_C03_040E S0801_C03_040M S0801_C03_041E S0801_C03_041M S0801_C03_042E S0801_C03_042M S0801_C03_043E S0801_C03_043M S0801_C03_044E S0801_C03_044M S0801_C03_045E S0801_C03_045M S0801_C03_046E S0801_C03_046M S0801_C03_047E S0801_C03_047M S0801_C03_048E S0801_C03_048M S0801_C03_049E S0801_C03_049M S0801_C03_050E S0801_C03_050M S0801_C03_051E S0801_C03_051M S0801_C03_052E S0801_C03_052M S0801_C03_053E S0801_C03_053M S0801_C03_054E S0801_C03_054M S0801_C03_055E S0801_C03_055M S0801_C03_056E S0801_C03_056M S0801_C03_057E S0801_C03_057M X STATEFP COUNTYFP TRACTCE GEOID NAME NAMELSAD MTFCC FUNCSTAT ALAND AWATER Latitude Longitude geometry
1400000US25001010100 Census Tract 101; Barnstable County; Massachusetts 3630 43 116 104 80 72 43 40 119 80 63 62 128 101 202 131 157 95 263 142 224 139 311 94 558 160 337 123 271 110 344 147 174 104 126 74 114 85 123 92 61 54 300 202 121 81 932 189 3359 194 3330 210 3272 216 1366 242 1265 221 1029 210 414 149 56.1 2.0 167.9 35.5 57.8 15.0 44.7 11.9 13.0 9.5 NA NA NA NA NA NA 3.2 2.9 2.2 2.0 1.2 1.1 3.3 2.2 1.7 1.7 3.5 2.8 5.6 3.6 4.3 2.6 7.2 3.9 6.2 3.8 8.6 2.6 15.4 4.4 9.3 3.4 7.5 3.0 9.5 4.0 4.8 2.9 3.5 2.0 3.1 2.3 3.4 2.5 1.7 1.5 8.3 5.6 3.3 2.2 25.7 5.2 92.5 5.1 91.7 5.6 90.1 5.7 37.6 6.6 34.8 6.1 28.3 5.8 11.4 4.1 NA NA NA NA NA NA NA NA NA NA 0 NA 0.6 NA 2275 181 116 104 61 67 35 32 101 66 28 31 126 101 121 79 96 87 179 123 166 122 212 67 390 158 212 90 103 62 136 83 99 79 42 39 52 56 96 77 43 40 255 180 86 63 651 155 2031 228 2020 233 1962 238 644 168 602 157 432 135 193 101 52.8 5.0 NA NA NA NA NA NA NA NA NA NA NA NA NA NA 5.1 4.5 2.7 2.9 1.5 1.4 4.4 3.0 1.2 1.4 5.5 4.5 5.3 3.4 4.2 3.8 7.9 5.2 7.3 5.3 9.3 2.9 17.1 6.5 9.3 4.0 4.5 2.7 6.0 3.6 4.4 3.5 1.8 1.7 2.3 2.5 4.2 3.4 1.9 1.8 11.2 7.8 3.8 2.8 28.6 6.7 89.3 7.6 88.8 7.8 86.2 7.9 28.3 7.4 26.5 6.9 19.0 5.9 8.5 4.5 NA NA NA NA NA NA NA NA NA NA NA NA NA NA 1355 182 0 14 19 18 8 15 18 17 35 54 2 4 81 64 61 42 84 63 58 56 99 57 168 100 125 66 168 70 208 113 75 54 84 58 62 68 27 29 18 17 45 45 35 54 281 106 1328 180 1310 180 1310 180 722 145 663 138 597 145 221 106 61.7 4.6 NA NA NA NA NA NA NA NA NA NA NA NA NA NA 0.0 3.1 1.4 1.3 0.6 1.1 1.3 1.3 2.6 4.0 0.1 0.3 6.0 4.9 4.5 3.0 6.2 4.6 4.3 4.0 7.3 4.0 12.4 6.7 9.2 4.8 12.4 5.4 15.4 8.1 5.5 4.0 6.2 4.1 4.6 4.9 2.0 2.1 1.3 1.3 3.3 3.3 2.6 4.0 20.7 7.7 98.0 2.1 96.7 3.3 96.7 3.3 53.3 9.3 48.9 9.2 44.1 9.7 16.3 7.4 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA Census Tract 101; Barnstable County; Massachusetts 1996 193 1516 153 1307 156 467 134 917 187 796 190 95 67 277 112 67 51 448 139 343 128 674 123 81 41 217 68 238 94 92 65 11 18 35 43 3630 43 2932 248 27 28 29 46 80 78 0 14 204 255 358 193 419 269 2894 248 1996 193 76.0 6.9 65.5 7.9 23.4 6.6 45.9 8.0 39.9 7.6 4.8 3.2 13.9 5.4 3.4 2.6 22.4 6.4 17.2 6.2 674 123 12.0 6.4 32.2 9.1 35.3 11.3 13.6 9.3 1.6 2.6 5.2 6.2 3630 43 80.8 6.7 0.7 0.8 0.8 1.3 2.2 2.2 0 1.2 5.6 7.0 9.9 5.3 11.5 7.4 79.7 6.7 153475 26633 158299 29936 168706 33084 41719 24859 35694 10298 20134 2232 8983 1528 NA NA 4276 5494 27386 6783 12211 3060 183230 36945 NA NA NA NA NA NA NA NA NA NA NA NA 86915 16421 101029 17651 NA NA NA NA 15549 19372 NA NA NA NA 33153 11648 36322 33983 99199 17569 NA 2007 229 33.9 10.1 25.9 7.8 8.1 5.6 6.1 4.9 2.0 2.9 0 2.1 1.14 0.10 1.9 1.9 15.7 7.2 9.6 5.1 2.4 2.2 36.4 8.9 95.7 2.9 79.7 6.6 16.0 6.4 4.3 2.9 96.0 3.3 70.4 7.4 25.6 6.8 4.0 3.3 100 2.1 72.8 7.2 27.2 7.2 0 2.1 1277 245 2.8 2.8 0.0 3.3 2.3 2.2 2.3 2.7 2.4 2.1 4.7 3.6 16.4 6.5 18.6 7.6 4.2 3.8 46.2 12.3 53.4 10.6 18.7 8.7 3.1 2.6 5.5 4.9 2.2 2.7 6.3 5.5 2.2 2.6 0.6 1.0 8.0 4.4 18.9 5.7 2002 229 3.9 2.9 51.0 9.8 33.4 9.6 11.6 5.8 17.4 NA 10.6 NA 10.1 NA 31.5 NA 15.2 NA 0.0 NA 1381 202 30.1 10.8 22.9 10.1 7.2 6.7 4.3 4.8 2.9 4.3 0 3.0 1.16 0.16 2.8 2.7 12.5 6.7 12.4 6.5 2.5 2.8 39.7 10.3 94.5 4.0 76.1 8.9 18.4 8.7 5.5 4.0 95.1 4.0 65.0 9.8 30.1 9.3 4.9 4.0 100 3.0 68.6 9.5 31.4 9.5 0 3.0 833 175 3.0 3.7 0.0 5.0 2.2 2.5 3.5 4.2 2.4 2.5 6.4 4.9 11.4 6.8 23.3 11.2 1.1 1.8 46.8 13.8 48.0 11.9 15.8 8.0 3.6 3.5 7.1 7.0 3.4 4.1 9.6 8.6 3.4 3.9 0.0 5.0 9.1 5.9 22.7 8.1 1376 203 3.4 3.2 56.5 11.1 26.6 9.9 13.4 7.1 NA NA NA NA NA NA NA NA NA NA NA NA 626 162 42.3 16.2 32.4 13.8 9.9 11.2 9.9 11.2 0.0 6.6 0 6.6 1.13 0.15 0.0 6.6 22.8 15.6 3.5 5.2 2.2 3.4 29.1 13.6 98.2 2.9 87.5 7.8 10.7 6.6 1.8 2.9 97.8 3.4 82.1 8.8 15.7 8.1 2.2 3.4 100 6.6 82.1 8.8 17.9 8.8 0 6.6 444 154 2.5 4.1 0.0 9.1 2.7 4.1 0.0 9.1 2.5 4.1 1.6 2.7 25.9 13.5 9.9 8.5 9.9 10.1 45.0 17.6 63.5 20.3 24.1 19.5 2.3 3.6 2.5 4.1 0.0 9.1 0.0 9.1 0.0 9.1 1.8 3.0 5.9 6.3 11.8 5.4 626 162 5.1 6.0 39.0 15.5 48.2 16.5 7.7 7.5 NA NA NA NA NA NA NA NA NA NA NA NA NA 25 001 010100 25001010100 101 Census Tract 101 G5020 S 25046216 12765872 42.05983 -70.20041 MULTIPOLYGON (((-70.25001 4…
1400000US25001010206 Census Tract 102.06; Barnstable County; Massachusetts 4352 333 130 72 241 145 209 139 92 44 107 107 105 104 46 51 421 271 163 78 155 101 305 287 247 113 735 202 350 153 477 169 317 133 163 117 89 49 450 259 55 42 635 273 144 110 934 253 3745 322 3717 328 3680 318 2131 368 1779 344 1396 289 569 208 59.1 4.7 91.6 13.3 87.5 20.1 60.1 17.6 27.4 12.2 NA NA NA NA NA NA 3.0 1.6 5.5 3.2 4.8 3.0 2.1 1.0 2.5 2.5 2.4 2.4 1.1 1.2 9.7 6.0 3.7 1.9 3.6 2.3 7.0 6.5 5.7 2.5 16.9 4.6 8.0 3.5 11.0 3.9 7.3 3.1 3.7 2.7 2.0 1.1 10.3 5.6 1.3 1.0 14.6 5.9 3.3 2.6 21.5 5.8 86.1 5.7 85.4 5.9 84.6 5.8 49.0 8.7 40.9 8.1 32.1 6.9 13.1 4.9 NA NA NA NA NA NA NA NA NA NA 0 NA 1.3 NA 2081 196 86 53 218 139 65 59 51 42 107 107 85 99 29 30 141 129 83 59 41 42 208 195 62 65 338 132 89 62 216 104 110 75 119 93 33 26 283 141 42 42 411 141 116 107 496 176 1685 193 1670 196 1661 196 905 202 780 199 567 166 262 118 53.1 7.8 NA NA NA NA NA NA NA NA NA NA NA NA NA NA 4.1 2.5 10.5 6.4 3.1 2.9 2.5 2.1 5.1 5.3 4.1 4.7 1.4 1.4 6.8 6.1 4.0 2.7 2.0 2.0 10.0 9.3 3.0 3.1 16.2 6.1 4.3 3.1 10.4 5.2 5.3 3.6 5.7 4.4 1.6 1.3 13.6 6.5 2.0 2.0 19.8 6.3 5.6 5.3 23.8 8.2 81.0 6.2 80.2 6.3 79.8 6.4 43.5 9.5 37.5 9.7 27.2 8.1 12.6 5.5 NA NA NA NA NA NA NA NA NA NA NA NA NA NA 2271 260 44 52 23 26 144 131 41 30 0 14 20 31 17 25 280 160 80 69 114 82 97 96 185 94 397 118 261 129 261 111 207 117 44 51 56 36 167 142 13 22 224 167 28 33 438 156 2060 246 2047 248 2019 241 1226 228 999 213 829 182 307 120 61.0 2.2 NA NA NA NA NA NA NA NA NA NA NA NA NA NA 1.9 2.2 1.0 1.1 6.3 5.5 1.8 1.3 0.0 1.9 0.9 1.4 0.7 1.1 12.3 6.9 3.5 3.0 5.0 3.5 4.3 4.2 8.1 4.0 17.5 5.3 11.5 5.5 11.5 4.9 9.1 5.2 1.9 2.3 2.5 1.6 7.4 5.9 0.6 1.0 9.9 6.9 1.2 1.4 19.3 6.4 90.7 6.8 90.1 6.9 88.9 6.8 54.0 10.1 44.0 9.1 36.5 8.0 13.5 5.5 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA Census Tract 102.06; Barnstable County; Massachusetts 1975 231 1353 195 1208 202 513 184 1000 226 940 183 73 52 89 61 8 14 762 169 259 109 1195 197 352 142 282 126 450 204 51 40 60 48 0 14 4352 333 3793 347 11 13 0 14 36 46 0 14 69 74 443 348 53 72 3757 345 1975 231 68.5 7.1 61.2 8.1 26.0 8.8 50.6 9.1 47.6 7.8 3.7 2.8 4.5 3.2 0.4 0.7 38.6 7.6 13.1 5.2 1195 197 29.5 10.6 23.6 9.9 37.7 14.3 4.3 3.5 5.0 4.4 0.0 3.5 4352 333 87.2 7.6 0.3 0.3 0.0 1.0 0.8 1.1 0 1.0 1.6 1.7 10.2 7.6 1.2 1.6 86.3 7.8 130711 20921 103136 16801 87469 12629 66043 28051 40977 30861 28542 3637 8989 3852 NA NA NA NA 57902 13638 21743 9005 169144 34226 NA NA NA NA NA NA NA NA NA NA NA NA 60001 11058 65503 12000 NA NA NA NA NA NA NA NA 38009 30629 16946 10499 NA NA 65759 12131 NA 1949 275 74.5 8.8 65.7 7.8 8.8 6.1 8.8 6.1 0.0 2.2 0 2.2 1.06 0.04 0.0 2.2 4.2 3.8 0.0 2.2 0.0 2.2 21.3 8.8 98.0 3.1 93.2 4.8 4.8 3.7 2.0 3.1 0.0 2.2 0.0 2.2 0.0 2.2 100.0 2.2 100 2.2 41.3 9.6 58.7 9.6 0 2.2 1534 267 0.0 2.7 2.5 3.9 11.2 10.2 4.7 4.0 4.0 3.6 13.4 6.7 11.9 5.9 3.0 3.7 7.1 5.3 42.1 9.6 24.6 10.8 13.4 7.7 3.3 2.7 9.1 6.9 10.4 7.8 15.2 9.1 3.1 2.9 2.3 2.4 18.6 11.9 35.7 13.5 1948 275 5.6 4.3 19.9 8.5 52.6 14.1 21.9 13.0 21.5 NA 25.7 NA 19.7 NA 43.9 NA 30.4 NA 2.9 NA 757 166 74.4 17.6 65.7 15.2 8.7 8.1 8.7 8.1 0.0 5.5 0 5.5 1.06 0.06 0.0 5.5 5.3 7.0 0.0 5.5 0.0 5.5 20.3 16.1 97.2 4.3 94.8 5.6 2.4 3.6 2.8 4.3 0.0 5.5 0.0 5.5 0.0 5.5 100.0 5.5 100 5.5 54.2 15.8 45.8 15.8 0 5.5 603 189 0.0 6.8 3.5 5.3 0.0 6.8 11.9 9.9 10.1 9.2 15.8 11.1 12.4 8.8 1.0 1.3 8.1 9.1 37.1 14.3 25.4 13.5 18.1 13.5 6.6 6.4 5.8 8.4 10.1 9.2 22.6 13.2 2.5 3.5 3.2 4.7 5.8 6.7 24.1 9.2 756 166 0.0 5.5 9.4 8.0 57.3 18.8 33.3 19.2 NA NA NA NA NA NA NA NA NA NA NA NA 1192 250 74.6 10.1 65.7 11.1 8.9 6.4 8.9 6.4 0.0 3.5 0 3.5 1.06 0.05 0.0 3.5 3.5 4.0 0.0 3.5 0.0 3.5 21.9 10.5 98.5 2.4 92.1 5.3 6.4 4.8 1.5 2.4 0.0 3.5 0.0 3.5 0.0 3.5 100.0 3.5 100 3.5 33.1 13.0 66.9 13.0 0 3.5 931 234 0.0 4.5 1.9 3.1 18.5 15.5 0.0 4.5 0.0 4.5 11.9 9.1 11.6 8.5 4.3 5.9 6.4 5.7 45.3 16.1 24.1 13.4 10.4 8.9 1.1 1.4 11.2 10.9 10.6 8.9 10.4 8.8 3.5 4.4 1.8 2.7 26.9 16.7 43.2 18.5 1192 250 9.2 7.0 26.5 11.2 49.7 15.0 14.6 11.5 NA NA NA NA NA NA NA NA NA NA NA NA NA 25 001 010206 25001010206 102.06 Census Tract 102.06 G5020 S 51240906 18828934 41.92264 -70.01537 MULTIPOLYGON (((-70.08245 4…
1400000US25001010208 Census Tract 102.08; Barnstable County; Massachusetts 1627 332 0 14 31 31 16 16 33 44 38 49 1 4 0 14 0 14 17 17 143 93 114 115 119 78 302 208 332 140 284 147 150 97 36 49 11 21 47 47 0 14 47 47 71 91 89 86 1580 330 1580 330 1547 321 1115 264 900 222 813 199 197 126 65.0 3.3 117.5 36.6 112.1 52.8 106.0 49.7 6.1 7.0 NA NA NA NA NA NA 0.0 2.6 1.9 2.0 1.0 1.0 2.0 2.7 2.3 3.0 0.1 0.2 0.0 2.6 0.0 2.6 1.0 1.1 8.8 5.7 7.0 6.6 7.3 4.9 18.6 11.2 20.4 8.7 17.5 8.2 9.2 6.3 2.2 2.9 0.7 1.3 2.9 2.9 0.0 2.6 2.9 2.9 4.4 5.6 5.5 5.2 97.1 2.9 97.1 2.9 95.1 2.9 68.5 8.5 55.3 10.3 50.0 10.5 12.1 8.0 NA NA NA NA NA NA NA NA NA NA 0 NA 0.0 NA 879 238 0 14 16 16 16 16 33 44 1 3 1 4 0 14 0 14 0 14 79 63 99 112 30 45 224 209 125 73 170 90 74 71 0 14 11 21 32 32 0 14 32 32 34 44 35 44 847 240 847 240 814 235 604 205 467 137 380 121 85 73 64.3 6.2 NA NA NA NA NA NA NA NA NA NA NA NA NA NA 0.0 4.7 1.8 1.9 1.8 1.9 3.8 5.1 0.1 0.3 0.1 0.4 0.0 4.7 0.0 4.7 0.0 4.7 9.0 7.6 11.3 11.8 3.4 5.1 25.5 19.9 14.2 8.9 19.3 9.8 8.4 8.7 0.0 4.7 1.3 2.5 3.6 3.8 0.0 4.7 3.6 3.8 3.9 5.1 4.0 5.1 96.4 3.8 96.4 3.8 92.6 4.9 68.7 13.6 53.1 15.3 43.2 16.1 9.7 9.0 NA NA NA NA NA NA NA NA NA NA NA NA NA NA 748 174 0 14 15 16 0 14 0 14 37 49 0 14 0 14 0 14 17 17 64 63 15 24 89 54 78 69 207 97 114 80 76 75 36 49 0 14 15 16 0 14 15 16 37 49 54 44 733 171 733 171 733 171 511 130 433 131 433 131 112 100 66.2 1.0 NA NA NA NA NA NA NA NA NA NA NA NA NA NA 0.0 5.5 2.0 2.1 0.0 5.5 0.0 5.5 4.9 6.4 0.0 5.5 0.0 5.5 0.0 5.5 2.3 2.3 8.6 8.0 2.0 3.1 11.9 6.6 10.4 9.2 27.7 12.6 15.2 10.4 10.2 9.6 4.8 6.1 0.0 5.5 2.0 2.1 0.0 5.5 2.0 2.1 4.9 6.4 7.2 5.7 98.0 2.1 98.0 2.1 98.0 2.1 68.3 9.6 57.9 11.5 57.9 11.5 15.0 12.1 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA Census Tract 102.08; Barnstable County; Massachusetts 1031 243 594 232 513 217 180 122 562 219 563 139 66 77 91 90 52 59 516 216 161 98 420 148 226 148 107 63 64 50 0 14 23 30 0 14 1627 332 1626 332 0 14 0 14 0 14 0 14 1 3 0 14 1 3 1626 332 1031 243 57.6 14.5 49.8 16.7 17.5 10.2 54.5 15.9 54.6 14.3 6.4 7.4 8.8 8.6 5.0 5.6 50.0 15.6 15.6 9.9 420 148 53.8 21.7 25.5 18.3 15.2 11.5 0.0 9.6 5.5 7.5 0.0 9.6 1627 332 99.9 0.2 0.0 2.6 0.0 2.6 0.0 2.6 0 2.6 0.1 0.2 0.0 2.6 0.1 0.2 99.9 0.2 129342 35085 94420 32128 85807 31672 67036 26993 27346 10522 28420 5704 NA NA NA NA NA NA 79384 52178 25286 27264 142995 45206 NA NA NA NA NA NA NA NA NA NA NA NA 82607 25319 82657 25364 NA NA NA NA NA NA NA NA NA NA NA NA NA NA 82657 25364 NA 769 271 55.0 19.3 55.0 19.3 0.0 5.4 0.0 5.4 0.0 5.4 0 5.4 1.00 0.02 0.0 5.4 0.3 0.5 0.0 5.4 5.7 5.7 39.0 19.7 93.2 5.8 91.0 6.4 2.2 2.5 6.8 5.8 0.0 5.4 0.0 5.4 0.0 5.4 100.0 5.4 100 5.4 79.5 11.8 20.5 11.8 0 5.4 469 183 0.0 8.7 0.0 8.7 0.0 8.7 0.0 8.7 3.6 4.0 1.7 3.9 41.8 26.7 32.2 22.6 0.0 8.7 20.7 15.6 49.9 19.2 8.1 8.4 9.8 12.0 22.8 7.4 0.0 8.7 0.0 8.7 0.0 8.7 0.0 8.7 9.4 7.9 23.7 13.2 766 271 2.7 4.4 37.1 19.5 35.1 18.6 25.1 12.6 9.0 NA 0.0 NA 3.5 NA 21.7 NA 26.2 NA 0.0 NA 435 218 35.9 23.6 35.9 23.6 0.0 9.3 0.0 9.3 0.0 9.3 0 9.3 1.01 0.03 0.0 9.3 0.2 0.6 0.0 9.3 4.4 6.9 59.5 25.1 95.6 6.9 95.6 6.9 0.0 9.3 4.4 6.9 0.0 9.3 0.0 9.3 0.0 9.3 100.0 9.3 100 9.3 93.1 7.6 6.9 7.6 0 9.3 176 89 0.0 21.3 0.0 21.3 0.0 21.3 0.0 21.3 0.0 21.3 0.0 21.3 44.3 29.1 31.8 25.8 0.0 21.3 23.9 22.7 56.8 27.6 13.1 16.5 13.1 16.1 6.3 11.3 0.0 21.3 0.0 21.3 0.0 21.3 0.0 21.3 10.8 15.7 26.5 27.3 433 217 4.8 7.8 52.2 26.5 35.3 25.2 7.6 7.9 NA NA NA NA NA NA NA NA NA NA NA NA 334 124 79.9 13.3 79.9 13.3 0.0 11.9 0.0 11.9 0.0 11.9 0 11.9 1.01 0.03 0.0 11.9 0.3 1.0 0.0 11.9 7.5 10.8 12.3 11.6 90.1 12.4 85.0 13.1 5.1 5.4 9.9 12.4 0.0 11.9 0.0 11.9 0.0 11.9 100.0 11.9 100 11.9 61.7 21.2 38.3 21.2 0 11.9 293 114 0.0 13.5 0.0 13.5 0.0 13.5 0.0 13.5 5.8 6.2 2.7 6.2 40.3 28.2 32.4 25.1 0.0 13.5 18.8 16.4 45.7 17.7 5.1 8.1 7.8 10.0 32.8 10.3 0.0 13.5 0.0 13.5 0.0 13.5 0.0 13.5 8.5 8.4 22.0 13.0 333 124 0.0 12.0 17.4 12.9 34.8 16.7 47.7 18.4 NA NA NA NA NA NA NA NA NA NA NA NA NA 25 001 010208 25001010208 102.08 Census Tract 102.08 G5020 S 54268861 11461462 42.01356 -70.06415 MULTIPOLYGON (((-70.15464 4…
1400000US25001010304 Census Tract 103.04; Barnstable County; Massachusetts 2739 315 42 37 50 41 99 63 102 76 133 90 57 40 92 71 35 47 36 34 97 60 243 105 289 110 391 150 260 110 214 98 142 86 117 70 340 194 149 86 81 66 272 105 154 96 455 133 2542 293 2467 299 2428 304 1464 252 1248 258 1073 265 599 209 60.6 2.1 73.9 16.5 96.5 31.9 77.0 30.1 19.5 7.6 NA NA NA NA NA NA 1.5 1.3 1.8 1.5 3.6 2.2 3.7 2.8 4.9 3.2 2.1 1.5 3.4 2.5 1.3 1.7 1.3 1.2 3.5 2.2 8.9 3.7 10.6 3.7 14.3 5.2 9.5 3.6 7.8 3.5 5.2 3.1 4.3 2.5 12.4 7.2 5.4 3.0 3.0 2.4 9.9 3.6 5.6 3.4 16.6 4.3 92.8 3.3 90.1 3.6 88.6 4.0 53.5 7.7 45.6 9.0 39.2 9.2 21.9 7.8 NA NA NA NA NA NA NA NA NA NA 0 NA 0.6 NA 1164 188 7 14 21 19 14 17 35 39 35 28 37 38 28 33 35 47 10 15 31 28 111 78 135 64 214 115 151 59 65 41 88 74 58 37 89 75 35 24 14 16 56 30 56 44 180 77 1116 178 1108 178 1069 183 665 149 533 126 451 118 235 98 60.7 2.0 NA NA NA NA NA NA NA NA NA NA NA NA NA NA 0.6 1.2 1.8 1.6 1.2 1.5 3.0 3.4 3.0 2.5 3.2 3.2 2.4 2.7 3.0 3.9 0.9 1.3 2.7 2.4 9.5 6.5 11.6 5.6 18.4 8.7 13.0 5.1 5.6 3.6 7.6 6.1 5.0 3.3 7.6 6.3 3.0 2.0 1.2 1.4 4.8 2.4 4.8 3.8 15.5 6.1 95.9 2.6 95.2 2.4 91.8 4.3 57.1 7.9 45.8 10.0 38.7 9.2 20.2 7.8 NA NA NA NA NA NA NA NA NA NA NA NA NA NA 1575 251 35 36 29 34 85 58 67 64 98 87 20 19 64 50 0 14 26 32 66 56 132 80 154 86 177 86 109 77 149 82 54 35 59 39 251 156 114 78 67 64 216 105 98 87 275 96 1426 240 1359 239 1359 239 799 195 715 208 622 201 364 160 60.2 5.1 NA NA NA NA NA NA NA NA NA NA NA NA NA NA 2.2 2.2 1.8 2.1 5.4 3.7 4.3 4.0 6.2 5.2 1.3 1.2 4.1 3.0 0.0 2.7 1.7 2.0 4.2 3.4 8.4 4.7 9.8 5.2 11.2 5.5 6.9 4.7 9.5 4.9 3.4 2.2 3.7 2.4 15.9 9.8 7.2 4.9 4.3 4.0 13.7 6.4 6.2 5.2 17.5 5.1 90.5 5.3 86.3 6.4 86.3 6.4 50.7 10.9 45.4 12.1 39.5 11.6 23.1 10.0 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA Census Tract 103.04; Barnstable County; Massachusetts 1363 222 914 169 820 174 192 90 550 156 686 201 0 14 48 43 22 33 563 174 208 114 764 129 185 83 178 70 200 83 136 75 65 56 0 14 2739 315 2507 285 0 14 0 14 102 79 0 14 0 14 130 94 10 17 2497 287 1363 222 67.1 9.9 60.2 11.5 14.1 6.0 40.4 9.2 50.3 11.0 0.0 3.1 3.5 3.1 1.6 2.4 41.3 9.7 15.3 8.4 764 129 24.2 9.8 23.3 8.3 26.2 9.9 17.8 9.7 8.5 7.1 0.0 5.4 2739 315 91.5 4.4 0.0 1.5 0.0 1.5 3.7 2.8 0 1.5 0.0 1.5 4.7 3.4 0.4 0.6 91.2 4.6 120217 18886 117523 22741 115888 23422 64519 51019 25166 7814 27356 3977 NA NA NA NA NA NA 32557 10018 26360 11603 153755 27293 72738 26722 138498 53812 192021 45072 232916 75715 142746 17709 NA NA 60625 9570 61614 11242 NA NA NA NA 23841 15278 NA NA NA NA 70425 48012 NA NA 61275 11290 NA 1265 281 77.6 10.3 74.9 10.9 2.8 3.2 0.7 1.1 2.1 3.0 0 3.3 1.02 0.03 1.2 1.9 0.0 3.3 0.0 3.3 0.0 3.3 21.2 10.1 98.8 1.9 94.1 4.8 4.7 4.8 1.2 1.9 15.3 7.7 3.2 2.7 12.1 6.4 84.7 7.7 100 3.3 31.0 10.7 69.0 10.7 0 3.3 997 260 1.7 2.7 1.2 2.0 7.4 5.7 11.8 8.4 6.7 5.1 17.0 8.2 6.5 4.5 24.9 10.2 7.9 5.9 14.8 7.5 16.9 7.2 18.3 7.5 15.8 8.4 5.6 4.8 2.4 2.6 10.8 5.9 7.7 6.8 1.5 2.5 21.0 16.4 36.2 14.7 1265 281 0.0 3.3 22.0 10.3 45.6 12.8 32.4 14.1 10.0 NA 17.6 NA 16.4 NA 32.3 NA 28.1 NA 0.0 NA 619 165 70.9 15.7 68.7 16.5 2.3 3.3 0.0 6.6 2.3 3.3 0 6.6 1.02 0.03 2.4 4.0 0.0 6.6 0.0 6.6 0.0 6.6 26.7 15.3 97.6 4.0 94.8 4.0 2.7 4.2 2.4 4.0 16.0 9.4 4.5 5.1 11.5 8.2 84.0 9.4 100 6.6 34.9 15.8 65.1 15.8 0 6.6 454 115 3.7 5.8 2.6 4.1 6.8 7.5 18.9 13.0 6.2 7.0 18.7 9.8 3.7 4.8 13.4 11.7 14.3 12.8 11.5 8.5 6.6 5.7 26.9 13.1 18.9 11.0 4.4 5.4 3.1 4.6 15.4 10.5 6.2 6.7 3.3 5.6 15.2 15.2 36.5 22.0 619 165 0.0 6.6 22.1 15.8 47.7 14.4 30.2 14.6 NA NA NA NA NA NA NA NA NA NA NA NA 646 190 84.1 9.5 80.8 10.4 3.3 3.6 1.4 2.2 1.9 2.9 0 6.4 1.02 0.03 0.0 6.4 0.0 6.4 0.0 6.4 0.0 6.4 15.9 9.5 100.0 6.4 93.3 8.2 6.7 8.2 0.0 6.4 14.6 10.7 1.9 2.9 12.7 10.4 85.4 10.7 100 6.4 27.2 11.4 72.8 11.4 0 6.4 543 191 0.0 7.5 0.0 7.5 7.9 8.2 5.9 9.2 7.2 8.8 15.5 12.5 8.8 7.1 34.4 13.0 2.6 4.4 17.7 10.2 25.4 12.3 11.0 7.7 13.3 10.6 6.6 7.0 1.8 2.9 7.0 6.8 9.0 10.6 0.0 7.5 25.8 20.2 35.9 15.7 646 190 0.0 6.4 21.8 10.6 43.7 14.4 34.5 16.9 NA NA NA NA NA NA NA NA NA NA NA NA NA 25 001 010304 25001010304 103.04 Census Tract 103.04 G5020 S 18347803 7830614 41.82511 -69.97620 MULTIPOLYGON (((-70.0148 41…
1400000US25001010306 Census Tract 103.06; Barnstable County; Massachusetts 2985 312 92 82 116 113 132 101 78 53 142 94 173 116 95 105 139 120 81 60 165 98 163 82 224 130 254 88 234 93 582 198 132 94 110 80 73 78 248 94 66 43 406 150 154 95 708 160 2619 291 2579 282 2488 274 1385 290 1318 292 1131 285 315 200 57.6 5.7 91.2 18.7 106.1 32.8 78.1 29.0 28.0 10.8 NA NA NA NA NA NA 3.1 2.7 3.9 3.7 4.4 3.4 2.6 1.7 4.8 3.1 5.8 3.9 3.2 3.5 4.7 3.9 2.7 2.0 5.5 3.3 5.5 2.8 7.5 4.3 8.5 2.9 7.8 3.1 19.5 6.5 4.4 3.0 3.7 2.6 2.4 2.6 8.3 2.9 2.2 1.5 13.6 4.6 5.2 3.1 23.7 4.8 87.7 5.0 86.4 4.6 83.4 4.4 46.4 8.4 44.2 8.5 37.9 8.5 10.6 6.4 NA NA NA NA NA NA NA NA NA NA 0 NA 4.4 NA 1424 220 58 69 63 84 39 45 61 43 108 81 89 64 68 86 77 63 40 38 62 71 58 45 78 67 133 64 68 38 213 104 94 85 42 33 73 78 102 73 49 40 209 130 120 83 443 122 1238 183 1215 183 1124 175 623 143 604 145 490 132 209 136 51.0 13.9 NA NA NA NA NA NA NA NA NA NA NA NA NA NA 4.1 4.5 4.4 5.6 2.7 3.3 4.3 3.2 7.6 5.6 6.3 4.6 4.8 5.7 5.4 4.5 2.8 2.6 4.4 5.0 4.1 3.2 5.5 4.5 9.3 4.7 4.8 2.7 15.0 7.7 6.6 5.9 2.9 2.4 5.1 5.4 7.2 4.7 3.4 3.0 14.7 8.1 8.4 5.6 31.1 6.9 86.9 8.8 85.3 8.1 78.9 7.6 43.8 10.9 42.4 11.0 34.4 9.8 14.7 9.4 NA NA NA NA NA NA NA NA NA NA NA NA NA NA 1561 218 34 49 53 53 93 71 17 22 34 46 84 74 27 27 62 63 41 40 103 61 105 60 146 80 121 49 166 76 369 140 38 31 68 69 0 14 146 69 17 22 197 88 34 46 265 83 1381 189 1364 186 1364 186 762 182 714 183 641 179 106 75 59.3 5.5 NA NA NA NA NA NA NA NA NA NA NA NA NA NA 2.2 3.1 3.4 3.4 6.0 4.4 1.1 1.4 2.2 2.9 5.4 4.6 1.7 1.8 4.0 3.8 2.6 2.6 6.6 3.8 6.7 4.1 9.4 5.3 7.8 3.1 10.6 4.9 23.6 7.8 2.4 1.9 4.4 4.3 0.0 2.7 9.4 4.0 1.1 1.4 12.6 4.9 2.2 2.9 17.0 4.9 88.5 5.1 87.4 4.9 87.4 4.9 48.8 8.7 45.7 8.9 41.1 9.0 6.8 4.6 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA Census Tract 103.06; Barnstable County; Massachusetts 1361 172 878 161 770 145 225 113 427 136 601 164 36 31 39 37 14 23 625 148 225 117 944 143 365 136 250 94 190 90 107 57 22 24 10 15 2985 312 2605 391 223 248 10 17 18 27 0 14 0 14 129 125 0 14 2605 391 1361 172 64.5 9.2 56.6 9.6 16.5 7.7 31.4 8.3 44.2 10.2 2.6 2.3 2.9 2.8 1.0 1.6 45.9 8.9 16.5 8.3 944 143 38.7 11.6 26.5 9.6 20.1 9.1 11.3 6.3 2.3 2.5 1.1 1.7 2985 312 87.3 10.0 7.5 8.2 0.3 0.6 0.6 0.9 0 1.4 0.0 1.4 4.3 4.2 0.0 1.4 87.3 10.0 105017 15951 91399 21664 89291 22500 51087 20411 30088 11390 28126 5909 NA NA NA NA NA NA 47207 9377 13924 7798 118031 13800 NA NA NA NA NA NA NA NA NA NA NA NA 48023 6921 48391 6533 54398 82995 NA NA NA NA NA NA NA NA 20884 20371 NA NA 48391 6533 NA 1154 253 82.2 6.4 80.9 6.1 1.3 2.1 1.3 2.1 0.0 3.6 0 3.6 1.01 0.01 1.3 2.1 0.0 3.6 1.0 1.7 1.9 3.2 13.6 5.4 97.4 2.9 92.3 5.2 5.1 4.7 2.6 2.9 48.8 14.3 6.0 4.1 42.8 12.6 51.2 14.3 100 3.6 38.3 9.4 61.7 9.4 0 3.6 997 235 9.8 7.8 0.0 4.2 2.3 2.7 1.1 1.7 5.4 5.1 14.7 7.3 15.3 9.3 13.4 6.2 8.6 6.9 29.2 9.0 19.9 8.7 7.1 4.6 17.4 8.2 21.3 9.9 7.4 5.4 17.6 9.5 4.2 3.8 0.0 4.2 5.2 4.0 21.3 3.1 1154 253 2.2 3.3 24.2 10.6 38.7 12.7 34.9 14.4 14.1 NA 20.5 NA 18.5 NA 31.4 NA 24.6 NA 4.9 NA 615 166 81.8 9.4 81.8 9.4 0.0 6.7 0.0 6.7 0.0 6.7 0 6.7 1.00 0.02 2.4 4.0 0.0 6.7 0.0 6.7 1.6 2.8 14.1 9.1 95.1 5.6 89.6 8.0 5.5 6.2 4.9 5.6 44.9 16.0 7.0 6.0 37.9 15.1 55.1 16.0 100 6.7 42.9 13.6 57.1 13.6 0 6.7 528 154 12.3 12.5 0.0 7.7 4.4 5.1 2.1 3.1 10.2 10.0 17.0 11.9 14.6 14.2 9.1 8.0 9.1 9.9 21.2 13.3 22.7 12.4 2.3 4.3 11.9 10.1 23.9 14.6 8.7 8.1 20.6 10.0 8.0 7.3 0.0 7.7 1.9 3.3 21.0 4.0 615 166 2.0 3.2 21.5 15.0 46.7 14.3 29.9 14.8 NA NA NA NA NA NA NA NA NA NA NA NA 539 147 82.7 9.1 80.0 8.4 2.8 4.5 2.8 4.5 0.0 7.6 0 7.6 1.01 0.03 0.0 7.6 0.0 7.6 2.0 3.7 2.2 3.8 13.0 9.6 100.0 7.6 95.4 5.0 4.6 5.0 0.0 7.6 53.2 16.3 4.8 5.8 48.4 14.4 46.8 16.3 100 7.6 33.0 12.5 67.0 12.5 0 7.6 469 139 7.0 8.2 0.0 8.7 0.0 8.7 0.0 8.7 0.0 8.7 12.2 7.7 16.2 11.2 18.3 9.8 8.1 7.4 38.2 15.4 16.6 13.5 12.6 9.2 23.5 12.5 18.3 10.0 6.0 5.9 14.1 14.2 0.0 8.7 0.0 8.7 9.0 6.6 21.6 4.4 539 147 2.4 3.6 27.3 11.4 29.7 13.7 40.6 15.3 NA NA NA NA NA NA NA NA NA NA NA NA NA 25 001 010306 25001010306 103.06 Census Tract 103.06 G5020 S 17828291 1730719 41.85938 -69.98263 MULTIPOLYGON (((-70.01083 4…
1400000US25001010400 Census Tract 104; Barnstable County; Massachusetts 3342 421 108 70 96 56 88 60 151 93 87 81 87 80 54 63 241 126 127 113 143 101 162 82 167 90 217 132 486 244 465 192 330 156 134 77 199 81 184 91 151 93 443 125 87 81 747 228 3001 447 2899 449 2876 451 1831 492 1776 492 1614 451 663 204 64.6 7.0 64.4 15.8 160.1 50.0 125.6 47.3 34.5 11.4 NA NA NA NA NA NA 3.2 2.1 2.9 1.8 2.6 1.9 4.5 2.8 2.6 2.4 2.6 2.3 1.6 1.9 7.2 3.9 3.8 3.4 4.3 3.1 4.8 2.6 5.0 2.7 6.5 3.8 14.5 6.2 13.9 4.8 9.9 4.6 4.0 2.2 6.0 2.5 5.5 2.9 4.5 2.8 13.3 4.2 2.6 2.4 22.4 7.1 89.8 3.8 86.7 4.2 86.1 4.6 54.8 10.0 53.1 10.0 48.3 9.3 19.8 5.8 NA NA NA NA NA NA NA NA NA NA 0 NA 0.0 NA 1309 312 37 42 0 14 37 32 76 62 87 81 22 35 27 47 113 54 15 25 57 45 49 41 69 67 71 50 323 265 54 43 174 107 23 25 75 60 37 32 76 62 150 82 87 81 340 108 1193 301 1159 299 1136 297 720 294 699 292 649 292 272 127 64.9 10.3 NA NA NA NA NA NA NA NA NA NA NA NA NA NA 2.8 3.2 0.0 3.2 2.8 2.5 5.8 4.5 6.6 5.9 1.7 2.7 2.1 3.8 8.6 4.9 1.1 1.9 4.4 3.4 3.7 3.2 5.3 5.1 5.4 3.9 24.7 16.9 4.1 3.3 13.3 8.3 1.8 1.9 5.7 4.4 2.8 2.5 5.8 4.5 11.5 6.0 6.6 5.9 26.0 9.2 91.1 5.0 88.5 6.0 86.8 6.5 55.0 13.6 53.4 13.7 49.6 14.4 20.8 9.5 NA NA NA NA NA NA NA NA NA NA NA NA NA NA 2033 232 71 67 96 56 51 42 75 64 0 14 65 58 27 31 128 93 112 107 86 59 113 63 98 67 146 120 163 73 411 182 156 76 111 71 124 61 147 81 75 64 293 128 0 14 407 202 1808 239 1740 235 1740 235 1111 236 1077 237 965 196 391 116 64.5 5.7 NA NA NA NA NA NA NA NA NA NA NA NA NA NA 3.5 3.2 4.7 2.8 2.5 2.1 3.7 3.1 0.0 2.1 3.2 2.8 1.3 1.5 6.3 4.4 5.5 5.1 4.2 3.0 5.6 3.2 4.8 3.3 7.2 5.7 8.0 3.8 20.2 8.5 7.7 3.7 5.5 3.4 6.1 3.0 7.2 3.9 3.7 3.1 14.4 6.1 0.0 2.1 20.0 9.1 88.9 6.1 85.6 6.1 85.6 6.1 54.6 10.0 53.0 10.0 47.5 8.6 19.2 5.4 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA Census Tract 104; Barnstable County; Massachusetts 1587 178 914 165 843 175 369 153 532 148 898 197 72 65 127 65 12 20 666 143 71 52 808 172 229 121 192 119 215 71 74 75 68 54 30 35 3342 421 3198 431 10 16 0 14 53 70 0 14 0 14 81 89 71 84 3174 433 1587 178 57.6 8.3 53.1 9.0 23.3 9.4 33.5 8.9 56.6 9.6 4.5 4.2 8.0 4.1 0.8 1.3 42.0 8.6 4.5 3.2 808 172 28.3 12.4 23.8 12.6 26.6 10.0 9.2 9.0 8.4 6.7 3.7 4.5 3342 421 95.7 3.6 0.3 0.5 0.0 1.3 1.6 2.2 0 1.3 0.0 1.3 2.4 2.6 2.1 2.5 95.0 3.7 104850 17870 87499 19831 83945 20291 24956 15574 57228 26965 28084 4185 15900 4760 NA NA NA NA 41952 8768 22214 8517 153043 27245 NA NA NA NA NA NA NA NA NA NA NA NA 52173 9215 51099 9424 NA NA NA NA 194091 14469 NA NA NA NA 4895 3162 16710 20274 51217 9488 NA 1296 237 83.3 5.3 73.3 8.9 10.0 5.9 5.6 4.9 4.4 4.5 0 3.2 1.07 0.05 0.8 1.3 2.2 2.1 0.0 3.2 0.0 3.2 13.6 5.1 100.0 3.2 96.1 3.1 3.9 3.1 0.0 3.2 57.3 14.7 16.0 8.3 41.3 14.8 42.7 14.7 100 3.2 34.2 12.3 65.8 12.3 0 3.2 1120 225 0.0 3.7 0.0 3.7 3.7 3.3 10.5 9.3 6.1 4.9 3.4 3.4 18.8 9.4 13.9 7.5 8.8 5.9 34.8 10.1 23.3 10.8 18.8 8.8 13.1 7.9 8.0 5.4 5.8 5.8 15.4 9.8 6.2 3.4 3.3 3.2 6.2 8.4 21.8 6.1 1249 237 2.2 3.5 13.3 6.3 45.1 14.9 39.5 12.9 8.1 NA 9.7 NA 23.5 NA 16.3 NA 13.8 NA 0.0 NA 532 122 81.6 6.8 66.5 14.7 15.0 11.2 6.6 7.6 8.5 10.4 0 7.7 1.13 0.11 0.0 7.7 3.2 3.8 0.0 7.7 0.0 7.7 15.2 7.0 100.0 7.7 97.6 3.7 2.4 3.7 0.0 7.7 57.0 16.7 22.7 11.2 34.2 17.6 43.0 16.7 100 7.7 44.2 16.5 55.8 16.5 0 7.7 451 113 0.0 9.0 0.0 9.0 7.5 7.7 12.2 11.2 7.5 8.5 6.2 7.2 19.5 10.7 0.9 1.4 2.9 4.5 43.2 20.2 21.5 13.3 26.8 13.0 22.4 15.1 2.4 3.9 0.0 9.0 16.2 11.3 0.0 9.0 2.2 3.7 8.4 13.3 20.8 10.0 485 122 2.7 4.5 2.7 4.0 45.2 13.1 49.5 14.0 NA NA NA NA NA NA NA NA NA NA NA NA 764 209 84.6 8.3 78.0 11.4 6.5 6.2 5.0 5.5 1.6 2.5 0 5.4 1.04 0.05 1.4 2.3 1.6 2.5 0.0 5.4 0.0 5.4 12.4 7.0 100.0 5.4 95.0 4.8 5.0 4.8 0.0 5.4 57.6 16.7 11.4 8.0 46.2 16.9 42.4 16.7 100 5.4 27.2 12.8 72.8 12.8 0 5.4 669 199 0.0 6.2 0.0 6.2 1.0 2.1 9.4 14.0 5.1 5.8 1.5 2.5 18.2 14.2 22.7 13.3 12.9 9.1 29.1 13.7 24.5 13.2 13.3 13.1 6.9 7.9 11.8 8.8 9.7 8.8 14.8 14.3 10.3 6.2 4.0 4.8 4.6 5.8 22.5 4.7 764 209 1.8 3.1 20.0 10.8 45.0 19.5 33.1 15.4 NA NA NA NA NA NA NA NA NA NA NA NA NA 25 001 010400 25001010400 104 Census Tract 104 G5020 S 15587094 8476393 41.75415 -69.98612 MULTIPOLYGON (((-70.02372 4…

2.3 Name cleaning and Column Selection

Here we will go in and rename all of the most usefull conlumns. Not every single one will map but the step will make the data much easier to work with.

# Dropp and rename columns
map_data <- map_data |>
  rename( 
    MeanIncome_fullPooled = S1902_C03_001E, 
    MeanIncome_White = S1902_C03_020E,
    MeanIncome_Black = S1902_C03_021E, 
    MeanIncome_AmericanIndian = S1902_C03_022E,
    MeanIncome_Asian = S1902_C03_023E,  
    MeanIncome_API = S1902_C03_024E, 
    MeanIncome_OtherRaces = S1902_C03_025E,
    MeanIncome_TwoOrMore = S1902_C03_026E,
    MeanIncome_Hispanic = S1902_C03_027E,
    MedianAge_fullPop = S0101_C01_032E,
    CommuteTotal_pooled = S0801_C01_001E, # aka the total number of workers
    CommuteTotal_Car = S0801_C01_002E,
    CommuteTotal_Public = S0801_C01_009E,
    CommuteTotal_InState = S0801_C01_014E,
    CommuteTotal_InCounty = S0801_C01_015E, 
    WorkedHome_Total = S0801_C01_013E,
  ) 

Since we will want to select a lot of columns, it’s a good idea to find a shortcut. Instead of typing out all of the names and creating a large, hard-to-read, and error-prone block of text, we can use pattern matching. We will use the base::grep function and a regular expression to grab the column names we want and place them in a list.

The regular expression we are using is "^[a-z]+_[a-z]+$". This will match the pattern of the names we created for the important variables. The expression can be read as ^ (start), [a-z]+ (any letters) with a single _ in between, more [a-z]+ (letters), and $ (end). We have turned the ignore.case option on because the names we want use camel case.

# custom function to select conlumn names with the pattern we name them with.

ColnumSelect <- function(x) {
  names <- grep("^[a-z]+_[a-z]+$",colnames(x), ignore.case = TRUE , value = TRUE)
  
  return(names)
}

We now use the dplyr::all_of function within the dplyr::select function to call our custom fuction that will return a list of the column names we want. ahh the joys of funcional programing lol

map_data <- map_data |>
  dplyr::select(GEOID,
                all_of(ColnumSelect(map_data)), # use Custom function
                STATEFP, COUNTYFP,TRACTCE, NAME, NAMELSAD, MTFCC,
                FUNCSTAT,ALAND, AWATER, Latitude, Longitude, geometry )

map_data |>
  head() |>
  kable(Caption = "Full Map Data") |>
  kable_material(lightable_options = "striped") |>
  scroll_box(width = "100%", height = "400px") 
GEOID GEO_ID MedianAge_fullPop MeanIncome_fullPooled MeanIncome_White MeanIncome_Black MeanIncome_AmericanIndian MeanIncome_Asian MeanIncome_API MeanIncome_OtherRaces MeanIncome_TwoOrMore MeanIncome_Hispanic CommuteTotal_pooled CommuteTotal_Car CommuteTotal_Public WorkedHome_Total CommuteTotal_InState CommuteTotal_InCounty STATEFP COUNTYFP TRACTCE NAME NAMELSAD MTFCC FUNCSTAT ALAND AWATER Latitude Longitude geometry
25001010100 1400000US25001010100 56.1 153475 101029 NA NA 15549 NA NA 33153 36322 2007 33.9 1.9 36.4 95.7 79.7 25 001 010100 101 Census Tract 101 G5020 S 25046216 12765872 42.05983 -70.20041 MULTIPOLYGON (((-70.25001 4…
25001010206 1400000US25001010206 59.1 130711 65503 NA NA NA NA 38009 16946 NA 1949 74.5 0.0 21.3 98.0 93.2 25 001 010206 102.06 Census Tract 102.06 G5020 S 51240906 18828934 41.92264 -70.01537 MULTIPOLYGON (((-70.08245 4…
25001010208 1400000US25001010208 65.0 129342 82657 NA NA NA NA NA NA NA 769 55.0 0.0 39.0 93.2 91.0 25 001 010208 102.08 Census Tract 102.08 G5020 S 54268861 11461462 42.01356 -70.06415 MULTIPOLYGON (((-70.15464 4…
25001010304 1400000US25001010304 60.6 120217 61614 NA NA 23841 NA NA 70425 NA 1265 77.6 1.2 21.2 98.8 94.1 25 001 010304 103.04 Census Tract 103.04 G5020 S 18347803 7830614 41.82511 -69.97620 MULTIPOLYGON (((-70.0148 41…
25001010306 1400000US25001010306 57.6 105017 48391 54398 NA NA NA NA 20884 NA 1154 82.2 1.3 13.6 97.4 92.3 25 001 010306 103.06 Census Tract 103.06 G5020 S 17828291 1730719 41.85938 -69.98263 MULTIPOLYGON (((-70.01083 4…
25001010400 1400000US25001010400 64.6 104850 51099 NA NA 194091 NA NA 4895 16710 1296 83.3 0.8 13.6 100.0 96.1 25 001 010400 104 Census Tract 104 G5020 S 15587094 8476393 41.75415 -69.98612 MULTIPOLYGON (((-70.02372 4…

The last step in the data cleaning process is to turn the merged map data into an sf object. This allows the data to be used in the geom_sf function that we will use for plotting earlier on. Also we are coercing the Mean Income variable to numeric so that we can map it.

map <- map_data |>
  mutate(MeanIncome_fullPooled = as.numeric(MeanIncome_fullPooled)) |>
  st_as_sf()
# garabage collect the data we no longer need. 

rm(list  = c('inc_data','inc_map_data', 'inc_MetaData', 'pop_data', 'pop_MetaData'))

3.0 Make Maps

3.1 City/ Town Names

The First map we will make is The census tracts and city borders overlay-ed. This is just a visual check that everything is working. Its important to note that some census tracts lineup with town/city borders. This is especially prevalent in central and western mass where populations are less dense.

# Plot geometries of census tracts and city/town borders to check they work
ggplot() +
  geom_sf(data = TractShapes, 
          fill = NA, 
          color = "red",
          size = 0.5,
          alpha = 0.5) +  
  geom_sf(data = CityShapes, 
          fill = NA, 
          color = "black", 
          size = 0.5, 
          alpha = 0.5 ) + 
  theme_minimal() +
  labs(title = "Census Tracts with City/Town Borders")

3.2 Population Change 2010 to 2020

Note: Hyperbolic Transformation used on population maps.

The Inverse Hyperbolic Sine transformation is used here to better visualize the differences between municipalities. Population change and population density can vary on a large scale, making subtle differences hard to distinguish on a map. By applying this transformation, small values are expanded, and large values are compressed, allowing for a more informative map. However, this does make the legend harder to interpret, as the scale becomes less intuitive. Despite this, the map provides a clearer comparison of municipalities.

The Inverse hyperbolic sine function is defined as:

\[asinh(x) = ln(x+ \sqrt{x^2+1})\] A good example of this is the towns of Gloucester and Essex. Gloucester, while not densely populated overall, has a highly dense downtown area. Meanwhile, Essex lacks a downtown area and is much less dense overall. Without the transformation, the difference between these two places was almost imperceptible.

# create main map 
map_plot <- ggplot() +
  geom_sf(data = CityShapes, 
          aes(fill = asinh(POPCH10_20) ), 
          color = "black", 
          size = 1 ) + 
  # Fill citys
  scale_fill_viridis_c(option = "A",
                       na.value = "grey90") +  
  # Labels
  labs(title = "Population Change 2010 to 2020", 
       fill = "Population Change") + 
  # add city names
  geom_sf_text(data = CityShapes, 
                 aes(label = TOWN),
                 size = 2, 
                 color = "white") +
  theme_classic() +
  theme(
    axis.text = element_blank(),      
    axis.ticks = element_blank(),
    axis.line = element_blank(),
    plot.title = element_text(size = 20)
  )

map_plot

3.2 Population Density

# create main map 
map_plot <- ggplot() +
  geom_sf(data = CityShapes, 
          aes(fill = asinh(POP2020 / AREA_SQMI)),
          color = "black", 
          size = 1 ) + 
  # City Name Labels
  geom_sf_text(data = CityShapes, 
               aes(label = TOWN),
               size = 2, 
               color = "white") +
  # City Fill 
  scale_fill_viridis_c(option = "D",
                       na.value = "grey90") +  
  labs(title = "2020 Population Density",
       fill = "Population Denisty") + 
  theme_classic() +
  theme(axis.text = element_blank(),      
        axis.ticks = element_blank(),
        axis.line = element_blank(),
        plot.title = element_text(size = 40)
  )

map_plot

3.3 Houshold Income

# create main map 
map_plot <- ggplot() +
  geom_sf(data = map,
          aes(fill = MeanIncome_fullPooled)) +  
  geom_sf(data = CityShapes, 
          fill = NA, 
          color = "black",
          size = 1 ) + 
  geom_sf_text(data = CityShapes, 
               aes(label = TOWN), 
               size = 2, 
               color = "white") +
  scale_fill_viridis_c(option = "plasma",
                       na.value = "grey90") +  
  labs(title = "MA Census Tract Household Income",
       fill = "Income") + 
  theme_classic() +
  theme(
    axis.text = element_blank(),      
    axis.ticks = element_blank(),
    axis.line = element_blank(),
    plot.title = element_text(size = 40)
  )

map_plot

The map of Mean income by census tract has come out looking great. Some things that immediately stand out is that the census tracts in the Boston area are very small making it very hard to look at. The solution will be to make a map inset that is a blown up version of the Boston area.

# Define the limits for the Boston area zoom
boston_x_limits <- c(-71.28, -70.95)  
boston_y_limits <- c(42.23, 42.48)    

# Create the inset for Boston zoom
boston_inset <- ggplot() +
  geom_sf(data = map,
          aes(fill = MeanIncome_fullPooled)) + 
  geom_sf(data = CityShapes, 
          fill = NA,
          color = "black",
          size = 1) +  
  geom_sf_text(data = CityShapes, 
               aes(label = TOWN),
               size = 3, 
               color = "white") +
  coord_sf(xlim = boston_x_limits, 
           ylim = boston_y_limits, 
           expand = FALSE) + 
  scale_fill_viridis_c(option = "plasma", 
                       na.value = "grey90") +  
  theme_void() +  # No axes for the inset
  theme(legend.position = "none")  


boston_inset

# Combine the main plot with the inset
final_plot <- map_plot +
  annotation_custom(ggplotGrob(boston_inset), 
                    xmin = -70.4, xmax = -69.0,
                    ymin = 42.2, ymax = 43.4) 

final_plot

Unfortunately, the inset of the Boston area is being cut off when I knit this document. It renders perfectly in RStudio, but shifts when I knit to HTML. I will need to put in more work on this going forward.

Otherwise, the map turned out beautifully. One of the key takeaways is that the MetroWest area is the wealthiest in the state. This area is roughly located outside I-95 and inside I-495, highlighted by towns like Dover, Wellesley, Weston, Sudbury, Concord, and Carlisle.

Some other standout areas of the state include the Lowell suburbs, such as Andover, Boxford, and North Reading.

Another major takeaway is that the eastern part of the state is much wealthier overall than the western part. This is likely due to communities’ proximity to the economic engine of the region in Boston. There are more opportunities in the eastern part of the state, with several world-class colleges and universities, as well as a thriving healthcare industry.

3.4 Transportation Maps

These are my two favorite maps in this project. They both use the same coloring system and show an almost perfect inverse of each other. The results are quite obvious but informative nonetheless.

The inner core of the Boston area sees low levels of car usage and high levels of public transport usage. Generally, the public transport users in this map are customers of the MBTA.

# Define the limits for the Boston area zoom
boston_x_limits <- c(-71.35, -70.85)  
boston_y_limits <- c(42.13, 42.58)  

# create main map 
public <- ggplot() +
  geom_sf(data = map,
          aes(fill = CommuteTotal_Public)) +  
  geom_sf(data = CityShapes, 
          fill = NA, 
          color = "black",
          size = 1 ) + 
  coord_sf(xlim = boston_x_limits, 
           ylim = boston_y_limits, 
           expand = FALSE) + 
  geom_sf_text(data = CityShapes, 
               aes(label = TOWN), 
               size = 3, 
               color = "white") +
  scale_fill_viridis_c(option = "H",
                       na.value = "grey90") +  
  labs(title = "Commute Via Public Transport",
       fill = "Population Preportion") + 
  theme_classic() +
  theme(
    axis.text = element_blank(),      
    axis.ticks = element_blank(),
    axis.line = element_blank(),
    plot.title = element_text(size = 30)
  )

public

In the future, I should layer the T and commuter rail paths onto these maps to illustrate how proximity to the train impacts the usage of public transport. It seems that proximity to the train has a significant impact on how many people use public transportation. This is most clearly seen in Malden. Western Malden is closest to the MBTA stop at Malden Center, while eastern Malden is quite far from the station. The census tracts in that area show a much lower usage of public transport. There is a corridor of green that extends north of downtown Boston, closely hugging the route that the Orange Line takes. This corridor is strongest in Charlestown, Somerville, Malden, Medford, and stops in Melrose.

# create main map 
Car <- ggplot() +
  geom_sf(data = map,
          aes(fill = CommuteTotal_Car)) +  
  geom_sf(data = CityShapes, 
          fill = NA, 
          color = "black",
          size = 3 ) + 
  coord_sf(xlim = boston_x_limits, 
           ylim = boston_y_limits, 
           expand = FALSE) + 
  geom_sf_text(data = CityShapes, 
               aes(label = TOWN), 
               size = 3, 
               color = "black") +
  scale_fill_viridis_c(option = "H",
                       na.value = "grey90") +  
  labs(title = "Commute Via Car",
       fill = "Population Preportion") + 
  theme_classic() +
  theme(
    axis.text = element_blank(),      
    axis.ticks = element_blank(),
    axis.line = element_blank(),
    plot.title = element_text(size = 30)
  )

Car

The area around the Charles River has the lowest usage of cars to get to work. This is likely due to the high levels of traffic and the presence of many students in that area. Numerous colleges are located there, and many students likely walk or use public transit to get to class or work.

The North and South Shore use cars more often than MetroWest, which could be due to people on either shore working in gateway cities or in New Hampshire or Rhode Island. Surprisingly, the North Shore (Peabody, Lynn, Saugus, …) uses Cars much more than the South Shore (Quincy, Braintree, Hingham, …).