# Load packages
# Core
library(tidyverse)
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ dplyr 1.1.4 ✔ readr 2.1.5
## ✔ forcats 1.0.0 ✔ stringr 1.5.1
## ✔ ggplot2 3.5.1 ✔ tibble 3.2.1
## ✔ lubridate 1.9.3 ✔ tidyr 1.3.1
## ✔ purrr 1.0.2
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag() masks stats::lag()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
library(tidyquant)
## Registered S3 method overwritten by 'quantmod':
## method from
## as.zoo.data.frame zoo
## ── Attaching core tidyquant packages ──────────────────────── tidyquant 1.0.9 ──
## ✔ PerformanceAnalytics 2.0.4 ✔ TTR 0.24.4
## ✔ quantmod 0.4.26 ✔ xts 0.14.0── Conflicts ────────────────────────────────────────── tidyquant_conflicts() ──
## ✖ zoo::as.Date() masks base::as.Date()
## ✖ zoo::as.Date.numeric() masks base::as.Date.numeric()
## ✖ dplyr::filter() masks stats::filter()
## ✖ xts::first() masks dplyr::first()
## ✖ dplyr::lag() masks stats::lag()
## ✖ xts::last() masks dplyr::last()
## ✖ PerformanceAnalytics::legend() masks graphics::legend()
## ✖ quantmod::summary() masks base::summary()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
Take raw prices of five individual stocks and transform them into monthly returns five stocks: “SPY”, “EFA”, “IJS”, “EEM”, “AGG”
# Choose stocks
symbols <- c("SPY", "EFA", "IJS", "EEM", "AGG")
prices <- tq_get(x = symbols,
get = "stock.prices",
from = "2012-01-01",
to = "2017-01-01")
asset_returns_tbl <- prices %>%
group_by(symbol) %>%
tq_transmute(select = adjusted,
mutate_fun = periodReturn,
period = "quarterly",
type = "log") %>%
set_names(c("asset", "date", "returns"))
asset_returns_tbl
## # A tibble: 100 × 3
## # Groups: asset [5]
## asset date returns
## <chr> <date> <dbl>
## 1 SPY 2012-03-30 0.104
## 2 SPY 2012-06-29 -0.0289
## 3 SPY 2012-09-28 0.0615
## 4 SPY 2012-12-31 -0.00383
## 5 SPY 2013-03-28 0.0999
## 6 SPY 2013-06-28 0.0289
## 7 SPY 2013-09-30 0.0511
## 8 SPY 2013-12-31 0.100
## 9 SPY 2014-03-31 0.0169
## 10 SPY 2014-06-30 0.0503
## # ℹ 90 more rows
asset_returns_tbl %>%
ggplot(aes(x = returns)) +
geom_density(aes(color = asset), alpha = 1) +
geom_histogram(aes(fill = asset), show.legend = FALSE, alpha = 0.3, binwidth = 0.01) +
facet_wrap(~ asset, ncol = 1) +
# labeling
labs(title = "Distribution of Monthly Returns", "2012-2016 ",
y = "Frequency",
x = "Rate of Returns",
caption = "A typic monthly return is higher for SPY and IJS than for AGG, EEM, and EFA.")