Unit 2: Equations and Inequalities
2024-07-12
The basic formula for a line:
\[y=mx+b\] * \(m\) = Slope
\[m = \frac{y_2 - y_1}{x_2 - x_1}\]
Caroline is a full-time college student planning to go home during spring break. To earn enough money for the trip, she has taken a part-time job at the local bank that pays $15.00/hr, and she opened a savings account with an initial deposit of $400 on January 15. She arranged for direct deposit of her payroll checks.
If spring break begins March 20 and the trip will cost approximately $2,500, how many hours will she have to work to earn enough to pay for her vacation?
If she works 4 hours per day, how many days to reach her goal?
\[\eqalign{\frac{a}{b} &=& \frac{c}{d}\\ \frac{a\color{red}{\cdot b \cdot d}}{b} &=& \frac{c\color{red}{\cdot b \cdot d}}{d}\\ a\cdot d &=&b \cdot c\\}\]
Amount | Ingredient | Abbrev |
---|---|---|
230gm | butter | B |
200gm | sugar | S |
4 | eggs | E |
125gm | flour | F |
4gm | baking powder | P |
\[\tiny\frac{1}{1} =\frac{230}{B}= \frac{200}{S}=\frac{4}{E}=\frac{125}{F}=\frac{4}{P}\] * Doubled Batch
\[\tiny\eqalign{\frac{2}{1}&=& \frac{2\times230}{B}&= \frac{2\times200}{S}&= \frac{2\times 4}{E}&= \frac{2\times125}{F}&= \frac{2\times4}{P}\\ \frac{2}{1}&=& \frac{460}{B}&= \frac{400}{S}&= \frac{8}{E}&= \frac{250}{F}&= \frac{8}{P}\\}\]
\[\tiny\eqalign{\frac{\frac{1}{2}}{1}&=& \frac{\frac{1}{2}\times230}{B}&= \frac{\frac{1}{2}\times200}{S}&= \frac{\frac{1}{2}\times 4}{E}&= \frac{\frac{1}{2}\times125}{F}&= \frac{\frac{1}{2}\times4}{P}\\ \frac{\frac{1}{2}}{1}&=& \frac{115}{B}&= \frac{100}{S}&= \frac{2}{E}&= \frac{62.5}{F}&= \frac{2}{P}\\}\]
Description | Math equivalent |
---|---|
Multiply by \(a\) | \(a\cdots x\) |
Scaled by \(a\) | \(a\cdots x\) |
Offset by \(b\) | \(x + b\) |
Start with \(b\) and add \(2x\) | \(b + 2x\) |
\[C = 200 D + 20\cdot K\]
\[W= 40 + 50K\] * Glide distance is the initial altitude minus the descent rate over time
\[h=A-d\cdot t\]
\[(3+5i) + (2+4i) = 5 + 9i\]
\[3(4 +2i) = 3\cdot 4 + 3 \cdot 2i = 12 + 6i\]
\[\eqalign{4 +2i\times 5+3i &=& 4\cdot 5 + 4\cdot 3i + 2i\cdot 5 + 3\cdot2\cdot i^2\\ &=& 20 + 12i + 10i -6\\ &=& 14 + 22i\\}\]
\[ax^2 + bx +c = 0\] \[x=\frac{-b \pm \sqrt{b^2-4ac}}{2a}\]
\[x^2 -9x +20= (x-4)(x-5) =0\] \[\eqalign{x&=& \frac{-(-9)\pm \sqrt{-9^2 - 4\cdot20}}{2\cdot(1)}\\ &=& \frac{9\pm \sqrt{81 - 80}}{2}\\ &=&\frac{9\pm 1}{2}\\ &-&\frac{(8,10)}{2}\\ &=&(4,5)\\}\]
\[4x^2 -16x +8= 0\] \[\eqalign{x&=&\frac{-16\pm\sqrt{-16^2-4\cdot4\cdot8}}{2\cdot 4}\\ &=&\frac{-16\pm\sqrt{256-128}}{8}\\ &=&\frac{-16\pm\sqrt{128}}{8}\\ &=&\frac{-16\pm11.3137}{8}\\ &=&\frac{(-16+11.3137,-16-11.3137)}{8}\\ &=&\frac{(-4.6863,-27.3137)}{8}\\ &=&(0.58579,3.41421)\\}\]
Given \(a<b\)
\[a + c < b + c\] * Multiplication
\[if (a < b) \land (c > 0):\quad ac < bc\]
\[if (a < b) \land (c < 0):\quad ac > bc\]
\[if\ (x > 0): \quad |x| = x\] \[if\ (x< 0): |x| = - x\]
\[\eqalign{-x +4 &\le& \frac{x}{2} +1\\ -\frac{x}{2}&\le& -3\\ x&\ge& 6\\}\]
\[\eqalign{4 &\lt& 2x -8 &\le& 10\\ 12 &\lt& 2x &\le&18\\ 6 &\lt& x &\le& 9}\]
\[|x -1| \le3\] \[|x| \le 4\] \[-x\le4;\quad x \le 4\]
\[x\ge-4;\quad x \le4\] \[-4 \le x \le4\]
IT103 Algebra