Rows: 69 Columns: 24
── Column specification ────────────────────────────────────────────────────────
Delimiter: ","
chr (4): id, sex, date, dob
dbl (19): height, sitting_height, mass, age, rsi_ jump_height/contact _time...
time (1): time
ℹ Use `spec()` to retrieve the full column specification for this data.
ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
data=read_csv("all_data.csv")
Rows: 69 Columns: 24
── Column specification ────────────────────────────────────────────────────────
Delimiter: ","
chr (4): id, sex, date, dob
dbl (19): height, sitting_height, mass, age, rsi_ jump_height/contact _time...
time (1): time
ℹ Use `spec()` to retrieve the full column specification for this data.
ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
cat("Female movement - Mean:", female_movement_mean, "SD:", female_movement_sd, "\n")
Female movement - Mean: 46.48077 SD: 3.292835
# Calculate mean and standard deviation for malesmale_height_mean <-mean(data$height[data$sex =="m"])male_height_sd <-sd(data$height[data$sex =="m"])# Calculate mean and standard deviation for femalesfemale_height_mean <-mean(data$height[data$sex =="f"])female_height_sd <-sd(data$height[data$sex =="f"])# Print resultscat("Male height - Mean:", male_height_mean, "SD:", male_height_sd, "\n")
# Calculate mean and standard deviation for malesmale_weight_mean <-mean(data$mass[data$sex =="m"])male_weight_sd <-sd(data$mass[data$sex =="m"])# Calculate mean and standard deviation for femalesfemale_weight_mean <-mean(data$mass[data$sex =="f"])female_weight_sd <-sd(data$mass[data$sex =="f"])# Print resultscat("Male weight - Mean:", male_weight_mean, "SD:", male_weight_sd, "\n")
# Calculate mean and standard deviation for malesmale_sitting_mean <-mean(data$sitting_height[data$sex =="m"])male_sitting_sd <-sd(data$sitting_height[data$sex =="m"])# Calculate mean and standard deviation for femalesfemale_sitting_mean <-mean(data$sitting_height[data$sex =="f"])female_sitting_sd <-sd(data$sitting_height[data$sex =="f"])# Print resultscat("Male sitting - Mean:", male_sitting_mean, "SD:", male_sitting_sd, "\n")
# Calculate mean and standard deviation for malesmale_maturity_offset_mean <-mean(data$maturity_offset[data$sex =="m"])male_maturity_offset_sd <-sd(data$maturity_offset[data$sex =="m"])# Calculate mean and standard deviation for femalesfemale_maturity_offset_mean <-mean(data$maturity_offset[data$sex =="f"])female_maturity_offset_sd <-sd(data$maturity_offset[data$sex =="f"])# Print resultscat("Male maturity - Mean:", male_maturity_offset_mean, "SD:", male_maturity_offset_sd, "\n")
# Calculate mean and standard deviation for malesmale_age_mean <-mean(data$age[data$sex =="m"])male_age_sd <-sd(data$age[data$sex =="m"])# Calculate mean and standard deviation for femalesfemale_age_mean <-mean(data$age[data$sex =="f"])female_age_sd <-sd(data$age[data$sex =="f"])# Print resultscat("Male age - Mean:", male_age_mean, "SD:", male_age_sd, "\n")
Male age - Mean: 13.35294 SD: 0.6063391
cat("Female age - Mean:", female_age_mean, "SD:", female_age_sd, "\n")
Female age - Mean: 12.26923 SD: 1.28514
hist(data$relative_strength_imtp, main="Histogram of Relative Strength", xlab="Relative Strength", col="lightblue", border="black")
hist(data$jump_height_cmj, main="Histogram of Dynamic Strength", xlab="Dynamic Strength", col="lightblue", border="black")
movement_hist <-ggplot(data, aes(x = dragon_score)) +geom_histogram(binwidth =0.5, fill ="lightblue", alpha =0.5) +labs(title ="Histogram of Dragon Score",x ="Dragon Score",y ="Frequency") +theme_minimal()strength_density <-ggplot(data, aes(x = relative_strength_imtp, fill ="blue")) +geom_density(alpha =0.5) +labs(title ="Density Plot of Relative strength",x ="Relative Strength",y ="Density") +theme_minimal()movement_density <-ggplot(data, aes(x = dragon_score, fill ="blue")) +geom_density(alpha =0.5) +labs(title ="Density Plot of Dragon Score",x ="Dragon Score",y ="Density") +theme_minimal()dynamicstrength_density <-ggplot(data, aes(x = jump_height_cmj, fill ="blue")) +geom_density(alpha =0.5) +labs(title ="Density Plot of Dynamic strength",x ="Dynamic Strength",y ="Density") +theme_minimal()print(movement_hist)
print(strength_density)
print(movement_density)
print(dynamicstrength_density)
# Display histograms and density plots side by sidelibrary(gridExtra)
Attaching package: 'gridExtra'
The following object is masked from 'package:dplyr':
combine
Pearson's product-moment correlation
data: data$dragon_score and data$maturity_offset
t = -1.8498, df = 67, p-value = 0.06876
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
-0.43444349 0.01714709
sample estimates:
cor
-0.2204282
print (corr_test2)
Pearson's product-moment correlation
data: data_jump_clean$log_jumpheight and data_jump_clean$maturity_offset
t = 2.9688, df = 66, p-value = 0.004164
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
0.1141452 0.5376556
sample estimates:
cor
0.3432293
print (corr_test3)
Pearson's product-moment correlation
data: data$maturity_offset and data$relative_strength_imtp
t = -0.98811, df = 67, p-value = 0.3267
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
-0.3466938 0.1202442
sample estimates:
cor
-0.1198473
print (corr_test4)
Pearson's product-moment correlation
data: data$maturity_offset and data$peak_force_imtp
t = 3.8158, df = 67, p-value = 0.0002986
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
0.2064857 0.5992701
sample estimates:
cor
0.4225175
ggplot(data, aes(x = relative_strength_imtp, y = dragon_score)) +geom_point(color ="blue") +geom_smooth(method ="lm", col ="red", se =FALSE) +labs(title ="Scatter Plot of Strength vs Movement",x ="Strength",y ="Movement") +theme_minimal()
`geom_smooth()` using formula = 'y ~ x'
ggplot(data_jump_clean, aes(x = log_jumpheight, y = dragon_score)) +geom_point(color ="blue") +geom_smooth(method ="lm", col ="red", se =FALSE) +labs(title ="Scatter Plot of Dynamic Strength vs Movement",x ="Dynamic Strength",y ="Movement") +theme_minimal()
`geom_smooth()` using formula = 'y ~ x'
# Fit a multiple linear regression modelmodel <-lm(dragon_score ~ relative_strength_imtp + age + sex, data = data)# Print the summary of the modelsummary(model)
Call:
lm(formula = dragon_score ~ relative_strength_imtp + age + sex,
data = data)
Residuals:
Min 1Q Median 3Q Max
-7.806 -2.056 -0.213 2.283 5.725
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 46.9714 5.0224 9.352 1.19e-13 ***
relative_strength_imtp 0.2180 0.1073 2.031 0.0463 *
age -0.4984 0.3411 -1.461 0.1487
sexm 0.9935 1.1831 0.840 0.4041
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 3.238 on 65 degrees of freedom
Multiple R-squared: 0.1361, Adjusted R-squared: 0.09624
F-statistic: 3.414 on 3 and 65 DF, p-value: 0.02248
# Fit a multiple linear regression modelmodel <-lm(dragon_score ~ age + sex, data = data)# Print the summary of the modelsummary(model)
Call:
lm(formula = dragon_score ~ age + sex, data = data)
Residuals:
Min 1Q Median 3Q Max
-9.1199 -1.6262 0.0254 1.8801 6.0254
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 52.5390 4.3069 12.199 <2e-16 ***
age -0.4938 0.3490 -1.415 0.1619
sexm 2.3485 1.0000 2.349 0.0219 *
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 3.313 on 66 degrees of freedom
Multiple R-squared: 0.08128, Adjusted R-squared: 0.05344
F-statistic: 2.919 on 2 and 66 DF, p-value: 0.06097
# Fit a multiple linear regression modelmodel <-lm(dragon_score ~ peak_force_imtp + age + sex, data = data)# Print the summary of the modelsummary(model)
Call:
lm(formula = dragon_score ~ peak_force_imtp + age + sex, data = data)
Residuals:
Min 1Q Median 3Q Max
-9.1409 -1.6243 0.0827 1.8704 6.0620
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 5.252e+01 4.350e+00 12.072 <2e-16 ***
peak_force_imtp -9.945e-05 1.383e-03 -0.072 0.9429
age -4.820e-01 3.878e-01 -1.243 0.2183
sexm 2.388e+00 1.149e+00 2.078 0.0416 *
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 3.339 on 65 degrees of freedom
Multiple R-squared: 0.08135, Adjusted R-squared: 0.03895
F-statistic: 1.919 on 3 and 65 DF, p-value: 0.1353
# Fit a multiple linear regression modelmodel <-lm(dragon_score ~ log_jumpheight + age + sex, data = data_jump_clean)# Print the summary of the modelsummary(model)
Call:
lm(formula = dragon_score ~ log_jumpheight + age + sex, data = data_jump_clean)
Residuals:
Min 1Q Median 3Q Max
-8.5283 -1.8888 0.2253 1.8634 5.4986
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 34.4820 6.6461 5.188 2.33e-06 ***
log_jumpheight 8.0178 2.3135 3.466 0.00095 ***
age -1.0482 0.3529 -2.971 0.00418 **
sexm 0.8425 0.9939 0.848 0.39981
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 3.029 on 64 degrees of freedom
Multiple R-squared: 0.2181, Adjusted R-squared: 0.1815
F-statistic: 5.952 on 3 and 64 DF, p-value: 0.001206
model <-lm(dragon_score ~ relative_strength_imtp, data = data)summary(model)
Call:
lm(formula = dragon_score ~ relative_strength_imtp, data = data)
Residuals:
Min 1Q Median 3Q Max
-8.0931 -2.0483 -0.0472 2.4475 5.9722
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 40.28316 2.39564 16.815 < 2e-16 ***
relative_strength_imtp 0.24305 0.08646 2.811 0.00647 **
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 3.245 on 67 degrees of freedom
Multiple R-squared: 0.1055, Adjusted R-squared: 0.09215
F-statistic: 7.903 on 1 and 67 DF, p-value: 0.006468
Pearson's product-moment correlation
data: data_jump_clean$dragon_score and data_jump_clean$log_jumpheight
t = 2.8329, df = 66, p-value = 0.006111
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
0.0985801 0.5263685
sample estimates:
cor
0.3292661
library(ggplot2)ggplot(data, aes(x = relative_strength_imtp, y = dragon_score)) +geom_point(color ="black", size =1.5, alpha =0.7) +geom_smooth(method ="lm", col ="red", size =1, linetype ="solid") +labs(title ="Relationship Between Relative Strength and Movement Competency",x ="IMTP (Relative Strength)",y ="Dragon Score (Movement Competency)") +theme_minimal() +theme(panel.grid.major =element_blank(),panel.grid.minor =element_blank())
Warning: Using `size` aesthetic for lines was deprecated in ggplot2 3.4.0.
ℹ Please use `linewidth` instead.
`geom_smooth()` using formula = 'y ~ x'
ggplot(data, aes(x = relative_strength_imtp, y = dragon_score)) +geom_point(color ="black", size =1.5, alpha =0.7) +geom_smooth(method ="lm", col ="red", size =1, linetype ="solid") +labs(title ="Relationship Between Relative Strength and Movement Competency",x =" (Relative Strength)",y ="Dragon Score (Movement Competency)") +theme_minimal() +theme(panel.grid.major =element_blank(),panel.grid.minor =element_blank())
`geom_smooth()` using formula = 'y ~ x'
library(ggplot2)ggplot(data_jump_clean, aes(x = log_jumpheight, y = dragon_score)) +geom_point() +geom_smooth(method ="lm", col ="blue") +labs(title ="Correlation Between Dynamic Strength and Movement Competency",x ="Dynamic Strength",y ="Movement Competency")
ggplot(data_jump_clean, aes(x = log_jumpheight, y = product_score )) +geom_point() +geom_smooth(method ="lm", col ="blue") +labs(title ="Correlation Between Dynamic Strength and Movement Competency",x ="Dynamic Strength",y ="Movement Competency")
`geom_smooth()` using formula = 'y ~ x'
#Residuals vs. Fitted values plotplot(model, which =1)
model_interaction5 <-lm(dragon_score ~ age * sex, data = data)summary(model_interaction5)
Call:
lm(formula = dragon_score ~ age * sex, data = data)
Residuals:
Min 1Q Median 3Q Max
-9.058 -1.760 -0.040 1.785 5.942
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 53.5790 4.4584 12.017 <2e-16 ***
age -0.5785 0.3614 -1.601 0.114
sexm -14.8990 18.8168 -0.792 0.431
age:sexm 1.2985 1.4147 0.918 0.362
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 3.317 on 65 degrees of freedom
Multiple R-squared: 0.09303, Adjusted R-squared: 0.05117
F-statistic: 2.222 on 3 and 65 DF, p-value: 0.09388
model_interaction <-lm(dragon_score ~ peak_force_imtp * age * sex, data = data)summary(model_interaction)
Call:
lm(formula = dragon_score ~ peak_force_imtp * age * sex, data = data)
Residuals:
Min 1Q Median 3Q Max
-9.2056 -1.8673 0.0033 1.6825 5.8230
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 5.391e+01 1.975e+01 2.729 0.00828 **
peak_force_imtp -1.173e-03 1.673e-02 -0.070 0.94436
age -5.322e-01 1.574e+00 -0.338 0.73641
sexm 9.552e+01 9.594e+01 0.996 0.32336
peak_force_imtp:age 3.527e-05 1.293e-03 0.027 0.97833
peak_force_imtp:sexm -6.290e-02 5.610e-02 -1.121 0.26666
age:sexm -7.099e+00 7.176e+00 -0.989 0.32644
peak_force_imtp:age:sexm 4.791e-03 4.191e-03 1.143 0.25751
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 3.377 on 61 degrees of freedom
Multiple R-squared: 0.118, Adjusted R-squared: 0.01677
F-statistic: 1.166 on 7 and 61 DF, p-value: 0.3357
model_interaction3 <-lm(dragon_score ~ log_jumpheight * age * sex, data = data_jump_clean)summary(model_interaction3)
Call:
lm(formula = dragon_score ~ log_jumpheight * age * sex, data = data_jump_clean)
Residuals:
Min 1Q Median 3Q Max
-8.1531 -1.9170 -0.0802 2.2289 5.5166
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 1.0371 66.0788 0.016 0.988
log_jumpheight 19.2184 21.4124 0.898 0.373
age 1.6394 5.4431 0.301 0.764
sexm 107.4853 444.2035 0.242 0.810
log_jumpheight:age -0.8979 1.7512 -0.513 0.610
log_jumpheight:sexm -37.7128 132.8498 -0.284 0.777
age:sexm -8.1301 33.2137 -0.245 0.807
log_jumpheight:age:sexm 2.8725 9.9336 0.289 0.773
Residual standard error: 3.099 on 60 degrees of freedom
Multiple R-squared: 0.2327, Adjusted R-squared: 0.1432
F-statistic: 2.6 on 7 and 60 DF, p-value: 0.02067
model_interaction <-lm(dragon_score ~ relative_strength_imtp * age * sex, data = data)summary(model_interaction)
Call:
lm(formula = dragon_score ~ relative_strength_imtp * age * sex,
data = data)
Residuals:
Min 1Q Median 3Q Max
-7.5745 -2.1482 -0.1621 2.4493 5.7489
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 81.6824 33.8268 2.415 0.0188 *
relative_strength_imtp -1.1037 1.3184 -0.837 0.4058
age -3.2341 2.7386 -1.181 0.2422
sexm -255.5222 171.6831 -1.488 0.1418
relative_strength_imtp:age 0.1041 0.1067 0.975 0.3332
relative_strength_imtp:sexm 7.4748 5.2004 1.437 0.1557
age:sexm 18.9698 12.8358 1.478 0.1446
relative_strength_imtp:age:sexm -0.5532 0.3897 -1.420 0.1608
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 3.242 on 61 degrees of freedom
Multiple R-squared: 0.1872, Adjusted R-squared: 0.09388
F-statistic: 2.007 on 7 and 61 DF, p-value: 0.06869
Pearson's product-moment correlation
data: data_jump_clean$maturity_offset and data_jump_clean$log_jumpheight
t = 2.9688, df = 66, p-value = 0.004164
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
0.1141452 0.5376556
sample estimates:
cor
0.3432293
# Linear regression seperated by sex relative strength model_male <-lm(dragon_score ~ relative_strength_imtp, data = data, subset = sex =="m")summary(model_male)
Call:
lm(formula = dragon_score ~ relative_strength_imtp, data = data,
subset = sex == "m")
Residuals:
Min 1Q Median 3Q Max
-6.6317 -1.5355 -0.1793 1.6833 5.2270
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 37.2643 7.0697 5.271 9.41e-05 ***
relative_strength_imtp 0.3443 0.2192 1.570 0.137
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 3.329 on 15 degrees of freedom
Multiple R-squared: 0.1412, Adjusted R-squared: 0.08395
F-statistic: 2.466 on 1 and 15 DF, p-value: 0.1372
model_female <-lm(dragon_score ~ relative_strength_imtp, data = data, subset = sex =="f")summary(model_female)
Call:
lm(formula = dragon_score ~ relative_strength_imtp, data = data,
subset = sex == "f")
Residuals:
Min 1Q Median 3Q Max
-8.4365 -2.2786 0.1965 2.6766 6.1805
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 41.9981 3.2618 12.876 <2e-16 ***
relative_strength_imtp 0.1737 0.1252 1.388 0.171
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 3.263 on 50 degrees of freedom
Multiple R-squared: 0.03709, Adjusted R-squared: 0.01783
F-statistic: 1.926 on 1 and 50 DF, p-value: 0.1714
# Perform Pearson's correlation test for malesmale_corr_strength_movement <-cor.test( data$relative_strength_imtp[data$sex =="m"], data$dragon_score[data$sex =="m"])# Perform Pearson's correlation test for femalesfemale_corr_strength_movement <-cor.test( data$relative_strength_imtp[data$sex =="f"], data$dragon_score[data$sex =="f"])# Print resultscat("Male strength movement correlation:\n")
Male strength movement correlation:
print(male_corr_strength_movement)
Pearson's product-moment correlation
data: data$relative_strength_imtp[data$sex == "m"] and data$dragon_score[data$sex == "m"]
t = 1.5704, df = 15, p-value = 0.1372
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
-0.1279978 0.7253961
sample estimates:
cor
0.3757645
cat("\nFemale strength movement correlation:\n")
Female strength movement correlation:
print(female_corr_strength_movement)
Pearson's product-moment correlation
data: data$relative_strength_imtp[data$sex == "f"] and data$dragon_score[data$sex == "f"]
t = 1.3877, df = 50, p-value = 0.1714
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
-0.08477874 0.44223597
sample estimates:
cor
0.1925771
# Linear regression for males - maturity offset model_males <-lm(dragon_score ~ relative_strength_imtp + maturity_offset, data =subset(data, sex =="m"))# Summary of the modelsummary(model_males)
Call:
lm(formula = dragon_score ~ relative_strength_imtp + maturity_offset,
data = subset(data, sex == "m"))
Residuals:
Min 1Q Median 3Q Max
-6.6837 -1.4976 -0.1698 1.6802 5.6632
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 37.1504 7.3159 5.078 0.000168 ***
relative_strength_imtp 0.3494 0.2274 1.537 0.146603
maturity_offset -0.2887 1.1575 -0.249 0.806680
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 3.438 on 14 degrees of freedom
Multiple R-squared: 0.145, Adjusted R-squared: 0.02285
F-statistic: 1.187 on 2 and 14 DF, p-value: 0.334
# Linear regression for femalesmodel_females <-lm(dragon_score ~ relative_strength_imtp + maturity_offset, data =subset(data, sex =="f"))# Summary of the modelsummary(model_females)
Call:
lm(formula = dragon_score ~ relative_strength_imtp + maturity_offset,
data = subset(data, sex == "f"))
Residuals:
Min 1Q Median 3Q Max
-7.8660 -1.9545 -0.0212 2.4828 5.3541
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 42.4564 3.2279 13.153 <2e-16 ***
relative_strength_imtp 0.1738 0.1234 1.409 0.165
maturity_offset -0.6422 0.4082 -1.573 0.122
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 3.216 on 49 degrees of freedom
Multiple R-squared: 0.08338, Adjusted R-squared: 0.04597
F-statistic: 2.229 on 2 and 49 DF, p-value: 0.1185
# Linear regression seperated by sex absolute strength model_malea <-lm(dragon_score ~ peak_force_imtp, data = data, subset = sex =="m")summary(model_malea)
Call:
lm(formula = dragon_score ~ peak_force_imtp, data = data, subset = sex ==
"m")
Residuals:
Min 1Q Median 3Q Max
-8.0521 -1.8113 -0.0305 1.1761 5.3497
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 4.689e+01 3.838e+00 12.215 3.39e-09 ***
peak_force_imtp 8.008e-04 2.127e-03 0.377 0.712
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 3.575 on 15 degrees of freedom
Multiple R-squared: 0.009365, Adjusted R-squared: -0.05668
F-statistic: 0.1418 on 1 and 15 DF, p-value: 0.7118
model_femalea <-lm(dragon_score ~ peak_force_imtp, data = data, subset = sex =="f")summary(model_femalea)
Call:
lm(formula = dragon_score ~ peak_force_imtp, data = data, subset = sex ==
"f")
Residuals:
Min 1Q Median 3Q Max
-9.7176 -2.0137 -0.0815 1.8852 5.9365
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 48.819552 2.006769 24.327 <2e-16 ***
peak_force_imtp -0.001901 0.001588 -1.197 0.237
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 3.279 on 50 degrees of freedom
Multiple R-squared: 0.02784, Adjusted R-squared: 0.008395
F-statistic: 1.432 on 1 and 50 DF, p-value: 0.2371
# Perform Pearson's correlation test for malesmale_corr_absolute_movement <-cor.test( data$peak_force_imtp[data$sex =="m"], data$dragon_score[data$sex =="m"])# Perform Pearson's correlation test for femalesfemale_corr_absolute_movement <-cor.test( data$peak_force_imtp[data$sex =="f"], data$dragon_score[data$sex =="f"])# Print resultsprint(male_corr_absolute_movement)
Pearson's product-moment correlation
data: data$peak_force_imtp[data$sex == "m"] and data$dragon_score[data$sex == "m"]
t = 0.37656, df = 15, p-value = 0.7118
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
-0.402599 0.551753
sample estimates:
cor
0.09677185
print(female_corr_absolute_movement)
Pearson's product-moment correlation
data: data$peak_force_imtp[data$sex == "f"] and data$dragon_score[data$sex == "f"]
t = -1.1966, df = 50, p-value = 0.2371
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
-0.4205977 0.1111111
sample estimates:
cor
-0.1668484
# Linear regression seperated by sex dynamic strength model_maled <-lm(dragon_score ~ log_jumpheight, data = data_jump_clean, subset = sex =="m")summary(model_maled)
Call:
lm(formula = dragon_score ~ log_jumpheight, data = data_jump_clean,
subset = sex == "m")
Residuals:
Min 1Q Median 3Q Max
-8.1997 -1.2697 0.2761 2.4820 3.6513
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 21.506 16.949 1.269 0.225
log_jumpheight 7.977 5.097 1.565 0.140
Residual standard error: 3.215 on 14 degrees of freedom
Multiple R-squared: 0.1489, Adjusted R-squared: 0.0881
F-statistic: 2.449 on 1 and 14 DF, p-value: 0.1399
model_femaled <-lm(dragon_score ~ log_jumpheight, data = data_jump_clean, subset = sex =="f")summary(model_femaled)
Call:
lm(formula = dragon_score ~ log_jumpheight, data = data_jump_clean,
subset = sex == "f")
Residuals:
Min 1Q Median 3Q Max
-8.3445 -2.3148 0.0242 2.4528 6.6637
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 32.700 7.706 4.243 9.52e-05 ***
log_jumpheight 4.445 2.481 1.791 0.0793 .
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 3.224 on 50 degrees of freedom
Multiple R-squared: 0.06031, Adjusted R-squared: 0.04152
F-statistic: 3.209 on 1 and 50 DF, p-value: 0.07929
# Perform Pearson's correlation test for malesmale_corr_ds_movement <-cor.test( data_jump_clean$log_jumpheight[data$sex =="m"], data_jump_clean$dragon_score[data$sex =="m"])# Perform Pearson's correlation test for femalesfemale_corr_ds_movement <-cor.test( data_jump_clean$log_jumpheight[data$sex =="f"], data_jump_clean$dragon_score[data$sex =="f"])# Print resultsprint(male_corr_ds_movement)
Pearson's product-moment correlation
data: data_jump_clean$log_jumpheight[data$sex == "m"] and data_jump_clean$dragon_score[data$sex == "m"]
t = 1.6688, df = 15, p-value = 0.1159
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
-0.1048707 0.7363171
sample estimates:
cor
0.3957205
print(female_corr_ds_movement)
Pearson's product-moment correlation
data: data_jump_clean$log_jumpheight[data$sex == "f"] and data_jump_clean$dragon_score[data$sex == "f"]
t = 1.901, df = 49, p-value = 0.0632
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
-0.0145607 0.5014424
sample estimates:
cor
0.2620746
#Breakdown of dragon score Dynamic strengthmodel1 <-lm(process_score ~ log_jumpheight, data = data_jump_clean)summary(model1)
Call:
lm(formula = process_score ~ log_jumpheight, data = data_jump_clean)
Residuals:
Min 1Q Median 3Q Max
-6.5895 -1.1141 0.1513 1.3770 2.8768
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 9.984 3.676 2.716 0.00842 **
log_jumpheight 1.675 1.164 1.439 0.15474
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 1.906 on 66 degrees of freedom
Multiple R-squared: 0.03044, Adjusted R-squared: 0.01575
F-statistic: 2.072 on 1 and 66 DF, p-value: 0.1547
model2 <-lm(product_score ~ log_jumpheight, data = data_jump_clean)summary(model2)
Call:
lm(formula = product_score ~ log_jumpheight, data = data_jump_clean)
Residuals:
Min 1Q Median 3Q Max
-5.6307 -1.5427 0.2306 0.9354 2.7030
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 10.069 3.460 2.910 0.00492 **
log_jumpheight 1.779 1.095 1.624 0.10918
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 1.794 on 66 degrees of freedom
Multiple R-squared: 0.03842, Adjusted R-squared: 0.02385
F-statistic: 2.637 on 1 and 66 DF, p-value: 0.1092