# Load packages
# Core
library(tidyverse)
library(tidyquant)
Collect individual returns into a portfolio by assigning a weight to each stock
Choose your stocks.
from 2012-12-31 to 2017-12-31
symbols <- c("AAPL", "MSFT", "GOOG")
prices <- tq_get(x = symbols,
get = "stock.prices",
from = "2012-12-31",
to = "2017-12-31")
asset_returns_tbl <- prices %>%
group_by(symbol) %>%
tq_transmute(select = adjusted,
mutate_fun = periodReturn,
period = "quarterly",
type = "log") %>%
slice(-1) %>%
ungroup() %>%
set_names(c("asset", "date", "returns"))
symbols <- asset_returns_tbl %>% distinct(asset) %>% pull()
w <- c(0.35,
0.35,
0.30)
w_tbl <- tibble(symbols, w)
portfolio_returns_tbl <- asset_returns_tbl %>%
tq_portfolio(assets_col = asset,
returns_col = returns,
weights = w_tbl,
col_rename = "returns",
rebalance_on = "quarters")
portfolio_returns_tbl
## # A tibble: 20 × 2
## date returns
## <date> <dbl>
## 1 2013-03-28 0.00118
## 2 2013-06-28 0.0585
## 3 2013-09-30 0.0560
## 4 2013-12-31 0.183
## 5 2014-03-31 0.0145
## 6 2014-06-30 0.0878
## 7 2014-09-30 0.0649
## 8 2014-12-31 0.00359
## 9 2015-03-31 0.0196
## 10 2015-06-30 0.0139
## 11 2015-09-30 0.0139
## 12 2015-12-31 0.132
## 13 2016-03-31 0.00839
## 14 2016-06-30 -0.0903
## 15 2016-09-30 0.139
## 16 2016-12-30 0.0326
## 17 2017-03-31 0.121
## 18 2017-06-30 0.0496
## 19 2017-09-29 0.0688
## 20 2017-12-29 0.107
portfolio_returns_tbl %>%
ggplot(aes(returns)) +
geom_histogram(fill = "pink",
binwidth = 0.005) +
labs(title = "Portfolio Returns Distribution",
y = "count",
x = "returns")
portfolio_returns_tbl %>%
ggplot(aes(returns)) +
geom_histogram(fill = "pink",
binwidth = 0.01) +
geom_density(aes(returns)) +
labs(title = "Portfolio Histogram and Density",
y = "Distribution",
x = "Quarterly Returns")
What return should you expect from the portfolio in a typical quarter? In a typical quarter you should expect anywhere between -10% return and 20% return, with the majority of returns occurring on the positive side of that.