Tratamientos recibidos
library(readxl)
GAT <- read_excel("GAT.xlsx")
#se unifican las variables antes y después del diagnóstico por tipo de tratamiento.
library(dplyr)
GAT <- GAT %>%
mutate(QUIM = ifelse(AQuimioTerSiste == "Checked" | BQuimioTerSiste == "Checked", 1, 0)) %>%
mutate(RAD = ifelse(ARadio == "Checked" | BRadio == "Checked", 1, 0)) %>%
mutate(CIR = ifelse(ACirugia == "Checked" | BCirugia == "Checked", 1, 0)) %>%
mutate(PAL = ifelse(APaliativo == "Checked" | BPaliativo == "Checked", 1, 0))
library(limma)
V <- vennCounts(GAT[,139:142])
V
## QUIM RAD CIR PAL Counts
## 1 0 0 0 0 3
## 2 0 0 0 1 30
## 3 0 0 1 0 71
## 4 0 0 1 1 8
## 5 0 1 0 0 16
## 6 0 1 0 1 2
## 7 0 1 1 0 20
## 8 0 1 1 1 2
## 9 1 0 0 0 1141
## 10 1 0 0 1 4
## 11 1 0 1 0 747
## 12 1 0 1 1 15
## 13 1 1 0 0 335
## 14 1 1 0 1 6
## 15 1 1 1 0 702
## 16 1 1 1 1 15
## attr(,"class")
## [1] "VennCounts"
vennDiagram(V, cex = 1, circle.col = c("black", "#8B7E66", "grey", "#B4CDCD"),
counts.col = "black", lwd = 2)

Otra visualizacion
#sapply(GAT[139:142], class)
library(UpSetR)
GATPLOT <- as.data.frame(GAT[139:142])
upset(GATPLOT, order.by = "freq", nsets = 4, nintersects = NA, matrix.color = "#8B5A2B",
main.bar.color = "black", sets.bar.color = "#8B8386", mainbar.y.label = "Frecuencia Tratamiento",
sets.x.label = "Tratamiento", point.size = 2, line.size = 0.5, number.angles = 0,
group.by = "degree", shade.alpha = 1, matrix.dot.alpha = 1,
scale.intersections = "identity", scale.sets = "identity", text.scale = 1.5, set_size.show = T)

2965 en quimioterapia (antes o despues del diagnostico)
Cruce tratamiento con variables sociodemográficas filtrando por uso
de MAC
GAT_MAC <- GAT %>% filter(AlternativaActual == "Si")
GATPLOT2 <- as.data.frame(GAT_MAC[139:142])
upset(GATPLOT2, order.by = "freq", nsets = 4, nintersects = NA, matrix.color = "#8B5A2B",
main.bar.color = "black", sets.bar.color = "#8B8386", mainbar.y.label = "Frecuencia Tratamiento",
sets.x.label = "Tratamiento", point.size = 2, line.size = 0.5, number.angles = 0,
group.by = "degree", shade.alpha = 1, matrix.dot.alpha = 1,
scale.intersections = "identity", scale.sets = "identity", text.scale = 1.5, set_size.show = T)

1549 QUIMIOTERAPIA
Cruce de variables
#categorizacion edad
GAT_MAC <- GAT_MAC %>% mutate(Edadcat = cut(Edad, breaks = c(-Inf, 49, 64, Inf), right = F, labels = c("< 50 años", "50 - 64 años", ">=65")))
library(tableone)
GAT_MAC$Sexo <- as.factor(GAT_MAC$Sexo)
GAT_MAC$Ocupacion <- as.factor(GAT_MAC$Ocupacion)
GAT_MAC$Religion <- as.factor(GAT_MAC$Religion)
#codificacion tratamientos
GAT_MAC$QUIM <- ifelse(GAT_MAC$QUIM == 1, "Sí", "No")
GAT_MAC$RAD <- ifelse(GAT_MAC$RAD == 1, "Sí", "No")
GAT_MAC$CIR <- ifelse(GAT_MAC$CIR == 1, "Sí", "No")
GAT_MAC$PAL <- ifelse(GAT_MAC$PAL == 1, "Sí", "No")
GAT_MAC$QUIM <- as.factor(GAT_MAC$QUIM)
GAT_MAC$RAD <- as.factor(GAT_MAC$RAD)
GAT_MAC$CIR <- as.factor(GAT_MAC$CIR)
GAT_MAC$PAL <- as.factor(GAT_MAC$PAL)
myVars1 <- c("Sexo", "Ocupacion", "Religion", "Edadcat")
catVars1 <- c("Sexo", "Ocupacion", "Religion", "Edadcat")
table1 <- CreateTableOne(vars = myVars1, data = GAT_MAC, factorVars = catVars1, includeNA = FALSE, strata = "QUIM")
table2 <- CreateTableOne(vars = myVars1, data = GAT_MAC, factorVars = catVars1, includeNA = FALSE, strata = "RAD")
table3 <- CreateTableOne(vars = myVars1, data = GAT_MAC, factorVars = catVars1, includeNA = FALSE, strata = "CIR")
table4 <- CreateTableOne(vars = myVars1, data = GAT_MAC, factorVars = catVars1, includeNA = FALSE, strata = "PAL")
table1 <- as.data.frame(print(table1, show.all = TRUE, printToggle = FALSE))
table2 <- as.data.frame(print(table2, show.all = TRUE, printToggle = FALSE))
table3 <- as.data.frame(print(table3, show.all = TRUE, printToggle = FALSE))
table4 <- as.data.frame(print(table4, show.all = TRUE, printToggle = FALSE))
library(knitr)
library(kableExtra)
kable(table1, format = "html", caption = "Cruce Quim - VRBLS SOCIO_DEM.") %>%
kable_styling(bootstrap_options = c("striped", "hover", "condensed"),
full_width = F,
position = "center") %>%
column_spec(1, bold = T, color = "white", background = "#D7261E") %>%
column_spec(2, border_left = T, background = "#F3E6E3")
Cruce Quim - VRBLS SOCIO_DEM.
|
No
|
Sí
|
p
|
test
|
n
|
61
|
1549
|
|
|
Sexo = Masculino (%)
|
24 (39.3)
|
458 (29.6)
|
0.135
|
|
Ocupacion (%)
|
|
|
0.281
|
|
Cesante
|
7 (11.5)
|
156 (10.1)
|
|
|
Empleado
|
8 (13.1)
|
227 (14.7)
|
|
|
Estudiante
|
2 ( 3.3)
|
14 ( 0.9)
|
|
|
Hogar
|
21 (34.4)
|
674 (43.5)
|
|
|
Independiente
|
11 (18.0)
|
268 (17.3)
|
|
|
Pensionado
|
12 (19.7)
|
210 (13.6)
|
|
|
Religion (%)
|
|
|
0.007
|
|
Católica
|
45 (73.8)
|
1177 (76.0)
|
|
|
Cristiana
|
6 ( 9.8)
|
273 (17.6)
|
|
|
Judía
|
0 ( 0.0)
|
2 ( 0.1)
|
|
|
No profesa religión
|
7 (11.5)
|
50 ( 3.2)
|
|
|
Otra
|
3 ( 4.9)
|
47 ( 3.0)
|
|
|
Edadcat (%)
|
|
|
0.017
|
|
< 50 años
|
10 (16.4)
|
369 (23.8)
|
|
|
50 - 64 años
|
18 (29.5)
|
620 (40.0)
|
|
|
>=65
|
33 (54.1)
|
560 (36.2)
|
|
|
kable(table2, format = "html", caption = "Cruce RAD - VRBLS SOCIO_DEM.") %>%
kable_styling(bootstrap_options = c("striped", "hover", "condensed"),
full_width = F,
position = "center") %>%
column_spec(1, bold = T, color = "white", background = "blue") %>%
column_spec(2, border_left = T, background = "#ADD8E6")
Cruce RAD - VRBLS SOCIO_DEM.
|
No
|
Sí
|
p
|
test
|
n
|
1033
|
577
|
|
|
Sexo = Masculino (%)
|
313 (30.3)
|
169 (29.3)
|
0.713
|
|
Ocupacion (%)
|
|
|
0.083
|
|
Cesante
|
102 ( 9.9)
|
61 (10.6)
|
|
|
Empleado
|
166 (16.1)
|
69 (12.0)
|
|
|
Estudiante
|
7 ( 0.7)
|
9 ( 1.6)
|
|
|
Hogar
|
450 (43.6)
|
245 (42.5)
|
|
|
Independiente
|
176 (17.0)
|
103 (17.9)
|
|
|
Pensionado
|
132 (12.8)
|
90 (15.6)
|
|
|
Religion (%)
|
|
|
0.026
|
|
Católica
|
765 (74.1)
|
457 (79.2)
|
|
|
Cristiana
|
185 (17.9)
|
94 (16.3)
|
|
|
Judía
|
1 ( 0.1)
|
1 ( 0.2)
|
|
|
No profesa religión
|
47 ( 4.5)
|
10 ( 1.7)
|
|
|
Otra
|
35 ( 3.4)
|
15 ( 2.6)
|
|
|
Edadcat (%)
|
|
|
0.064
|
|
< 50 años
|
260 (25.2)
|
119 (20.6)
|
|
|
50 - 64 años
|
410 (39.7)
|
228 (39.5)
|
|
|
>=65
|
363 (35.1)
|
230 (39.9)
|
|
|
kable(table3, format = "html", caption = "Cruce CIR - VRBLS SOCIO_DEM.") %>%
kable_styling(bootstrap_options = c("striped", "hover", "condensed"),
full_width = F,
position = "center") %>%
column_spec(1, bold = T, color = "white", background = "#698B22") %>%
column_spec(2, border_left = T, background = "#98FB98")
Cruce CIR - VRBLS SOCIO_DEM.
|
No
|
Sí
|
p
|
test
|
n
|
782
|
828
|
|
|
Sexo = Masculino (%)
|
257 (32.9)
|
225 (27.2)
|
0.015
|
|
Ocupacion (%)
|
|
|
0.890
|
|
Cesante
|
78 (10.0)
|
85 (10.3)
|
|
|
Empleado
|
114 (14.6)
|
121 (14.6)
|
|
|
Estudiante
|
7 ( 0.9)
|
9 ( 1.1)
|
|
|
Hogar
|
345 (44.1)
|
350 (42.3)
|
|
|
Independiente
|
138 (17.6)
|
141 (17.0)
|
|
|
Pensionado
|
100 (12.8)
|
122 (14.7)
|
|
|
Religion (%)
|
|
|
0.078
|
|
Católica
|
572 (73.1)
|
650 (78.5)
|
|
|
Cristiana
|
145 (18.5)
|
134 (16.2)
|
|
|
Judía
|
1 ( 0.1)
|
1 ( 0.1)
|
|
|
No profesa religión
|
33 ( 4.2)
|
24 ( 2.9)
|
|
|
Otra
|
31 ( 4.0)
|
19 ( 2.3)
|
|
|
Edadcat (%)
|
|
|
0.089
|
|
< 50 años
|
202 (25.8)
|
177 (21.4)
|
|
|
50 - 64 años
|
295 (37.7)
|
343 (41.4)
|
|
|
>=65
|
285 (36.4)
|
308 (37.2)
|
|
|
kable(table4, format = "html", caption = "Cruce PAL - VRBLS SOCIO_DEM.") %>%
kable_styling(bootstrap_options = c("striped", "hover", "condensed"),
full_width = F,
position = "center") %>%
column_spec(1, bold = T, color = "white", background = "#8B475D") %>%
column_spec(2, border_left = T, background = "#FFC0CB")
Cruce PAL - VRBLS SOCIO_DEM.
|
No
|
Sí
|
p
|
test
|
n
|
1569
|
41
|
|
|
Sexo = Masculino (%)
|
466 (29.7)
|
16 (39.0)
|
0.265
|
|
Ocupacion (%)
|
|
|
0.038
|
|
Cesante
|
153 ( 9.8)
|
10 (24.4)
|
|
|
Empleado
|
231 (14.7)
|
4 ( 9.8)
|
|
|
Estudiante
|
15 ( 1.0)
|
1 ( 2.4)
|
|
|
Hogar
|
681 (43.4)
|
14 (34.1)
|
|
|
Independiente
|
274 (17.5)
|
5 (12.2)
|
|
|
Pensionado
|
215 (13.7)
|
7 (17.1)
|
|
|
Religion (%)
|
|
|
0.219
|
|
Católica
|
1195 (76.2)
|
27 (65.9)
|
|
|
Cristiana
|
271 (17.3)
|
8 (19.5)
|
|
|
Judía
|
2 ( 0.1)
|
0 ( 0.0)
|
|
|
No profesa religión
|
53 ( 3.4)
|
4 ( 9.8)
|
|
|
Otra
|
48 ( 3.1)
|
2 ( 4.9)
|
|
|
Edadcat (%)
|
|
|
0.005
|
|
< 50 años
|
374 (23.8)
|
5 (12.2)
|
|
|
50 - 64 años
|
627 (40.0)
|
11 (26.8)
|
|
|
>=65
|
568 (36.2)
|
25 (61.0)
|
|
|
Tipo de cáncer
table(GAT_MAC$EstadoCancer)
##
## Con ganglios comprometidos, pero sin metástasis a otros órganos
## 301
## Con metástasis a otros órganos
## 425
## Localizado
## 739
## No sabe
## 145
GAT_TRAT <- GAT %>% filter(EstadoCancer != "No sabe")
table(GAT_TRAT$EstadoCancer)
##
## Con ganglios comprometidos, pero sin metástasis a otros órganos
## 549
## Con metástasis a otros órganos
## 826
## Localizado
## 1455
GAT_TRAT <- GAT_TRAT %>%
mutate(EstadoCancer = case_when(
EstadoCancer == "Con ganglios comprometidos, pero sin metástasis a otros órganos" | EstadoCancer == "Localizado" ~ "Localizado/Con ganglios comprometidos",
EstadoCancer == "Con metástasis a otros órganos" ~ "Metastasis"
))
table(GAT_TRAT$EstadoCancer)
##
## Localizado/Con ganglios comprometidos Metastasis
## 2004 826
CRUCE DIAGNOSTICO
- USO MAC
- SEXO
- OCUPACION RELIGIÓN
- EDAD CATEGORIZADA
GAT_TRAT$AlternativaActual <- as.factor(GAT_TRAT$AlternativaActual)
GAT_TRAT$Sexo <- as.factor(GAT_TRAT$Sexo)
GAT_TRAT$Ocupacion <- as.factor(GAT_TRAT$Ocupacion)
GAT_TRAT$Religion <- as.factor(GAT_TRAT$Religion)
GAT_TRAT <- GAT_TRAT %>% mutate(Edadcat = cut(Edad, breaks = c(-Inf, 49, 64, Inf), right = F, labels = c("< 50 años", "50 - 64 años", ">=65")))
GAT_TRAT$EstadoCancer <- as.factor(GAT_TRAT$EstadoCancer)
myVars2 <- c("Sexo", "Ocupacion", "Religion", "Edadcat", "EstadoCancer")
catVars2 <- c("Sexo", "Ocupacion", "Religion", "Edadcat", "EstadoCancer")
table5 <- CreateTableOne(vars = myVars2, data = GAT_TRAT, factorVars = catVars2, includeNA = FALSE, strata = "AlternativaActual", addOverall = TRUE)
table5 <- as.data.frame(print(table5, show.all = TRUE, printToggle = FALSE))
kable(table5, format = "html", caption = "Cruce MAC - VRBLS SOCIO_DEM.") %>%
kable_styling(bootstrap_options = c("striped", "hover", "condensed"),
full_width = F,
position = "center") %>%
column_spec(1, bold = T, color = "white", background = "orange") %>%
column_spec(2, border_left = T, background = "#EEDD82")
Cruce MAC - VRBLS SOCIO_DEM.
|
Overall
|
No
|
Si
|
p
|
test
|
n
|
2830
|
1365
|
1465
|
|
|
Sexo = Masculino (%)
|
1044 (36.9)
|
607 (44.5)
|
437 (29.8)
|
<0.001
|
|
Ocupacion (%)
|
|
|
|
<0.001
|
|
Cesante
|
362 (12.8)
|
223 (16.3)
|
139 ( 9.5)
|
|
|
Empleado
|
412 (14.6)
|
192 (14.1)
|
220 (15.0)
|
|
|
Estudiante
|
28 ( 1.0)
|
12 ( 0.9)
|
16 ( 1.1)
|
|
|
Hogar
|
1152 (40.7)
|
517 (37.9)
|
635 (43.3)
|
|
|
Independiente
|
445 (15.7)
|
187 (13.7)
|
258 (17.6)
|
|
|
Pensionado
|
431 (15.2)
|
234 (17.1)
|
197 (13.4)
|
|
|
Religion (%)
|
|
|
|
<0.001
|
|
Católica
|
2214 (78.2)
|
1104 (80.9)
|
1110 (75.8)
|
|
|
Cristiana
|
417 (14.7)
|
164 (12.0)
|
253 (17.3)
|
|
|
Judía
|
3 ( 0.1)
|
1 ( 0.1)
|
2 ( 0.1)
|
|
|
No profesa religión
|
120 ( 4.2)
|
68 ( 5.0)
|
52 ( 3.5)
|
|
|
Otra
|
76 ( 2.7)
|
28 ( 2.1)
|
48 ( 3.3)
|
|
|
Edadcat (%)
|
|
|
|
<0.001
|
|
< 50 años
|
638 (22.5)
|
277 (20.3)
|
361 (24.6)
|
|
|
50 - 64 años
|
1044 (36.9)
|
450 (33.0)
|
594 (40.5)
|
|
|
>=65
|
1148 (40.6)
|
638 (46.7)
|
510 (34.8)
|
|
|
EstadoCancer = Metastasis (%)
|
826 (29.2)
|
401 (29.4)
|
425 (29.0)
|
0.862
|
|
Cruce 2
myVars3 <- c("Sexo", "Ocupacion", "Religion", "Edadcat")
catVars3 <- c("Sexo", "Ocupacion", "Religion", "Edadcat")
table6 <- CreateTableOne(vars = myVars3, data = GAT_TRAT, factorVars = catVars3, includeNA = FALSE, strata = "EstadoCancer", addOverall = TRUE)
table6 <- as.data.frame(print(table6, show.all = TRUE, printToggle = FALSE))
kable(table6, format = "html", caption = "Cruce MAC - VRBLS SOCIO_DEM.") %>%
kable_styling(bootstrap_options = c("striped", "hover", "condensed"),
full_width = F,
position = "center") %>%
column_spec(1, bold = T, color = "white", background = "brown") %>%
column_spec(2, border_left = T, background = "#D2691E")
Cruce MAC - VRBLS SOCIO_DEM.
|
Overall
|
Localizado/Con ganglios comprometidos
|
Metastasis
|
p
|
test
|
n
|
2830
|
2004
|
826
|
|
|
Sexo = Masculino (%)
|
1044 (36.9)
|
685 (34.2)
|
359 (43.5)
|
<0.001
|
|
Ocupacion (%)
|
|
|
|
<0.001
|
|
Cesante
|
362 (12.8)
|
213 (10.6)
|
149 (18.0)
|
|
|
Empleado
|
412 (14.6)
|
317 (15.8)
|
95 (11.5)
|
|
|
Estudiante
|
28 ( 1.0)
|
21 ( 1.0)
|
7 ( 0.8)
|
|
|
Hogar
|
1152 (40.7)
|
834 (41.6)
|
318 (38.5)
|
|
|
Independiente
|
445 (15.7)
|
338 (16.9)
|
107 (13.0)
|
|
|
Pensionado
|
431 (15.2)
|
281 (14.0)
|
150 (18.2)
|
|
|
Religion (%)
|
|
|
|
0.289
|
|
Católica
|
2214 (78.2)
|
1557 (77.7)
|
657 (79.5)
|
|
|
Cristiana
|
417 (14.7)
|
309 (15.4)
|
108 (13.1)
|
|
|
Judía
|
3 ( 0.1)
|
2 ( 0.1)
|
1 ( 0.1)
|
|
|
No profesa religión
|
120 ( 4.2)
|
88 ( 4.4)
|
32 ( 3.9)
|
|
|
Otra
|
76 ( 2.7)
|
48 ( 2.4)
|
28 ( 3.4)
|
|
|
Edadcat (%)
|
|
|
|
<0.001
|
|
< 50 años
|
638 (22.5)
|
493 (24.6)
|
145 (17.6)
|
|
|
50 - 64 años
|
1044 (36.9)
|
735 (36.7)
|
309 (37.4)
|
|
|
>=65
|
1148 (40.6)
|
776 (38.7)
|
372 (45.0)
|
|
|