Load the Movies Dataset

library(dplyr)
library(readr)


movies <- read_csv("https://gist.githubusercontent.com/tiangechen/b68782efa49a16edaf07dc2cdaa855ea/raw/0c794a9717f18b094eabab2cd6a6b9a226903577/movies.csv")

Question 1

q1 <- movies %>%
  rename(movie_title = Film, release_year = Year)
print(head(q1))
## # A tibble: 6 × 8
##   movie_title               Genre `Lead Studio` `Audience score %` Profitability
##   <chr>                     <chr> <chr>                      <dbl>         <dbl>
## 1 Zack and Miri Make a Por… Roma… The Weinstei…                 70          1.75
## 2 Youth in Revolt           Come… The Weinstei…                 52          1.09
## 3 You Will Meet a Tall Dar… Come… Independent                   35          1.21
## 4 When in Rome              Come… Disney                        44          0   
## 5 What Happens in Vegas     Come… Fox                           72          6.27
## 6 Water For Elephants       Drama 20th Century…                 72          3.08
## # ℹ 3 more variables: `Rotten Tomatoes %` <dbl>, `Worldwide Gross` <chr>,
## #   release_year <dbl>

Question 2

q2 <- q1 %>%
  select(movie_title, release_year, Genre, Profitability)
print(head(q2))
## # A tibble: 6 × 4
##   movie_title                        release_year Genre   Profitability
##   <chr>                                     <dbl> <chr>           <dbl>
## 1 Zack and Miri Make a Porno                 2008 Romance          1.75
## 2 Youth in Revolt                            2010 Comedy           1.09
## 3 You Will Meet a Tall Dark Stranger         2010 Comedy           1.21
## 4 When in Rome                               2010 Comedy           0   
## 5 What Happens in Vegas                      2008 Comedy           6.27
## 6 Water For Elephants                        2011 Drama            3.08

Question 3

q3 <- q1 %>%
  filter(release_year > 2000 & `Audience score %` > 80)
print(head(q3))
## # A tibble: 6 × 8
##   movie_title               Genre `Lead Studio` `Audience score %` Profitability
##   <chr>                     <chr> <chr>                      <dbl>         <dbl>
## 1 WALL-E                    Anim… Disney                        89          2.90
## 2 Twilight                  Roma… Summit                        82         10.2 
## 3 The Curious Case of Benj… Fant… Warner Bros.                  81          1.78
## 4 Tangled                   Anim… Disney                        88          1.37
## 5 Sex and the City          Come… Warner Bros.                  81          7.22
## 6 P.S. I Love You           Roma… Independent                   82          5.10
## # ℹ 3 more variables: `Rotten Tomatoes %` <dbl>, `Worldwide Gross` <chr>,
## #   release_year <dbl>

Question 4

q4 <- q3 %>%
  mutate(Profitability_in_Millions = Profitability*1000000)
print(head(q4))
## # A tibble: 6 × 9
##   movie_title               Genre `Lead Studio` `Audience score %` Profitability
##   <chr>                     <chr> <chr>                      <dbl>         <dbl>
## 1 WALL-E                    Anim… Disney                        89          2.90
## 2 Twilight                  Roma… Summit                        82         10.2 
## 3 The Curious Case of Benj… Fant… Warner Bros.                  81          1.78
## 4 Tangled                   Anim… Disney                        88          1.37
## 5 Sex and the City          Come… Warner Bros.                  81          7.22
## 6 P.S. I Love You           Roma… Independent                   82          5.10
## # ℹ 4 more variables: `Rotten Tomatoes %` <dbl>, `Worldwide Gross` <chr>,
## #   release_year <dbl>, Profitability_in_Millions <dbl>

Question 5

q5 <- q4 %>%
  arrange(desc(`Audience score %`),desc(Profitability_in_Millions))
print(head(q5))
## # A tibble: 6 × 9
##   movie_title          Genre     `Lead Studio`  `Audience score %` Profitability
##   <chr>                <chr>     <chr>                       <dbl>         <dbl>
## 1 WALL-E               Animation Disney                         89         2.90 
## 2 A Dangerous Method   Drama     Independent                    89         0.449
## 3 Tangled              Animation Disney                         88         1.37 
## 4 Midnight in Paris    Romence   Sony                           84         8.74 
## 5 My Week with Marilyn Drama     The Weinstein…                 84         0.826
## 6 Across the Universe  romance   Independent                    84         0.653
## # ℹ 4 more variables: `Rotten Tomatoes %` <dbl>, `Worldwide Gross` <chr>,
## #   release_year <dbl>, Profitability_in_Millions <dbl>

Question 6

q6 <- movies %>%
  rename(movie_title = Film, release_year = Year, audience_score = `Audience score %`) %>%        
  select(movie_title, release_year, Genre, Profitability, audience_score) %>%  
  filter(release_year > 2000 & audience_score > 80) %>%       
  mutate(Profitability_in_Millions = Profitability * 1000000) %>% 
  arrange(desc(audience_score), desc(Profitability_in_Millions))
print(head(q6))
## # A tibble: 6 × 6
##   movie_title          release_year Genre     Profitability audience_score
##   <chr>                       <dbl> <chr>             <dbl>          <dbl>
## 1 WALL-E                       2008 Animation         2.90              89
## 2 A Dangerous Method           2011 Drama             0.449             89
## 3 Tangled                      2010 Animation         1.37              88
## 4 Midnight in Paris            2011 Romence           8.74              84
## 5 My Week with Marilyn         2011 Drama             0.826             84
## 6 Across the Universe          2007 romance           0.653             84
## # ℹ 1 more variable: Profitability_in_Millions <dbl>

Question 7

From this data, the best movies (based on audience score) are not necessarily the most popular (based on profitability). For instance, Twilight, which has a high profitability, doesn’t have the highest audience score, while a movie like WALL-E which has one of the highest audience scores, are less profitable.

Extra Credit

extra_credit <- q6 %>%
  group_by(Genre) %>% 
  summarize(avg_audience_score = mean(audience_score), avg_profitability_millions = mean(Profitability_in_Millions))
print(extra_credit)
## # A tibble: 8 × 3
##   Genre     avg_audience_score avg_profitability_millions
##   <chr>                  <dbl>                      <dbl>
## 1 Animation               88.5                   2130856.
## 2 Comedy                  82                     6929099.
## 3 Drama                   86.5                    637222.
## 4 Fantasy                 81                     1783944.
## 5 Romance                 82                     7641572.
## 6 Romence                 84                     8744706.
## 7 comedy                  81                     8096000 
## 8 romance                 84                      652603.