Reaction Time data analyses for L1 French, Study 1 (non-eeg, France)

Set working directory

setwd("C:/Users/Katie/Desktop/Research/Dissertation/STUDIES/Studies 1 and 2 Behavioral/RESULTS/Analyses/L1 French")

Load data file

data<-read.csv("all native french decomp raw.csv",header=TRUE,na.strings = "NULL")

Cleaning data

Remove breaks and practice items

data<-data[data$Running !="PracList",]
data<-data[data$Procedure != "BreakProc",]

Remove unneeded columns

data<-data[,c(1,2,17,19,21,31,32,35,42,44)]

Give some cols more transparent names

library(dplyr)
data<-rename(data,List=ExperimentName)
data<-rename(data,TrialOrder=Block)
data<-rename(data,Accuracy=Slide1.ACC)
data<-rename(data,RT=Slide1.RT)

Create mini table to tie the conditions to their relatedness

PrimeCondition<-c("Morph","Orth","Sem","ID","Unr")
Related<-c("related","related","related","related","unrelated")
RelatedTable<-cbind(PrimeCondition,Related)

Add related column to data file

library(qdap)
data$Related<-lookup(data$PrimeCondition,RelatedTable)

Accuracy analyses

Load necessary packages

library(stats)
library(lme4)
library(lmerTest)

Summarize accuracy data

aggregate(Accuracy~Condition,data=data,FUN=mean)
##   Condition  Accuracy
## 1        ID 0.9119048
## 2     Morph 0.9325397
## 3     Nonce 0.9093254
## 4      Orth 0.8698413
## 5       Sem 0.9325397

Logit model to analyze accuracy data

acc1<-glm(Accuracy~ Condition*Related+TrialOrder,data=data,family=binomial)
summary(acc1)
## 
## Call:
## glm(formula = Accuracy ~ Condition * Related + TrialOrder, family = binomial, 
##     data = data)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -2.4275   0.3857   0.4248   0.4469   0.5622  
## 
## Coefficients:
##                                   Estimate Std. Error z value Pr(>|z|)    
## (Intercept)                      2.2648702  0.1559378  14.524  < 2e-16 ***
## ConditionMorph                   0.3041848  0.2175117   1.398  0.16197    
## ConditionNonce                  -0.1094407  0.1663687  -0.658  0.51065    
## ConditionOrth                   -0.5091692  0.1857611  -2.741  0.00613 ** 
## ConditionSem                     0.3816037  0.2221165   1.718  0.08579 .  
## Relatedunrelated                -0.0985317  0.1990132  -0.495  0.62053    
## TrialOrder                       0.0008255  0.0004167   1.981  0.04760 *  
## ConditionMorph:Relatedunrelated -0.0373848  0.3004546  -0.124  0.90098    
## ConditionNonce:Relatedunrelated  0.1332093  0.2243493   0.594  0.55267    
## ConditionOrth:Relatedunrelated   0.1269867  0.2601242   0.488  0.62542    
## ConditionSem:Relatedunrelated   -0.1791552  0.3014735  -0.594  0.55233    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 6075.1  on 10079  degrees of freedom
## Residual deviance: 6029.8  on 10069  degrees of freedom
## AIC: 6051.8
## 
## Number of Fisher Scoring iterations: 5

Further clean and organize data for RT analyses

Remove nonce items

data<-data[data$Condition!="Nonce",]
head(data)
##     List Subject TrialOrder Condition Item     Prime PrimeCondition
## 11 List1     101         11     Morph D014   gagnons          Morph
## 15 List1     101         15       Sem D085   narrons            Sem
## 16 List1     101         16       Sem D106 discutons            Unr
## 20 List1     101         20      Orth D068  amassons            Unr
## 23 List1     101         23       Sem D082   montons            Sem
## 25 List1     101         25     Morph D013   fondons          Morph
##    Accuracy  RT  Target   Related
## 11        1 757   GAGNE   related
## 15        1 798 RACONTE   related
## 16        1 708    AIDE unrelated
## 20        1 729  CHARGE unrelated
## 23        1 800  GRIMPE   related
## 25        1 710   FONDE   related

Load lexical property file

props<-read.csv("major paper stim properties.csv",header=TRUE)
head(props)
##   Item Condition    Word Letters Frequency Syllables tar.rel.unrel
## 1 D113        ID  laçons       6         0         2         unrel
## 2 D114        ID  parons       6         0         2         unrel
## 3 D115        ID  gazons       6         0         2         unrel
## 4 D116        ID  misons       6         0         2         unrel
## 5 D120        ID privons       7         0         2         unrel
## 6 D121        ID prônons       7         0         2         unrel
##   rel.overlap word.nonce repeat.
## 1          NA       word       0
## 2          NA       word       0
## 3          NA       word       0
## 4          NA       word       0
## 5          NA       word       0
## 6          NA       word       0

Organizing property files in prep of integrating to data file

targets<-props[props$tar.rel.unrel=="target" & props$word.nonce=="word",]
primes<-props[props$tar.rel.unrel!="target"& props$word.nonce=="word",]

target_length<-targets[,c(3,4)]
target_freq<-targets[,c(3,5)]
target_syllables<-targets[,c(3,6)]

primes_length<-primes[,c(3,4)]
primes_length<-primes_length[unique(primes_length$Word),]
primes_freq<-primes[,c(3,5)]
primes_freq<-primes_freq[unique(primes_freq$Word),]
primes_syllables<-primes[,c(3,6)]
primes_syllables<-primes_syllables[unique(primes_syllables$Word),]

Integrate lexical properties to data file first make all targets lower case in data file

data$targetfreq<-lookup(data$Target,target_freq)
data$targetlength<-lookup(data$Target,target_length)
data$targetsyllables<-lookup(data$Target,target_syllables)

data$primefreq<-lookup(data$Prime,primes_freq)
data$primelength<-lookup(data$Prime,primes_length)
data$primesyllables<-lookup(data$Prime,primes_syllables)

Clean data in following order

    * Remove 3000+ RTs
    * Calculate zscores
    * Remove 2.5+ zscores
    * Keep only accurate items
    * Re-level the Related column so that Unrelated is treated as the baseline
library(stats)
data<-data[data$RT<=3000,]
data$zRT<-ave(data$RT,data$Subject,FUN=scale,na.rm=T)
data<-data[data$zRT<=2.5,]
dim(data)
## [1] 4871   18
data<-data[data$Accuracy==1,]
data$Related<-as.factor(data$Related)
data$Related<-relevel(data$Related,ref="unrelated")

Log transform RTs. Target and prime frequencies are not log-transformed because many values are zero

data$logRT<-log(data$RT)
data$logtargetfreq<-log(data$targetfreq)

Summarize data frame to be used in analyses

str(data)
## 'data.frame':    4469 obs. of  20 variables:
##  $ List           : Factor w/ 2 levels "List1","List2": 1 1 1 1 1 1 1 1 1 1 ...
##  $ Subject        : int  101 101 101 101 101 101 101 101 101 101 ...
##  $ TrialOrder     : int  11 15 16 20 23 25 26 29 32 34 ...
##  $ Condition      : Factor w/ 5 levels "ID","Morph","Nonce",..: 2 5 5 4 5 2 4 1 2 4 ...
##  $ Item           : Factor w/ 288 levels "D001","D002",..: 14 85 106 68 82 13 64 115 18 67 ...
##  $ Prime          : Factor w/ 486 levels "abjurons","aboyons",..: 219 296 145 19 289 207 97 326 409 368 ...
##  $ PrimeCondition : Factor w/ 5 levels "ID","Morph","Orth",..: 2 4 5 5 4 2 5 1 2 5 ...
##  $ Accuracy       : int  1 1 1 1 1 1 1 1 1 1 ...
##  $ RT             : int  757 798 708 729 800 710 1023 691 652 828 ...
##  $ Target         : Factor w/ 297 levels "ABUSE","ACCEPTE",..: 119 233 10 55 127 110 19 207 254 53 ...
##  $ Related        : Factor w/ 2 levels "unrelated","related": 2 2 1 1 2 2 1 2 2 1 ...
##  $ targetfreq     : num  19.66 54.12 18.38 7.97 8.18 ...
##  $ targetlength   : num  5 7 4 6 6 5 6 4 5 6 ...
##  $ targetsyllables: num  1 2 1 1 1 1 2 1 1 1 ...
##  $ primefreq      : num  NA NA NA NA NA NA NA NA 0.41 1.01 ...
##  $ primelength    : num  NA NA NA NA NA NA NA NA 7 8 ...
##  $ primesyllables : num  NA NA NA NA NA NA NA NA 2 3 ...
##  $ zRT            : num  -0.107 0.136 -0.398 -0.273 0.148 ...
##  $ logRT          : num  6.63 6.68 6.56 6.59 6.68 ...
##  $ logtargetfreq  : num  2.98 3.99 2.91 2.08 2.1 ...
head(data)
##     List Subject TrialOrder Condition Item     Prime PrimeCondition
## 11 List1     101         11     Morph D014   gagnons          Morph
## 15 List1     101         15       Sem D085   narrons            Sem
## 16 List1     101         16       Sem D106 discutons            Unr
## 20 List1     101         20      Orth D068  amassons            Unr
## 23 List1     101         23       Sem D082   montons            Sem
## 25 List1     101         25     Morph D013   fondons          Morph
##    Accuracy  RT  Target   Related targetfreq targetlength targetsyllables
## 11        1 757   GAGNE   related      19.66            5               1
## 15        1 798 RACONTE   related      54.12            7               2
## 16        1 708    AIDE unrelated      18.38            4               1
## 20        1 729  CHARGE unrelated       7.97            6               1
## 23        1 800  GRIMPE   related       8.18            6               1
## 25        1 710   FONDE   related       2.03            5               1
##    primefreq primelength primesyllables        zRT    logRT logtargetfreq
## 11        NA          NA             NA -0.1068966 6.629363     2.9785861
## 15        NA          NA             NA  0.1364956 6.682109     3.9912038
## 16        NA          NA             NA -0.3977799 6.562444     2.9112631
## 20        NA          NA             NA -0.2731157 6.591674     2.0756845
## 23        NA          NA             NA  0.1483683 6.684612     2.1016922
## 25        NA          NA             NA -0.3859071 6.565265     0.7080358
summary(data)
##     List         Subject        TrialOrder    Condition         Item     
##  List1:1909   Min.   :101.0   Min.   : 11.0   ID   :1123   D002   :  35  
##  List2:2560   1st Qu.:109.0   1st Qu.: 82.0   Morph:1151   D006   :  35  
##               Median :209.0   Median :156.0   Nonce:   0   D027   :  35  
##               Mean   :258.5   Mean   :155.6   Orth :1059   D033   :  35  
##               3rd Qu.:403.0   3rd Qu.:229.0   Sem  :1136   D048   :  35  
##               Max.   :411.0   Max.   :301.0                D060   :  35  
##                                                            (Other):4259  
##        Prime      PrimeCondition    Accuracy       RT        
##  ajoutons :  20   ID   : 567     Min.   :1   Min.   : 314.0  
##  arrimons :  20   Morph: 578     1st Qu.:1   1st Qu.: 602.0  
##  assistons:  20   Orth : 532     Median :1   Median : 683.0  
##  assumons :  20   Sem  : 578     Mean   :1   Mean   : 727.6  
##  boucle   :  20   Unr  :2214     3rd Qu.:1   3rd Qu.: 803.0  
##  caressons:  20                  Max.   :1   Max.   :2446.0  
##  (Other)  :4349                                              
##      Target          Related       targetfreq      targetlength  
##  AIDE   :  35   unrelated:2214   Min.   :  0.07   Min.   :3.000  
##  BOUCLE :  35   related  :2255   1st Qu.:  5.58   1st Qu.:5.000  
##  CACHE  :  35                    Median : 15.20   Median :5.000  
##  CHERCHE:  35                    Mean   : 28.42   Mean   :5.284  
##  COUPE  :  35                    3rd Qu.: 29.80   3rd Qu.:6.000  
##  DANSE  :  35                    Max.   :257.57   Max.   :8.000  
##  (Other):4259                                                    
##  targetsyllables   primefreq       primelength    primesyllables 
##  Min.   :1.000   Min.   : 0.000   Min.   :4.000   Min.   :1.000  
##  1st Qu.:1.000   1st Qu.: 0.000   1st Qu.:6.000   1st Qu.:2.000  
##  Median :1.000   Median : 0.200   Median :7.000   Median :2.000  
##  Mean   :1.269   Mean   : 2.117   Mean   :7.139   Mean   :2.156  
##  3rd Qu.:2.000   3rd Qu.: 0.470   3rd Qu.:8.000   3rd Qu.:2.000  
##  Max.   :2.000   Max.   :50.540   Max.   :9.000   Max.   :3.000  
##                  NA's   :2819     NA's   :2819    NA's   :2819   
##       zRT              logRT       logtargetfreq   
##  Min.   :-2.2922   Min.   :5.749   Min.   :-2.659  
##  1st Qu.:-0.6376   1st Qu.:6.400   1st Qu.: 1.719  
##  Median :-0.2909   Median :6.526   Median : 2.721  
##  Mean   :-0.1392   Mean   :6.560   Mean   : 2.478  
##  3rd Qu.: 0.1942   3rd Qu.:6.688   3rd Qu.: 3.395  
##  Max.   : 2.4867   Max.   :7.802   Max.   : 5.551  
## 

Linear mixed-effects models on log-transformed RTs

TrialOrder is kept in all models to control for the improvement of reaction time due to practice throughout the experiment

NOTE: In the below analyses the following levels are treated as baselines.

    * Condition: ID
    * Related: Unrelated
    

These baselines mean that an effect of condition means as a whole, that condition differs from ID only.

An effect of relatedness means for the ID condition ONLY there is a difference between related and unrelated primes.

Interactions of Condition * Related means that the effect of relatedness for a given condition is different from the effect of relatedness in the ID condition

test1<-lmer(logRT~Condition*Related+TrialOrder+(1|Item)+(1|Subject),data)
test2<-lmer(logRT~Condition*Related+logtargetfreq+TrialOrder+(1|Item)+(1|Subject),data)
test3<-lmer(logRT~Condition*Related+logtargetfreq+targetlength+TrialOrder+(1|Item)+(1|Subject),data)
anova(test1,test2,test3)
## Data: data
## Models:
## object: logRT ~ Condition * Related + TrialOrder + (1 | Item) + (1 | 
## object:     Subject)
## ..1: logRT ~ Condition * Related + logtargetfreq + TrialOrder + (1 | 
## ..1:     Item) + (1 | Subject)
## ..2: logRT ~ Condition * Related + logtargetfreq + targetlength + 
## ..2:     TrialOrder + (1 | Item) + (1 | Subject)
##        Df     AIC     BIC logLik deviance   Chisq Chi Df Pr(>Chisq)    
## object 12 -2037.8 -1960.9 1030.9  -2061.8                              
## ..1    13 -2089.9 -2006.6 1057.9  -2115.9 54.0806      1  1.924e-13 ***
## ..2    14 -2089.7 -2000.1 1058.9  -2117.7  1.8602      1     0.1726    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
summary(test2)
## Linear mixed model fit by REML t-tests use Satterthwaite approximations
##   to degrees of freedom [lmerMod]
## Formula: logRT ~ Condition * Related + logtargetfreq + TrialOrder + (1 |  
##     Item) + (1 | Subject)
##    Data: data
## 
## REML criterion at convergence: -2032.4
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.2216 -0.6544 -0.1243  0.5339  4.5559 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  Item     (Intercept) 0.002485 0.04985 
##  Subject  (Intercept) 0.018795 0.13709 
##  Residual             0.034046 0.18452 
## Number of obs: 4469, groups:  Item, 144; Subject, 35
## 
## Fixed effects:
##                                 Estimate Std. Error         df t value
## (Intercept)                    6.666e+00  2.748e-02  6.400e+01 242.570
## ConditionMorph                -6.736e-03  1.619e-02  2.190e+02  -0.416
## ConditionOrth                 -1.942e-02  1.647e-02  2.250e+02  -1.179
## ConditionSem                  -5.661e-04  1.631e-02  2.200e+02  -0.035
## Relatedrelated                -5.324e-02  1.112e-02  4.345e+03  -4.788
## logtargetfreq                 -2.577e-02  3.287e-03  1.440e+02  -7.839
## TrialOrder                    -1.096e-04  3.300e-05  4.335e+03  -3.320
## ConditionMorph:Relatedrelated  1.058e-02  1.563e-02  4.340e+03   0.677
## ConditionOrth:Relatedrelated   3.692e-02  1.596e-02  4.343e+03   2.314
## ConditionSem:Relatedrelated    6.040e-02  1.568e-02  4.342e+03   3.853
##                               Pr(>|t|)    
## (Intercept)                    < 2e-16 ***
## ConditionMorph                0.677708    
## ConditionOrth                 0.239608    
## ConditionSem                  0.972341    
## Relatedrelated                1.74e-06 ***
## logtargetfreq                 9.20e-13 ***
## TrialOrder                    0.000907 ***
## ConditionMorph:Relatedrelated 0.498730    
## ConditionOrth:Relatedrelated  0.020740 *  
## ConditionSem:Relatedrelated   0.000118 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) CndtnM CndtnO CndtnS Rltdrl lgtrgt TrlOrd CndM:R CndO:R
## ConditnMrph -0.290                                                        
## ConditnOrth -0.317  0.496                                                 
## ConditionSm -0.265  0.503  0.484                                          
## Relatedrltd -0.208  0.350  0.345  0.347                                   
## logtargtfrq -0.285 -0.010  0.094 -0.097  0.008                            
## TrialOrder  -0.181 -0.029 -0.016 -0.015 -0.001  0.004                     
## CndtnMrph:R  0.143 -0.488 -0.246 -0.247 -0.712 -0.004  0.027              
## CndtnOrth:R  0.146 -0.244 -0.491 -0.241 -0.697 -0.011  0.003  0.496       
## CndtnSm:Rlt  0.148 -0.248 -0.245 -0.489 -0.709 -0.008  0.002  0.505  0.494

The “big” model (test2) shows:

    * an effect of relatedness: for ID, Related primes elicit faster RTs than Unrelated primes
    * an effect of target frequency: for ID, RT decreases as target frequency increases
    * an effect of trial order: as the experiment progresses, RTs get faster
    * an interaction of ConditionOrth x Related: the pattern of relatedness differs between ID condition and Orth condition
    * an interaction of ConditionSem x Related: the pattern of relatedness differs between ID conditition and Sem condition

Follow-up analyses for interactions

Interaction of ConditionORth x Related Create dataframe Orth_only

Orth_only<-data[data$Condition=="Orth",]

Run model on just Orth data to check effect of relatedness

orth1<-lmer(logRT~Related+targetfreq+TrialOrder+(1|Item)+(1|Subject),Orth_only)
summary(orth1)
## Linear mixed model fit by REML t-tests use Satterthwaite approximations
##   to degrees of freedom [lmerMod]
## Formula: logRT ~ Related + targetfreq + TrialOrder + (1 | Item) + (1 |  
##     Subject)
##    Data: Orth_only
## 
## REML criterion at convergence: -378
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.8460 -0.6489 -0.1095  0.5196  4.3843 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  Item     (Intercept) 0.003416 0.05844 
##  Subject  (Intercept) 0.015619 0.12498 
##  Residual             0.034509 0.18577 
## Number of obs: 1059, groups:  Item, 36; Subject, 35
## 
## Fixed effects:
##                  Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)     6.612e+00  2.778e-02  7.530e+01 238.016   <2e-16 ***
## Relatedrelated -1.616e-02  1.156e-02  9.947e+02  -1.398   0.1623    
## targetfreq     -4.525e-04  2.217e-04  2.610e+01  -2.041   0.0515 .  
## TrialOrder     -1.183e-04  7.028e-05  9.954e+02  -1.684   0.0926 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) Rltdrl trgtfr
## Relatedrltd -0.213              
## targetfreq  -0.221 -0.004       
## TrialOrder  -0.395  0.012 -0.022

The above model shows that there is no effect of prime relatedness when the target is in the Orth condition, explaining the interaction in the “big” model

Interaction of ConditionSem x Related Create dataframe Sem_only

Sem_only<-data[data$Condition=="Sem",]
sem1<-lmer(logRT~Related+targetfreq+TrialOrder+(1|Item)+(1|Subject),Sem_only)
summary(sem1)
## Linear mixed model fit by REML t-tests use Satterthwaite approximations
##   to degrees of freedom [lmerMod]
## Formula: logRT ~ Related + targetfreq + TrialOrder + (1 | Item) + (1 |  
##     Subject)
##    Data: Sem_only
## 
## REML criterion at convergence: -547.9
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.7648 -0.6387 -0.1179  0.5069  4.6413 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  Item     (Intercept) 0.00235  0.04848 
##  Subject  (Intercept) 0.01775  0.13324 
##  Residual             0.03061  0.17496 
## Number of obs: 1136, groups:  Item, 36; Subject, 35
## 
## Fixed effects:
##                  Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)     6.607e+00  2.786e-02  6.610e+01 237.189   <2e-16 ***
## Relatedrelated  7.706e-03  1.050e-02  1.078e+03   0.734   0.4630    
## targetfreq     -4.725e-04  2.178e-04  3.290e+01  -2.169   0.0374 *  
## TrialOrder     -1.083e-04  6.259e-05  1.079e+03  -1.730   0.0840 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) Rltdrl trgtfr
## Relatedrltd -0.189              
## targetfreq  -0.257 -0.016       
## TrialOrder  -0.348  0.003 -0.016

The above model shows that there is no effect of prime relatedness when the target is in the Sem condition, explaining the interaction in the “big” model

including ID follow up and morph follow up models just to demonstrate the effect of relatedness in those conditions only

id_only<-data[data$Condition=="ID",]
morph_only<-data[data$Condition=="Morph",]
id1<-lmer(logRT~Related+targetfreq+(1|Item)+(1|Subject),id_only)
morph1<-lmer(logRT~Related+targetfreq+(1|Item)+(1|Subject),morph_only)
summary(id1)
## Linear mixed model fit by REML t-tests use Satterthwaite approximations
##   to degrees of freedom [lmerMod]
## Formula: logRT ~ Related + targetfreq + (1 | Item) + (1 | Subject)
##    Data: id_only
## 
## REML criterion at convergence: -405.4
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.3589 -0.6729 -0.1137  0.5331  4.5240 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  Item     (Intercept) 0.004437 0.06661 
##  Subject  (Intercept) 0.018061 0.13439 
##  Residual             0.034764 0.18645 
## Number of obs: 1123, groups:  Item, 36; Subject, 35
## 
## Fixed effects:
##                  Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)     6.604e+00  2.780e-02  5.710e+01 237.564  < 2e-16 ***
## Relatedrelated -5.488e-02  1.127e-02  1.062e+03  -4.868  1.3e-06 ***
## targetfreq     -5.437e-04  3.371e-04  3.040e+01  -1.613    0.117    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) Rltdrl
## Relatedrltd -0.208       
## targetfreq  -0.296  0.002
summary(morph1)
## Linear mixed model fit by REML t-tests use Satterthwaite approximations
##   to degrees of freedom [lmerMod]
## Formula: logRT ~ Related + targetfreq + (1 | Item) + (1 | Subject)
##    Data: morph_only
## 
## REML criterion at convergence: -352.1
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.7696 -0.6371 -0.1232  0.5082  4.1130 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  Item     (Intercept) 0.004143 0.06437 
##  Subject  (Intercept) 0.022836 0.15111 
##  Residual             0.036757 0.19172 
## Number of obs: 1151, groups:  Item, 36; Subject, 35
## 
## Fixed effects:
##                  Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)     6.600e+00  3.021e-02  5.360e+01 218.458  < 2e-16 ***
## Relatedrelated -4.111e-02  1.143e-02  1.087e+03  -3.597 0.000336 ***
## targetfreq     -8.820e-04  3.903e-04  3.120e+01  -2.260 0.030958 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) Rltdrl
## Relatedrltd -0.193       
## targetfreq  -0.295  0.013

Checking if all subjects show id priming

morph<-data[data$Condition=="Morph",]
orth<-data[data$Condition=="Orth",]
sem<-data[data$Condition=="Sem",]
id<-data[data$Condition=="ID",]

morph_means<-aggregate(RT~Related,data=morph,FUN=mean)
orth_means<-aggregate(RT~Related,data=orth,FUN=mean)
sem_means<-aggregate(RT~Related,data=sem,FUN=mean)
id_means<-aggregate(RT~Related,data=id,FUN=mean)

morph_priming<-morph_means[2,2]-morph_means[1,2]
orth_priming<-orth_means[2,2]-orth_means[1,2]
sem_priming<-sem_means[2,2]-sem_means[1,2]
id_priming<-id_means[2,2]-id_means[1,2]

priming<-rbind(id_priming,morph_priming,orth_priming,sem_priming)
priming
##                     [,1]
## id_priming    -28.396549
## morph_priming -26.733473
## orth_priming   -4.844977
## sem_priming     4.891555
id_rel<-id[id$Related=="related",]
id_unrel<-id[id$Related=="unrelated",]

identity_rel_priming<-aggregate(RT~Subject,data=id_rel,FUN=mean)
identity_unrel_priming<-aggregate(RT~Subject,data=id_unrel,FUN=mean)
id_priming<-cbind(identity_rel_priming,identity_unrel_priming)
id_priming<-id_priming[,c(1,2,4)]
id_priming<-rename(id_priming,Related=RT,Unrelated=RT.1)
id_priming
##    Subject   Related Unrelated
## 1      101  693.2778  800.8000
## 2      102  551.6111  616.2667
## 3      103  524.2941  661.5000
## 4      104  653.4118  738.6667
## 5      105  661.0000  749.5385
## 6      106  607.8824  691.4375
## 7      107  578.7647  710.8125
## 8      108  632.8125  696.7647
## 9      109  576.9412  581.0714
## 10     201  632.9412  692.6875
## 11     202  876.1176  865.1765
## 12     203  579.2941  609.9375
## 13     204  612.5000  638.3125
## 14     205  692.1875  676.5556
## 15     206  716.9333  702.2941
## 16     207  685.8750  661.1875
## 17     208  748.1875  754.1111
## 18     209  784.1875  764.3529
## 19     301  761.9286  839.6000
## 20     302  885.0000  822.9286
## 21     303  842.0000  905.8750
## 22     304  666.0000  741.2941
## 23     305  677.5556  755.0000
## 24     306  777.1250  893.2667
## 25     401  801.8333  859.7333
## 26     402 1309.7333 1112.0000
## 27     403  708.7222  715.1667
## 28     404  661.8333  666.6667
## 29     405  811.0000  798.5625
## 30     406  713.0000  681.6471
## 31     407  723.5000  754.7222
## 32     408  596.3333  674.9412
## 33     409  690.0000  619.8000
## 34     410  731.5000  766.8235
## 35     411  791.6667  687.7059
id_priming$priming<-id_priming$Related-id_priming$Unrelated
id_priming$shows_id_priming<-id_priming$priming<0

summary(id_priming$shows_priming)
## Length  Class   Mode 
##      0   NULL   NULL
shows_id_priming<-id_priming[,c(1,5)]

shows_id_priming
##    Subject shows_id_priming
## 1      101             TRUE
## 2      102             TRUE
## 3      103             TRUE
## 4      104             TRUE
## 5      105             TRUE
## 6      106             TRUE
## 7      107             TRUE
## 8      108             TRUE
## 9      109             TRUE
## 10     201             TRUE
## 11     202            FALSE
## 12     203             TRUE
## 13     204             TRUE
## 14     205            FALSE
## 15     206            FALSE
## 16     207            FALSE
## 17     208             TRUE
## 18     209            FALSE
## 19     301             TRUE
## 20     302            FALSE
## 21     303             TRUE
## 22     304             TRUE
## 23     305             TRUE
## 24     306             TRUE
## 25     401             TRUE
## 26     402            FALSE
## 27     403             TRUE
## 28     404             TRUE
## 29     405            FALSE
## 30     406            FALSE
## 31     407             TRUE
## 32     408             TRUE
## 33     409            FALSE
## 34     410             TRUE
## 35     411            FALSE
data$shows_id_priming<-lookup(data$Subject,shows_id_priming)
head(data)
##     List Subject TrialOrder Condition Item     Prime PrimeCondition
## 11 List1     101         11     Morph D014   gagnons          Morph
## 15 List1     101         15       Sem D085   narrons            Sem
## 16 List1     101         16       Sem D106 discutons            Unr
## 20 List1     101         20      Orth D068  amassons            Unr
## 23 List1     101         23       Sem D082   montons            Sem
## 25 List1     101         25     Morph D013   fondons          Morph
##    Accuracy  RT  Target   Related targetfreq targetlength targetsyllables
## 11        1 757   GAGNE   related      19.66            5               1
## 15        1 798 RACONTE   related      54.12            7               2
## 16        1 708    AIDE unrelated      18.38            4               1
## 20        1 729  CHARGE unrelated       7.97            6               1
## 23        1 800  GRIMPE   related       8.18            6               1
## 25        1 710   FONDE   related       2.03            5               1
##    primefreq primelength primesyllables        zRT    logRT logtargetfreq
## 11        NA          NA             NA -0.1068966 6.629363     2.9785861
## 15        NA          NA             NA  0.1364956 6.682109     3.9912038
## 16        NA          NA             NA -0.3977799 6.562444     2.9112631
## 20        NA          NA             NA -0.2731157 6.591674     2.0756845
## 23        NA          NA             NA  0.1483683 6.684612     2.1016922
## 25        NA          NA             NA -0.3859071 6.565265     0.7080358
##    shows_id_priming
## 11             TRUE
## 15             TRUE
## 16             TRUE
## 20             TRUE
## 23             TRUE
## 25             TRUE

Looking if all show morph priming

morph_rel<-morph[morph$Related=="related",]
morph_unrel<-morph[morph$Related=="unrelated",]
morph_rel_priming<-aggregate(RT~Subject,data=morph_rel,FUN=mean)
morph_unrel_priming<-aggregate(RT~Subject,data=morph_unrel,FUN=mean)
morph_priming<-cbind(morph_rel_priming,morph_unrel_priming)
morph_priming<-morph_priming[,c(1,2,4)]
morph_priming<-rename(morph_priming,Related=RT,Unrelated=RT.1)
morph_priming
##    Subject   Related Unrelated
## 1      101  693.4375  768.7222
## 2      102  554.8889  595.2778
## 3      103  506.6000  577.2941
## 4      104  666.0000  735.4375
## 5      105  723.1250  718.9444
## 6      106  657.9444  665.7222
## 7      107  557.6250  617.8824
## 8      108  721.7647  706.7778
## 9      109  555.3529  579.1250
## 10     201  660.7059  754.3750
## 11     202  864.5000  858.0000
## 12     203  578.8824  590.6875
## 13     204  658.2500  649.5455
## 14     205  635.0000  743.1250
## 15     206  694.4706  682.5333
## 16     207  643.5333  656.2500
## 17     208  766.2353  780.0000
## 18     209  728.9444  770.1765
## 19     301  798.1667  862.6429
## 20     302  857.2500  824.5556
## 21     303  981.3333  942.5556
## 22     304  699.4706  753.3333
## 23     305  687.2000  754.1250
## 24     306  711.0667  880.3333
## 25     401  805.4375  993.0000
## 26     402 1396.6429 1114.5882
## 27     403  668.6471  655.6875
## 28     404  667.0000  654.3889
## 29     405  859.7647  738.2500
## 30     406  659.5556  751.9412
## 31     407  777.7222  742.2353
## 32     408  617.8824  645.6667
## 33     409  679.3889  611.6111
## 34     410  708.0588  767.2222
## 35     411  648.2222  683.0769
morph_priming$priming<-morph_priming$Related-morph_priming$Unrelated
morph_priming$shows_morph_priming<-morph_priming$priming<0
shows_morph_priming<-morph_priming[,c(1,5)]
shows_morph_priming
##    Subject shows_morph_priming
## 1      101                TRUE
## 2      102                TRUE
## 3      103                TRUE
## 4      104                TRUE
## 5      105               FALSE
## 6      106                TRUE
## 7      107                TRUE
## 8      108               FALSE
## 9      109                TRUE
## 10     201                TRUE
## 11     202               FALSE
## 12     203                TRUE
## 13     204               FALSE
## 14     205                TRUE
## 15     206               FALSE
## 16     207                TRUE
## 17     208                TRUE
## 18     209                TRUE
## 19     301                TRUE
## 20     302               FALSE
## 21     303               FALSE
## 22     304                TRUE
## 23     305                TRUE
## 24     306                TRUE
## 25     401                TRUE
## 26     402               FALSE
## 27     403               FALSE
## 28     404               FALSE
## 29     405               FALSE
## 30     406                TRUE
## 31     407               FALSE
## 32     408                TRUE
## 33     409               FALSE
## 34     410                TRUE
## 35     411                TRUE

Looking if any show orth priming

orth_rel<-orth[orth$Related=="related",]
orth_unrel<-orth[orth$Related=="unrelated",]
orth_rel_priming<-aggregate(RT~Subject,data=orth_rel,FUN=mean)
orth_unrel_priming<-aggregate(RT~Subject,data=orth_unrel,FUN=mean)
orth_priming<-cbind(orth_rel_priming,orth_unrel_priming)
orth_priming<-orth_priming[,c(1,2,4)]
orth_priming<-rename(orth_priming,Related=RT,Unrelated=RT.1)
orth_priming
##    Subject   Related Unrelated
## 1      101  712.8571  793.8571
## 2      102  585.7647  676.6875
## 3      103  564.1250  588.0000
## 4      104  756.0667  702.7692
## 5      105  700.0588  739.5333
## 6      106  631.1765  707.8462
## 7      107  581.7500  610.7143
## 8      108  734.2353  712.5625
## 9      109  543.7692  598.0588
## 10     201  688.4615  827.6667
## 11     202  791.4667  835.7500
## 12     203  627.1333  573.7059
## 13     204  633.8462  612.9000
## 14     205  756.8571  708.4118
## 15     206  733.0667  667.4375
## 16     207  679.9333  705.4375
## 17     208  759.7857  776.3750
## 18     209  835.1176  778.2222
## 19     301  826.7500  808.6364
## 20     302  758.0667  834.7857
## 21     303  887.4706  979.0714
## 22     304  680.0556  747.2222
## 23     305  622.8750  689.0667
## 24     306  859.0000  740.0000
## 25     401  881.0667  954.5000
## 26     402 1137.7857  960.1667
## 27     403  651.8667  673.4667
## 28     404  694.8000  643.5000
## 29     405  764.3571  786.1250
## 30     406  715.0714  760.1667
## 31     407  773.7500  762.4706
## 32     408  687.6923  661.3333
## 33     409  634.6667  644.7500
## 34     410  720.9333  702.2000
## 35     411  750.8824  646.4000
orth_priming$priming<-orth_priming$Related-orth_priming$Unrelated
orth_priming$shows_orth_priming<-orth_priming$priming<0
shows_orth_priming<-orth_priming[,c(1,5)]
shows_orth_priming
##    Subject shows_orth_priming
## 1      101               TRUE
## 2      102               TRUE
## 3      103               TRUE
## 4      104              FALSE
## 5      105               TRUE
## 6      106               TRUE
## 7      107               TRUE
## 8      108              FALSE
## 9      109               TRUE
## 10     201               TRUE
## 11     202               TRUE
## 12     203              FALSE
## 13     204              FALSE
## 14     205              FALSE
## 15     206              FALSE
## 16     207               TRUE
## 17     208               TRUE
## 18     209              FALSE
## 19     301              FALSE
## 20     302               TRUE
## 21     303               TRUE
## 22     304               TRUE
## 23     305               TRUE
## 24     306              FALSE
## 25     401               TRUE
## 26     402              FALSE
## 27     403               TRUE
## 28     404              FALSE
## 29     405               TRUE
## 30     406               TRUE
## 31     407              FALSE
## 32     408              FALSE
## 33     409               TRUE
## 34     410              FALSE
## 35     411              FALSE

Looking if any show sem priming

sem_rel<-sem[sem$Related=="related",]
sem_unrel<-sem[sem$Related=="unrelated",]
sem_rel_priming<-aggregate(RT~Subject,data=sem_rel,FUN=mean)
sem_unrel_priming<-aggregate(RT~Subject,data=sem_unrel,FUN=mean)
sem_priming<-cbind(sem_rel_priming,sem_unrel_priming)
sem_priming<-sem_priming[,c(1,2,4)]
sem_priming<-rename(sem_priming,Related=RT,Unrelated=RT.1)
sem_priming
##    Subject   Related Unrelated
## 1      101  771.7222  757.6250
## 2      102  568.6111  624.3750
## 3      103  575.4706  589.2353
## 4      104  718.0588  679.4375
## 5      105  713.2941  696.1111
## 6      106  749.1176  628.3333
## 7      107  603.0625  631.2500
## 8      108  710.9412  680.3125
## 9      109  596.8333  558.0000
## 10     201  696.8125  676.1875
## 11     202  854.9375  845.2222
## 12     203  592.5000  602.5556
## 13     204  660.1875  612.6923
## 14     205  715.6875  728.8333
## 15     206  716.4375  710.7059
## 16     207  666.6471  649.6250
## 17     208  809.4118  812.6250
## 18     209  865.4706  847.2667
## 19     301  889.0000  830.9286
## 20     302  825.1875  794.3077
## 21     303  934.5000  874.5294
## 22     304  672.0588  657.1176
## 23     305  685.8889  728.6250
## 24     306  820.5294  842.9286
## 25     401  845.3750  963.9333
## 26     402 1047.0000 1197.7500
## 27     403  708.8000  689.1176
## 28     404  682.7222  671.4444
## 29     405  820.0000  859.0000
## 30     406  729.1111  703.9375
## 31     407  748.6000  786.2353
## 32     408  634.6000  679.2500
## 33     409  669.6471  680.2000
## 34     410  780.7059  804.8000
## 35     411  791.5625  679.4706
sem_priming$priming<-sem_priming$Related-sem_priming$Unrelated
sem_priming$shows_sem_priming<-sem_priming$priming<0
shows_sem_priming<-sem_priming[,c(1,5)]
shows_sem_priming
##    Subject shows_sem_priming
## 1      101             FALSE
## 2      102              TRUE
## 3      103              TRUE
## 4      104             FALSE
## 5      105             FALSE
## 6      106             FALSE
## 7      107              TRUE
## 8      108             FALSE
## 9      109             FALSE
## 10     201             FALSE
## 11     202             FALSE
## 12     203              TRUE
## 13     204             FALSE
## 14     205              TRUE
## 15     206             FALSE
## 16     207             FALSE
## 17     208              TRUE
## 18     209             FALSE
## 19     301             FALSE
## 20     302             FALSE
## 21     303             FALSE
## 22     304             FALSE
## 23     305              TRUE
## 24     306              TRUE
## 25     401              TRUE
## 26     402              TRUE
## 27     403             FALSE
## 28     404             FALSE
## 29     405              TRUE
## 30     406             FALSE
## 31     407              TRUE
## 32     408              TRUE
## 33     409              TRUE
## 34     410              TRUE
## 35     411             FALSE

Concatenate which participants show which kinds of priming

subject_number<-shows_id_priming[,1]
I<-shows_id_priming[,2]
M<-shows_morph_priming[2]
O<-shows_orth_priming[,2]
S<-shows_sem_priming[,2]
all_priming<-cbind(subject_number,I,M,O,S)
all_priming<-rename(all_priming,M=shows_morph_priming)
all_priming$subject_number<-as.character(all_priming$subject_number)
summary(all_priming)
##  subject_number         I               M               O          
##  Length:35          Mode :logical   Mode :logical   Mode :logical  
##  Class :character   FALSE:11        FALSE:13        FALSE:15       
##  Mode  :character   TRUE :24        TRUE :22        TRUE :20       
##                     NA's :0         NA's :0         NA's :0        
##      S          
##  Mode :logical  
##  FALSE:20       
##  TRUE :15       
##  NA's :0
all_priming
##    subject_number     I     M     O     S
## 1             101  TRUE  TRUE  TRUE FALSE
## 2             102  TRUE  TRUE  TRUE  TRUE
## 3             103  TRUE  TRUE  TRUE  TRUE
## 4             104  TRUE  TRUE FALSE FALSE
## 5             105  TRUE FALSE  TRUE FALSE
## 6             106  TRUE  TRUE  TRUE FALSE
## 7             107  TRUE  TRUE  TRUE  TRUE
## 8             108  TRUE FALSE FALSE FALSE
## 9             109  TRUE  TRUE  TRUE FALSE
## 10            201  TRUE  TRUE  TRUE FALSE
## 11            202 FALSE FALSE  TRUE FALSE
## 12            203  TRUE  TRUE FALSE  TRUE
## 13            204  TRUE FALSE FALSE FALSE
## 14            205 FALSE  TRUE FALSE  TRUE
## 15            206 FALSE FALSE FALSE FALSE
## 16            207 FALSE  TRUE  TRUE FALSE
## 17            208  TRUE  TRUE  TRUE  TRUE
## 18            209 FALSE  TRUE FALSE FALSE
## 19            301  TRUE  TRUE FALSE FALSE
## 20            302 FALSE FALSE  TRUE FALSE
## 21            303  TRUE FALSE  TRUE FALSE
## 22            304  TRUE  TRUE  TRUE FALSE
## 23            305  TRUE  TRUE  TRUE  TRUE
## 24            306  TRUE  TRUE FALSE  TRUE
## 25            401  TRUE  TRUE  TRUE  TRUE
## 26            402 FALSE FALSE FALSE  TRUE
## 27            403  TRUE FALSE  TRUE FALSE
## 28            404  TRUE FALSE FALSE FALSE
## 29            405 FALSE FALSE  TRUE  TRUE
## 30            406 FALSE  TRUE  TRUE FALSE
## 31            407  TRUE FALSE FALSE  TRUE
## 32            408  TRUE  TRUE FALSE  TRUE
## 33            409 FALSE FALSE  TRUE  TRUE
## 34            410  TRUE  TRUE FALSE  TRUE
## 35            411 FALSE  TRUE FALSE FALSE