library(dplyr)
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
library(readr)
# Load the movies dataset
movies <- read_csv("https://gist.githubusercontent.com/tiangechen/b68782efa49a16edaf07dc2cdaa855ea/raw/0c794a9717f18b094eabab2cd6a6b9a226903577/movies.csv")
## Rows: 77 Columns: 8
## ── Column specification ────────────────────────────────────────────────────────
## Delimiter: ","
## chr (4): Film, Genre, Lead Studio, Worldwide Gross
## dbl (4): Audience score %, Profitability, Rotten Tomatoes %, Year
##
## ℹ Use `spec()` to retrieve the full column specification for this data.
## ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
1. rename(): (4 points)
q1 <- movies %>%
rename(movie_title = Film , release_year = Year)
head(q1)
## # A tibble: 6 × 8
## movie_title Genre `Lead Studio` `Audience score %` Profitability
## <chr> <chr> <chr> <dbl> <dbl>
## 1 Zack and Miri Make a Por… Roma… The Weinstei… 70 1.75
## 2 Youth in Revolt Come… The Weinstei… 52 1.09
## 3 You Will Meet a Tall Dar… Come… Independent 35 1.21
## 4 When in Rome Come… Disney 44 0
## 5 What Happens in Vegas Come… Fox 72 6.27
## 6 Water For Elephants Drama 20th Century… 72 3.08
## # ℹ 3 more variables: `Rotten Tomatoes %` <dbl>, `Worldwide Gross` <chr>,
## # release_year <dbl>
2. select(): (4 points)
q2 <- q1 %>%
select(movie_title, release_year, Genre, Profitability)
print(head(q2))
## # A tibble: 6 × 4
## movie_title release_year Genre Profitability
## <chr> <dbl> <chr> <dbl>
## 1 Zack and Miri Make a Porno 2008 Romance 1.75
## 2 Youth in Revolt 2010 Comedy 1.09
## 3 You Will Meet a Tall Dark Stranger 2010 Comedy 1.21
## 4 When in Rome 2010 Comedy 0
## 5 What Happens in Vegas 2008 Comedy 6.27
## 6 Water For Elephants 2011 Drama 3.08
3. filter(): (4 points)
q3 <- q1 %>%
filter(release_year > 2000 & `Rotten Tomatoes %`> 80)
print(head(q3))
## # A tibble: 6 × 8
## movie_title Genre `Lead Studio` `Audience score %` Profitability
## <chr> <chr> <chr> <dbl> <dbl>
## 1 WALL-E Animati… Disney 89 2.90
## 2 Waitress Romance Independent 67 11.1
## 3 Tangled Animati… Disney 88 1.37
## 4 Rachel Getting Married Drama Independent 61 1.38
## 5 My Week with Marilyn Drama The Weinstei… 84 0.826
## 6 Midnight in Paris Romence Sony 84 8.74
## # ℹ 3 more variables: `Rotten Tomatoes %` <dbl>, `Worldwide Gross` <chr>,
## # release_year <dbl>
4. mutate(): (4 points)
q4 <- q1 %>%
mutate(Profitability_millions = Profitability * 1,000,000)
head(q4)
## # A tibble: 6 × 10
## movie_title Genre `Lead Studio` `Audience score %` Profitability
## <chr> <chr> <chr> <dbl> <dbl>
## 1 Zack and Miri Make a Por… Roma… The Weinstei… 70 1.75
## 2 Youth in Revolt Come… The Weinstei… 52 1.09
## 3 You Will Meet a Tall Dar… Come… Independent 35 1.21
## 4 When in Rome Come… Disney 44 0
## 5 What Happens in Vegas Come… Fox 72 6.27
## 6 Water For Elephants Drama 20th Century… 72 3.08
## # ℹ 5 more variables: `Rotten Tomatoes %` <dbl>, `Worldwide Gross` <chr>,
## # release_year <dbl>, Profitability_millions <dbl>, `0` <dbl>
5. arrange(): (3 points)
q5 <- q1 %>%
arrange(desc(`Rotten Tomatoes %`), desc(Profitability))
head(q5)
## # A tibble: 6 × 8
## movie_title Genre `Lead Studio` `Audience score %` Profitability
## <chr> <chr> <chr> <dbl> <dbl>
## 1 WALL-E Animation Disney 89 2.90
## 2 Midnight in Paris Romence Sony 84 8.74
## 3 Enchanted Comedy Disney 80 4.01
## 4 Knocked Up Comedy Universal 83 6.64
## 5 Waitress Romance Independent 67 11.1
## 6 A Serious Man Drama Universal 64 4.38
## # ℹ 3 more variables: `Rotten Tomatoes %` <dbl>, `Worldwide Gross` <chr>,
## # release_year <dbl>
6. Combining functions: (3 points)
q6 <- movies %>%
rename(movie_title = Film , release_year = Year) %>%
select(movie_title, release_year, Genre, Profitability , `Rotten Tomatoes %`) %>%
filter(release_year > 2000 & `Rotten Tomatoes %` > 80) %>%
mutate(Profitability_millions = Profitability * 1000000) %>%
arrange(desc('Rotten Tomatoes %'), desc(Profitability))
head(q6)
## # A tibble: 6 × 6
## movie_title release_year Genre Profitability `Rotten Tomatoes %`
## <chr> <dbl> <chr> <dbl> <dbl>
## 1 Waitress 2007 Romance 11.1 89
## 2 Midnight in Paris 2011 Romence 8.74 93
## 3 (500) Days of Summer 2009 comedy 8.10 87
## 4 Knocked Up 2007 Comedy 6.64 91
## 5 Beginners 2011 Comedy 4.47 84
## 6 A Serious Man 2009 Drama 4.38 89
## # ℹ 1 more variable: Profitability_millions <dbl>
7. Interpret question 6 (1 point)
There is some correlation between the best movies and most popular but
that is not always the case.
EXTRA CREDIT (4 points)
summary_df <- movies %>%
group_by(Genre) %>%
summarize(
Average_Rating = mean(`Rotten Tomatoes %`, na.rm = TRUE),
Average_Profitability = mean(Profitability, na.rm = TRUE)
)
print(summary_df)
## # A tibble: 10 × 3
## Genre Average_Rating Average_Profitability
## <chr> <dbl> <dbl>
## 1 Action 11 1.25
## 2 Animation 74.2 3.76
## 3 Comdy 13 2.65
## 4 Comedy 42.7 3.78
## 5 Drama 51.5 8.41
## 6 Fantasy 73 1.78
## 7 Romance 42.1 3.98
## 8 Romence 93 8.74
## 9 comedy 87 8.10
## 10 romance 54 0.653