library(dplyr)
## 
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union
library(readr)

# Load the movies dataset
movies <- read_csv("https://gist.githubusercontent.com/tiangechen/b68782efa49a16edaf07dc2cdaa855ea/raw/0c794a9717f18b094eabab2cd6a6b9a226903577/movies.csv")
## Rows: 77 Columns: 8
## ── Column specification ────────────────────────────────────────────────────────
## Delimiter: ","
## chr (4): Film, Genre, Lead Studio, Worldwide Gross
## dbl (4): Audience score %, Profitability, Rotten Tomatoes %, Year
## 
## ℹ Use `spec()` to retrieve the full column specification for this data.
## ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.

1. rename(): (4 points)

q1  <- movies %>%  
  rename(movie_title = Film , release_year = Year)

head(q1)
## # A tibble: 6 × 8
##   movie_title               Genre `Lead Studio` `Audience score %` Profitability
##   <chr>                     <chr> <chr>                      <dbl>         <dbl>
## 1 Zack and Miri Make a Por… Roma… The Weinstei…                 70          1.75
## 2 Youth in Revolt           Come… The Weinstei…                 52          1.09
## 3 You Will Meet a Tall Dar… Come… Independent                   35          1.21
## 4 When in Rome              Come… Disney                        44          0   
## 5 What Happens in Vegas     Come… Fox                           72          6.27
## 6 Water For Elephants       Drama 20th Century…                 72          3.08
## # ℹ 3 more variables: `Rotten Tomatoes %` <dbl>, `Worldwide Gross` <chr>,
## #   release_year <dbl>

2. select(): (4 points)

q2 <- q1 %>% 
  select(movie_title, release_year, Genre, Profitability)
print(head(q2))
## # A tibble: 6 × 4
##   movie_title                        release_year Genre   Profitability
##   <chr>                                     <dbl> <chr>           <dbl>
## 1 Zack and Miri Make a Porno                 2008 Romance          1.75
## 2 Youth in Revolt                            2010 Comedy           1.09
## 3 You Will Meet a Tall Dark Stranger         2010 Comedy           1.21
## 4 When in Rome                               2010 Comedy           0   
## 5 What Happens in Vegas                      2008 Comedy           6.27
## 6 Water For Elephants                        2011 Drama            3.08

3. filter(): (4 points)

q3 <- q1 %>%  
  filter(release_year > 2000 & `Rotten Tomatoes %`> 80)
print(head(q3))
## # A tibble: 6 × 8
##   movie_title            Genre    `Lead Studio` `Audience score %` Profitability
##   <chr>                  <chr>    <chr>                      <dbl>         <dbl>
## 1 WALL-E                 Animati… Disney                        89         2.90 
## 2 Waitress               Romance  Independent                   67        11.1  
## 3 Tangled                Animati… Disney                        88         1.37 
## 4 Rachel Getting Married Drama    Independent                   61         1.38 
## 5 My Week with Marilyn   Drama    The Weinstei…                 84         0.826
## 6 Midnight in Paris      Romence  Sony                          84         8.74 
## # ℹ 3 more variables: `Rotten Tomatoes %` <dbl>, `Worldwide Gross` <chr>,
## #   release_year <dbl>

4. mutate(): (4 points)

q4 <- q1 %>% 
  mutate(Profitability_millions = Profitability * 1,000,000)
head(q4)
## # A tibble: 6 × 10
##   movie_title               Genre `Lead Studio` `Audience score %` Profitability
##   <chr>                     <chr> <chr>                      <dbl>         <dbl>
## 1 Zack and Miri Make a Por… Roma… The Weinstei…                 70          1.75
## 2 Youth in Revolt           Come… The Weinstei…                 52          1.09
## 3 You Will Meet a Tall Dar… Come… Independent                   35          1.21
## 4 When in Rome              Come… Disney                        44          0   
## 5 What Happens in Vegas     Come… Fox                           72          6.27
## 6 Water For Elephants       Drama 20th Century…                 72          3.08
## # ℹ 5 more variables: `Rotten Tomatoes %` <dbl>, `Worldwide Gross` <chr>,
## #   release_year <dbl>, Profitability_millions <dbl>, `0` <dbl>

5. arrange(): (3 points)

q5 <- q1 %>%  
  arrange(desc(`Rotten Tomatoes %`), desc(Profitability))
head(q5)
## # A tibble: 6 × 8
##   movie_title       Genre     `Lead Studio` `Audience score %` Profitability
##   <chr>             <chr>     <chr>                      <dbl>         <dbl>
## 1 WALL-E            Animation Disney                        89          2.90
## 2 Midnight in Paris Romence   Sony                          84          8.74
## 3 Enchanted         Comedy    Disney                        80          4.01
## 4 Knocked Up        Comedy    Universal                     83          6.64
## 5 Waitress          Romance   Independent                   67         11.1 
## 6 A Serious Man     Drama     Universal                     64          4.38
## # ℹ 3 more variables: `Rotten Tomatoes %` <dbl>, `Worldwide Gross` <chr>,
## #   release_year <dbl>

6. Combining functions: (3 points)

q6 <- movies %>%
  rename(movie_title = Film , release_year = Year) %>%
  select(movie_title, release_year, Genre, Profitability , `Rotten Tomatoes %`) %>%
  filter(release_year > 2000 & `Rotten Tomatoes %` > 80) %>%
  mutate(Profitability_millions = Profitability * 1000000) %>%
  arrange(desc('Rotten Tomatoes %'), desc(Profitability))

head(q6)
## # A tibble: 6 × 6
##   movie_title          release_year Genre   Profitability `Rotten Tomatoes %`
##   <chr>                       <dbl> <chr>           <dbl>               <dbl>
## 1 Waitress                     2007 Romance         11.1                   89
## 2 Midnight in Paris            2011 Romence          8.74                  93
## 3 (500) Days of Summer         2009 comedy           8.10                  87
## 4 Knocked Up                   2007 Comedy           6.64                  91
## 5 Beginners                    2011 Comedy           4.47                  84
## 6 A Serious Man                2009 Drama            4.38                  89
## # ℹ 1 more variable: Profitability_millions <dbl>

7. Interpret question 6 (1 point)
There is some correlation between the best movies and most popular but that is not always the case.

EXTRA CREDIT (4 points)

summary_df <- movies %>%
  group_by(Genre) %>%
  summarize(
    Average_Rating = mean(`Rotten Tomatoes %`, na.rm = TRUE),
    Average_Profitability = mean(Profitability, na.rm = TRUE)
  )
print(summary_df)
## # A tibble: 10 × 3
##    Genre     Average_Rating Average_Profitability
##    <chr>              <dbl>                 <dbl>
##  1 Action              11                   1.25 
##  2 Animation           74.2                 3.76 
##  3 Comdy               13                   2.65 
##  4 Comedy              42.7                 3.78 
##  5 Drama               51.5                 8.41 
##  6 Fantasy             73                   1.78 
##  7 Romance             42.1                 3.98 
##  8 Romence             93                   8.74 
##  9 comedy              87                   8.10 
## 10 romance             54                   0.653