library(tidyverse)
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ dplyr 1.1.4 ✔ readr 2.1.5
## ✔ forcats 1.0.0 ✔ stringr 1.5.1
## ✔ ggplot2 3.5.1 ✔ tibble 3.2.1
## ✔ lubridate 1.9.3 ✔ tidyr 1.3.1
## ✔ purrr 1.0.2
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag() masks stats::lag()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
library(completejourney)
## Welcome to the completejourney package! Learn more about these data
## sets at http://bit.ly/completejourney.
transactions<- transactions_sample
filter_by_kid_count<- transactions %>%
inner_join(demographics, by = join_by(household_id)) %>%
filter(kids_count >0) %>%
group_by(kids_count) %>%
summarize(total_sales = sum(sales_value))
ggplot(filter_by_kid_count,aes(kids_count, total_sales)) +
geom_bar(stat = "identity")+
labs(title = "Total Sales by Kid Count",
x = "Kid Count",
y = "Total Sales Value"
)

meat_department<- transactions%>%
inner_join(products)%>%
filter(str_detect(department, 'MEAT'))%>%
mutate(month = month(transaction_timestamp)) %>%
group_by(month)%>%
summarize(total_sales = sum(sales_value))
## Joining with `by = join_by(product_id)`
ggplot(meat_department, aes(month, total_sales))+
geom_line(color = 'blue', alpha = .50)+
scale_x_continuous(breaks = 1:12 )+
labs(title = "Total Monthly Meat Sales", x = "Month #", y = "Sales Value")

product_income <- transactions %>%
inner_join(demographics)%>%
inner_join(products) %>%
group_by(income, product_type) %>%
summarize(total_sales = sum(sales_value, na.rm = TRUE), .groups = 'drop') %>%
arrange(income, desc(total_sales))
## Joining with `by = join_by(household_id)`
## Joining with `by = join_by(product_id)`
top_products_income <- product_income%>%
group_by(income)%>%
slice_max(total_sales, n = 1)
ggplot(top_products_income, aes(x = reorder(product_type, total_sales), y = total_sales, fill = income)) +
geom_bar(stat = "identity", position = "dodge") +
labs(title = "Top Product(GASOLINE-REG UNLEADED)by Total Sales Across Income Ranges",
x = "Product Name",
y = "Total Sales Value",
fill = "Income Range")
