Question 2 (a) table 5.5
Question 2 (b)
##
## Call:
## lm(formula = Spending ~ Salary, data = data)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1277.84 -448.02 -96.32 404.63 1703.20
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.384e+03 4.097e+02 3.378 0.00144 **
## Salary 9.012e-02 1.602e-02 5.627 8.75e-07 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 630.8 on 49 degrees of freedom
## Multiple R-squared: 0.3925, Adjusted R-squared: 0.3801
## F-statistic: 31.66 on 1 and 49 DF, p-value: 8.747e-07
Question 2(d)
##
## Call:
## lm(formula = Teacher_Pay ~ Per_Pupil_Spending, data = data)
##
## Residuals:
## Min 1Q Median 3Q Max
## -6354.9 -2504.3 -805.2 787.3 17904.0
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 9145.725 2880.091 3.175 0.00259 **
## Per_Pupil_Spending 4.355 0.774 5.627 8.75e-07 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 4385 on 49 degrees of freedom
## Multiple R-squared: 0.3925, Adjusted R-squared: 0.3801
## F-statistic: 31.66 on 1 and 49 DF, p-value: 8.747e-07
Question 2(e)
## 1
## 30922.54
Question 2(f)
Problem 3:
Question 3(a) I renamed the dataset and the variable titles so that I can code it more easily. It was giving me errors when I tried to use the included dataset.
Question 3(b) and 3(c)
## [1] "Linear Model Summary:"
##
## Call:
## lm(formula = Invest ~ Savings, data = data)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.031554 -0.008684 0.001404 0.009487 0.020082
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.04352 0.01763 2.469 0.0232 *
## Savings 0.84676 0.06928 12.222 1.9e-10 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.01434 on 19 degrees of freedom
## Multiple R-squared: 0.8872, Adjusted R-squared: 0.8812
## F-statistic: 149.4 on 1 and 19 DF, p-value: 1.899e-10
## [1] "Log-Log Model Summary:"
##
## Call:
## lm(formula = log(Invest) ~ log(Savings), data = data)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.105127 -0.032324 0.004649 0.045466 0.080277
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.21591 0.09858 -2.19 0.0412 *
## log(Savings) 0.82881 0.06985 11.87 3.13e-10 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.05643 on 19 degrees of freedom
## Multiple R-squared: 0.8811, Adjusted R-squared: 0.8748
## F-statistic: 140.8 on 1 and 19 DF, p-value: 3.134e-10