library(completejourney)
## Welcome to the completejourney package! Learn more about these data
## sets at http://bit.ly/completejourney.
library(dplyr)
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
library(ggplot2)
library(tidyverse)
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ forcats 1.0.0 ✔ stringr 1.5.1
## ✔ lubridate 1.9.3 ✔ tibble 3.2.1
## ✔ purrr 1.0.2 ✔ tidyr 1.3.1
## ✔ readr 2.1.5
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag() masks stats::lag()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
library(lubridate)
data("demographics")
data("transactions_sample")
merged_data <- transactions_sample %>%
inner_join(demographics, by = "household_id")
summary_data <- merged_data %>%
group_by(income, store_id) %>%
summarise(total_spending = sum(sales_value, na.rm = TRUE)) %>%
ungroup()
## `summarise()` has grouped output by 'income'. You can override using the
## `.groups` argument.
top_stores <- summary_data %>%
group_by(store_id) %>%
summarise(total_revenue = sum(total_spending, na.rm = TRUE)) %>%
arrange(desc(total_revenue)) %>%
slice_head(n = 10)
top_summary_data <- summary_data %>%
filter(store_id %in% top_stores$store_id)
plot <- ggplot(top_summary_data, aes(x = store_id, y = total_spending, fill = income)) +
geom_bar(stat = "identity", position = "dodge") +
labs(title = "Total Spending by Income Level in Top 10 Stores",
subtitle = "Comparison of spending by income level for the top 10 stores",
x = "Store ID",
y = "Total Spending ($)",
fill = "Income Level") +
theme_minimal() +
theme(axis.text.x = element_text(angle = 45, hjust = 1))
print(plot)

data("coupon_redemptions")
merged_data <- coupon_redemptions %>%
inner_join(demographics, by = "household_id")
coupon_summary <- merged_data %>%
group_by(income) %>%
summarise(total_redemptions = n()) %>%
ungroup()
coupon_plot <- ggplot(coupon_summary, aes(x = income, y = total_redemptions, fill = income)) +
geom_bar(stat = "identity") +
labs(title = "Total Coupon Redemptions by Income Level",
subtitle = "Comparison of coupon usage across different income",
x = "Income Level",
y = "Total Redemptions",
fill = "Income Level") +
theme_minimal()
print(coupon_plot)

merged_data <- coupon_redemptions %>%
inner_join(demographics, by = "household_id") %>%
mutate(redemption_date = as.Date(redemption_date),
day_of_week = wday(redemption_date, label = TRUE))
coupon_summary <- merged_data %>%
group_by(day_of_week, income) %>%
summarise(total_redemptions = n()) %>%
ungroup()
## `summarise()` has grouped output by 'day_of_week'. You can override using the
## `.groups` argument.
scatter_plot <- ggplot(coupon_summary, aes(x = day_of_week, y = total_redemptions)) +
geom_point(size = 3, alpha = 0.7, aes(color = income)) +
labs(title = "Coupon Redemptions by Day of the Week by Income",
subtitle = "Comparison by Income Level",
x = "Day of the Week",
y = "Total Coupon Redemptions",
color = "Income Level") +
theme_minimal() +
theme(text = element_text(size = 12),
legend.position = "right") +
scale_x_discrete(limits = levels(coupon_summary$day_of_week)) +
facet_wrap(~ income)
print(scatter_plot)
