library(dplyr) library(readr)
movies <- read_csv(“https://gist.githubusercontent.com/tiangechen/b68782efa49a16edaf07dc2cdaa855ea/raw/0c794a9717f18b094eabab2cd6a6b9a226903577/movies.csv”)
q1 <- movies %>%
rename(movie_title = Film , release_year = Year) print(head(q1))
q2 <- q1 %>% select(movie_title, release_year, Genre, Profitability)
print(head(q2))
q3 <- q1 %>%
filter(release_year > 2000 & Rotten Tomatoes % >
80)
print(head(q3))
q4 <- q3 %>% mutate(Profitability_millions = Profitability / 1e6) print(head(q4))
q5 <- q4 %>%
arrange(desc(Rotten Tomatoes %),
desc(Profitability_millions)) print(select(q5))
final_dataframe <- movies %>% rename(movie_title = Film ,
release_year = Year) %>% select(movie_title, release_year, Genre,
Profitability) %>% filter(release_year > 2000 &
Rotten Tomatoes % > 80) %>%
mutate(Profitability_millions = Profitability / 1e6) %>%
arrange(desc(Rotten Tomatoes %),
desc(Profitability_millions)) %>%
print(head(final_dataframe))