```{r, echo=FALSE, message=FALSE, warning=FALSE} # Load necessary libraries library(dplyr) library(readr)
movies <- read_csv(“https://gist.githubusercontent.com/tiangechen/b68782efa49a16edaf07dc2cdaa855ea/raw/0c794a9717f18b094eabab2cd6a6b9a226903577/movies.csv”)
```{r}
movies <- movies %>%
rename(
movie_title = Film, # Renaming
release_year = Year # Renaming
)
# Display the first few rows of the dataset to confirm changes
head(movies)
```{r} selected_columns_df <- movies %>% select(movie_title, release_year, Genre, Profitability)
head(selected_columns_df)
### Select specific columns
```{r}
selected_columns_df <- movies %>%
select(movie_title, release_year, Genre, Profitability)
head(selected_columns_df)
``{r} filtered_movies <- movies %>% filter(release_year > 2000,
Rotten
Tomatoes %` > 80)
head(filtered_movies)
### Profitability Millions column
```{r}
movies <- movies %>%
mutate(Profitability_millions = Profitability / 1e6)
head(movies)
``{r} correlation <- cor(sorted_movies$
Rotten
Tomatoes %`, sorted_movies$Profitability_millions, use =
“complete.obs”)
#correlation result correlation ```