library(dplyr)
## 
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union
library(readr)


### Load the movies dataset
movies <- read_csv("https://gist.githubusercontent.com/tiangechen/b68782efa49a16edaf07dc2cdaa855ea/raw/0c794a9717f18b094eabab2cd6a6b9a226903577/movies.csv")
## Rows: 77 Columns: 8
## ── Column specification ────────────────────────────────────────────────────────
## Delimiter: ","
## chr (4): Film, Genre, Lead Studio, Worldwide Gross
## dbl (4): Audience score %, Profitability, Rotten Tomatoes %, Year
## 
## ℹ Use `spec()` to retrieve the full column specification for this data.
## ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.

1. rename(): (4 points)

Rename the “Film” column to “movie_title” and “Year” to “release_year”.

movies_two <- movies %>%
  rename(movie_title = Film , 
         release_year = Year)

print(head(movies_two))
## # A tibble: 6 × 8
##   movie_title               Genre `Lead Studio` `Audience score %` Profitability
##   <chr>                     <chr> <chr>                      <dbl>         <dbl>
## 1 Zack and Miri Make a Por… Roma… The Weinstei…                 70          1.75
## 2 Youth in Revolt           Come… The Weinstei…                 52          1.09
## 3 You Will Meet a Tall Dar… Come… Independent                   35          1.21
## 4 When in Rome              Come… Disney                        44          0   
## 5 What Happens in Vegas     Come… Fox                           72          6.27
## 6 Water For Elephants       Drama 20th Century…                 72          3.08
## # ℹ 3 more variables: `Rotten Tomatoes %` <dbl>, `Worldwide Gross` <chr>,
## #   release_year <dbl>

2. select(): (4 points)

Create a new dataframe with only the columns: movie_title, release_year, Genre, Profitability,

popular_movie <- movies_two %>% 
  select(movie_title, release_year, Genre, Profitability)

print(head(popular_movie))
## # A tibble: 6 × 4
##   movie_title                        release_year Genre   Profitability
##   <chr>                                     <dbl> <chr>           <dbl>
## 1 Zack and Miri Make a Porno                 2008 Romance          1.75
## 2 Youth in Revolt                            2010 Comedy           1.09
## 3 You Will Meet a Tall Dark Stranger         2010 Comedy           1.21
## 4 When in Rome                               2010 Comedy           0   
## 5 What Happens in Vegas                      2008 Comedy           6.27
## 6 Water For Elephants                        2011 Drama            3.08

3. filter(): (4 points)

Filter the dataset to include only movies released after 2000 with a Rotten Tomatoes % higher than 80.

new_popular_movies <- movies %>%  
  filter(Year > 2000 , 
         `Rotten Tomatoes %` > 80)

print(head(new_popular_movies))
## # A tibble: 6 × 8
##   Film  Genre `Lead Studio` `Audience score %` Profitability `Rotten Tomatoes %`
##   <chr> <chr> <chr>                      <dbl>         <dbl>               <dbl>
## 1 WALL… Anim… Disney                        89         2.90                   96
## 2 Wait… Roma… Independent                   67        11.1                    89
## 3 Tang… Anim… Disney                        88         1.37                   89
## 4 Rach… Drama Independent                   61         1.38                   85
## 5 My W… Drama The Weinstei…                 84         0.826                  83
## 6 Midn… Rome… Sony                          84         8.74                   93
## # ℹ 2 more variables: `Worldwide Gross` <chr>, Year <dbl>

4. mutate(): (4 points)

Add a new column called “Profitability_millions” that converts the Profitability to millions of dollars.

Profitability_millions <- new_popular_movies %>% 
  mutate(Profitability_millions = Profitability * 1000000)

print(head(Profitability_millions))
## # A tibble: 6 × 9
##   Film  Genre `Lead Studio` `Audience score %` Profitability `Rotten Tomatoes %`
##   <chr> <chr> <chr>                      <dbl>         <dbl>               <dbl>
## 1 WALL… Anim… Disney                        89         2.90                   96
## 2 Wait… Roma… Independent                   67        11.1                    89
## 3 Tang… Anim… Disney                        88         1.37                   89
## 4 Rach… Drama Independent                   61         1.38                   85
## 5 My W… Drama The Weinstei…                 84         0.826                  83
## 6 Midn… Rome… Sony                          84         8.74                   93
## # ℹ 3 more variables: `Worldwide Gross` <chr>, Year <dbl>,
## #   Profitability_millions <dbl>

5. arrange(): (3 points)

Sort the filtered dataset by Rotten Tomatoes % in descending order, and then by Profitability in descending order. five <- four %>% arrange(desc(Rotten Tomatoes %) , desc(Profitability_millions))

sorted_movies <- Profitability_millions %>%  
  arrange(desc(`Rotten Tomatoes %`), desc(Profitability_millions))

head(sorted_movies)
## # A tibble: 6 × 9
##   Film  Genre `Lead Studio` `Audience score %` Profitability `Rotten Tomatoes %`
##   <chr> <chr> <chr>                      <dbl>         <dbl>               <dbl>
## 1 WALL… Anim… Disney                        89          2.90                  96
## 2 Midn… Rome… Sony                          84          8.74                  93
## 3 Ench… Come… Disney                        80          4.01                  93
## 4 Knoc… Come… Universal                     83          6.64                  91
## 5 Wait… Roma… Independent                   67         11.1                   89
## 6 A Se… Drama Universal                     64          4.38                  89
## # ℹ 3 more variables: `Worldwide Gross` <chr>, Year <dbl>,
## #   Profitability_millions <dbl>

6. Combining functions: (3 points)

Use the pipe operator (%>%) to chain these operations together, starting with the original dataset and ending with a final dataframe that incorporates all the above transformations.movies %>%

movies
## # A tibble: 77 × 8
##    Film                     Genre `Lead Studio` `Audience score %` Profitability
##    <chr>                    <chr> <chr>                      <dbl>         <dbl>
##  1 Zack and Miri Make a Po… Roma… The Weinstei…                 70         1.75 
##  2 Youth in Revolt          Come… The Weinstei…                 52         1.09 
##  3 You Will Meet a Tall Da… Come… Independent                   35         1.21 
##  4 When in Rome             Come… Disney                        44         0    
##  5 What Happens in Vegas    Come… Fox                           72         6.27 
##  6 Water For Elephants      Drama 20th Century…                 72         3.08 
##  7 WALL-E                   Anim… Disney                        89         2.90 
##  8 Waitress                 Roma… Independent                   67        11.1  
##  9 Waiting For Forever      Roma… Independent                   53         0.005
## 10 Valentine's Day          Come… Warner Bros.                  54         4.18 
## # ℹ 67 more rows
## # ℹ 3 more variables: `Rotten Tomatoes %` <dbl>, `Worldwide Gross` <chr>,
## #   Year <dbl>
  transformations_movies <- movies %>%
  rename(movie_title = Film, release_year = Year) %>%
  select(movie_title, release_year, Genre, Profitability, `Rotten Tomatoes %`) %>%
  filter(release_year > 2000, `Rotten Tomatoes %` > 80) %>%
  mutate(Profitability_millions = Profitability * 1000000) %>%
  arrange(desc(`Rotten Tomatoes %`), desc(Profitability_millions)) %>%
  
print(head(6))
## # A
## #   tibble:
## #   12
## #   ×
## #   6
## # ℹ 6
## #   more
## #   variables:
## #   movie_title <chr>,
## #   release_year <dbl>,
## #   Genre <chr>,
## #   Profitability <dbl>, …

7. Interpret question 6 (1 point)

EXTRA CREDIT (4 points)

Create a summary dataframe that shows the average rating and Profitability_millions for movies by Genre. Hint: You’ll need to use group_by() and summarize().

summary_df <- movies %>%
  group_by(Genre) %>%
  summarize(Average_Rating = mean(`Audience score %`, na.rm = TRUE) ,
    Profitability_Millions = mean(Profitability_millions, na.rm = TRUE)
  )
## Warning: There were 10 warnings in `summarize()`.
## The first warning was:
## ℹ In argument: `Profitability_Millions = mean(Profitability_millions, na.rm =
##   TRUE)`.
## ℹ In group 1: `Genre = "Action"`.
## Caused by warning in `mean.default()`:
## ! argument is not numeric or logical: returning NA
## ℹ Run `dplyr::last_dplyr_warnings()` to see the 9 remaining warnings.
print(summary_df)
## # A tibble: 10 × 3
##    Genre     Average_Rating Profitability_Millions
##    <chr>              <dbl>                  <dbl>
##  1 Action              45                       NA
##  2 Animation           70.2                     NA
##  3 Comdy               61                       NA
##  4 Comedy              61.0                     NA
##  5 Drama               67.2                     NA
##  6 Fantasy             81                       NA
##  7 Romance             62.8                     NA
##  8 Romence             84                       NA
##  9 comedy              81                       NA
## 10 romance             84                       NA