library(dplyr)
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
library(readr)
movies <- read_csv("https://gist.githubusercontent.com/tiangechen/b68782efa49a16edaf07dc2cdaa855ea/raw/0c794a9717f18b094eabab2cd6a6b9a226903577/movies.csv")
## Rows: 77 Columns: 8
## ── Column specification ────────────────────────────────────────────────────────
## Delimiter: ","
## chr (4): Film, Genre, Lead Studio, Worldwide Gross
## dbl (4): Audience score %, Profitability, Rotten Tomatoes %, Year
##
## ℹ Use `spec()` to retrieve the full column specification for this data.
## ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
q1 <- movies %>%
rename(movie_title = Film, release_year = Year)
print(head(q1))
## # A tibble: 6 × 8
## movie_title Genre `Lead Studio` `Audience score %` Profitability
## <chr> <chr> <chr> <dbl> <dbl>
## 1 Zack and Miri Make a Por… Roma… The Weinstei… 70 1.75
## 2 Youth in Revolt Come… The Weinstei… 52 1.09
## 3 You Will Meet a Tall Dar… Come… Independent 35 1.21
## 4 When in Rome Come… Disney 44 0
## 5 What Happens in Vegas Come… Fox 72 6.27
## 6 Water For Elephants Drama 20th Century… 72 3.08
## # ℹ 3 more variables: `Rotten Tomatoes %` <dbl>, `Worldwide Gross` <chr>,
## # release_year <dbl>
q2 <- q1 %>%
select(movie_title, release_year, Genre, Profitability)
print (q2)
## # A tibble: 77 × 4
## movie_title release_year Genre Profitability
## <chr> <dbl> <chr> <dbl>
## 1 Zack and Miri Make a Porno 2008 Romance 1.75
## 2 Youth in Revolt 2010 Comedy 1.09
## 3 You Will Meet a Tall Dark Stranger 2010 Comedy 1.21
## 4 When in Rome 2010 Comedy 0
## 5 What Happens in Vegas 2008 Comedy 6.27
## 6 Water For Elephants 2011 Drama 3.08
## 7 WALL-E 2008 Animation 2.90
## 8 Waitress 2007 Romance 11.1
## 9 Waiting For Forever 2011 Romance 0.005
## 10 Valentine's Day 2010 Comedy 4.18
## # ℹ 67 more rows
q3 <- q1 %>%
filter(`Rotten Tomatoes %` > 80, release_year > 2000)
head(q3)
## # A tibble: 6 × 8
## movie_title Genre `Lead Studio` `Audience score %` Profitability
## <chr> <chr> <chr> <dbl> <dbl>
## 1 WALL-E Animati… Disney 89 2.90
## 2 Waitress Romance Independent 67 11.1
## 3 Tangled Animati… Disney 88 1.37
## 4 Rachel Getting Married Drama Independent 61 1.38
## 5 My Week with Marilyn Drama The Weinstei… 84 0.826
## 6 Midnight in Paris Romence Sony 84 8.74
## # ℹ 3 more variables: `Rotten Tomatoes %` <dbl>, `Worldwide Gross` <chr>,
## # release_year <dbl>
q4 <- q3
q4 $Profitability <- as.numeric(gsub("[^0-9.-]", "", q4$Profitability))
q4 $Profitability_millions <- q4$Profitability / 1e+06
print (q4)
## # A tibble: 12 × 9
## movie_title Genre `Lead Studio` `Audience score %` Profitability
## <chr> <chr> <chr> <dbl> <dbl>
## 1 WALL-E Animat… Disney 89 2.90
## 2 Waitress Romance Independent 67 11.1
## 3 Tangled Animat… Disney 88 1.37
## 4 Rachel Getting Married Drama Independent 61 1.38
## 5 My Week with Marilyn Drama The Weinstei… 84 0.826
## 6 Midnight in Paris Romence Sony 84 8.74
## 7 Knocked Up Comedy Universal 83 6.64
## 8 Jane Eyre Romance Universal 77 0
## 9 Enchanted Comedy Disney 80 4.01
## 10 Beginners Comedy Independent 80 4.47
## 11 A Serious Man Drama Universal 64 4.38
## 12 (500) Days of Summer comedy Fox 81 8.10
## # ℹ 4 more variables: `Rotten Tomatoes %` <dbl>, `Worldwide Gross` <chr>,
## # release_year <dbl>, Profitability_millions <dbl>
q5<-q3 %>% arrange(desc(`Rotten Tomatoes %`), desc(Profitability))
head(q5)
## # A tibble: 6 × 8
## movie_title Genre `Lead Studio` `Audience score %` Profitability
## <chr> <chr> <chr> <dbl> <dbl>
## 1 WALL-E Animation Disney 89 2.90
## 2 Midnight in Paris Romence Sony 84 8.74
## 3 Enchanted Comedy Disney 80 4.01
## 4 Knocked Up Comedy Universal 83 6.64
## 5 Waitress Romance Independent 67 11.1
## 6 A Serious Man Drama Universal 64 4.38
## # ℹ 3 more variables: `Rotten Tomatoes %` <dbl>, `Worldwide Gross` <chr>,
## # release_year <dbl>
q6 <- movies %>%
rename(movie_title = Film, release_year = Year) %>%
select(movie_title, release_year, Genre, Profitability, `Rotten Tomatoes %`) %>%
filter(`Rotten Tomatoes %` > 80, release_year > 2000) %>%
arrange(desc(`Rotten Tomatoes %`), desc(Profitability))
head(q6)
## # A tibble: 6 × 5
## movie_title release_year Genre Profitability `Rotten Tomatoes %`
## <chr> <dbl> <chr> <dbl> <dbl>
## 1 WALL-E 2008 Animation 2.90 96
## 2 Midnight in Paris 2011 Romence 8.74 93
## 3 Enchanted 2007 Comedy 4.01 93
## 4 Knocked Up 2007 Comedy 6.64 91
## 5 Waitress 2007 Romance 11.1 89
## 6 A Serious Man 2009 Drama 4.38 89
From the resulting data, Fireproof seems to be the most popular, followed by High School Musical 3: Senior Year, then followed by the Twilight Saga: New Moon. Based off rotten tomatoes, “WALL-E” was the “best” movie, having the highest rating, but it was ranked 35th on profitability. All things considered, the best movies are not the most popular.
summary_df <- movies %>%
group_by(Genre) %>%
summarize(
avg_Audience_score_pct = mean(`Audience score %`, na.rm = TRUE),
avg_profitability_millions = mean(Profitability / 1e6, na.rm = TRUE)
) %>%
arrange(desc(avg_Audience_score_pct))
print(summary_df)
## # A tibble: 10 × 3
## Genre avg_Audience_score_pct avg_profitability_millions
## <chr> <dbl> <dbl>
## 1 Romence 84 0.00000874
## 2 romance 84 0.000000653
## 3 Fantasy 81 0.00000178
## 4 comedy 81 0.00000810
## 5 Animation 70.2 0.00000376
## 6 Drama 67.2 0.00000841
## 7 Romance 62.8 0.00000398
## 8 Comdy 61 0.00000265
## 9 Comedy 61.0 0.00000378
## 10 Action 45 0.00000125