1. rename(): (4 points)

Rename the “Film” column to “movie_title” and “Year” to “release_year”.

q1  <- movies %>%  
rename(movie_title = Film , release_year = Year)

head(q1)
## # A tibble: 6 × 8
##   movie_title               Genre `Lead Studio` `Audience score %` Profitability
##   <chr>                     <chr> <chr>                      <dbl>         <dbl>
## 1 Zack and Miri Make a Por… Roma… The Weinstei…                 70          1.75
## 2 Youth in Revolt           Come… The Weinstei…                 52          1.09
## 3 You Will Meet a Tall Dar… Come… Independent                   35          1.21
## 4 When in Rome              Come… Disney                        44          0   
## 5 What Happens in Vegas     Come… Fox                           72          6.27
## 6 Water For Elephants       Drama 20th Century…                 72          3.08
## # ℹ 3 more variables: `Rotten Tomatoes %` <dbl>, `Worldwide Gross` <chr>,
## #   release_year <dbl>

2. select(): (4 points)

Create a new dataframe with only the columns: movie_title, release_year, Genre, Profitability,

q2  <- q1 %>% 
select(movie_title, release_year, Genre, Profitability)

head(q2)
## # A tibble: 6 × 4
##   movie_title                        release_year Genre   Profitability
##   <chr>                                     <dbl> <chr>           <dbl>
## 1 Zack and Miri Make a Porno                 2008 Romance          1.75
## 2 Youth in Revolt                            2010 Comedy           1.09
## 3 You Will Meet a Tall Dark Stranger         2010 Comedy           1.21
## 4 When in Rome                               2010 Comedy           0   
## 5 What Happens in Vegas                      2008 Comedy           6.27
## 6 Water For Elephants                        2011 Drama            3.08

3. filter(): (4 points)

Filter the dataset to include only movies released after 2000 with a Rotten Tomatoes % higher than 80.

q3  <- q1 %>%  
filter(release_year > 2000 , `Rotten Tomatoes %` > 80)

head(q3)
## # A tibble: 6 × 8
##   movie_title            Genre    `Lead Studio` `Audience score %` Profitability
##   <chr>                  <chr>    <chr>                      <dbl>         <dbl>
## 1 WALL-E                 Animati… Disney                        89         2.90 
## 2 Waitress               Romance  Independent                   67        11.1  
## 3 Tangled                Animati… Disney                        88         1.37 
## 4 Rachel Getting Married Drama    Independent                   61         1.38 
## 5 My Week with Marilyn   Drama    The Weinstei…                 84         0.826
## 6 Midnight in Paris      Romence  Sony                          84         8.74 
## # ℹ 3 more variables: `Rotten Tomatoes %` <dbl>, `Worldwide Gross` <chr>,
## #   release_year <dbl>

4. mutate(): (4 points)

Add a new column called “Profitability_millions” that converts the Profitability to millions of dollars.

q4 <- q3 %>% 
mutate(Profitability_millions = Profitability * 1000000)

head(select(q4, Profitability_millions, Profitability))
## # A tibble: 6 × 2
##   Profitability_millions Profitability
##                    <dbl>         <dbl>
## 1               2896019.         2.90 
## 2              11089742.        11.1  
## 3               1365692.         1.37 
## 4               1384167.         1.38 
## 5                825800          0.826
## 6               8744706.         8.74

5. arrange(): (3 points)

Sort the filtered dataset by Rotten Tomatoes % in descending order, and then by Profitability in descending order. five <- four %>% arrange(desc(Rotten Tomatoes %) , desc(Profitability_millions))

q5 <- q4 %>%  
  arrange(desc(`Rotten Tomatoes %`), desc (Profitability))

head(select(q5,`Rotten Tomatoes %`, Profitability))
## # A tibble: 6 × 2
##   `Rotten Tomatoes %` Profitability
##                 <dbl>         <dbl>
## 1                  96          2.90
## 2                  93          8.74
## 3                  93          4.01
## 4                  91          6.64
## 5                  89         11.1 
## 6                  89          4.38

6. Combining functions: (3 points)

Use the pipe operator (%>%) to chain these operations together, starting with the original dataset and ending with a final dataframe that incorporates all the above transformations.

q6  <- movies %>%  
  rename( movie_title = Film, release_year = Year)  %>%  
  filter(release_year > 2000 & `Rotten Tomatoes %` > 80) %>%
  select(movie_title, release_year, Genre, Profitability, `Rotten Tomatoes %`) %>%
  mutate(Profitability_millions = Profitability * 1000000) %>%
  arrange(desc(`Rotten Tomatoes %`), desc (Profitability)) 

head(q6)
## # A tibble: 6 × 6
##   movie_title       release_year Genre     Profitability `Rotten Tomatoes %`
##   <chr>                    <dbl> <chr>             <dbl>               <dbl>
## 1 WALL-E                    2008 Animation          2.90                  96
## 2 Midnight in Paris         2011 Romence            8.74                  93
## 3 Enchanted                 2007 Comedy             4.01                  93
## 4 Knocked Up                2007 Comedy             6.64                  91
## 5 Waitress                  2007 Romance           11.1                   89
## 6 A Serious Man             2009 Drama              4.38                  89
## # ℹ 1 more variable: Profitability_millions <dbl>

7. Interpret question 6 (1 point)

EXTRA CREDIT (4 points)

Create a summary dataframe that shows the average rating and Profitability_millions for movies by Genre. Hint: You’ll need to use group_by() and summarize().

extra_credit <- q4 %>%
  group_by(Genre) %>% 
  summarize(
    avg_rating = mean(`Rotten Tomatoes %` , na.rm= TRUE),
    avg_profitability = mean(Profitability_millions, na.rm = TRUE))
  print(extra_credit)
## # A tibble: 6 × 3
##   Genre     avg_rating avg_profitability
##   <chr>          <dbl>             <dbl>
## 1 Animation       92.5          2130856.
## 2 Comedy          89.3          5038005.
## 3 Drama           85.7          2197608.
## 4 Romance         87            5544871.
## 5 Romence         93            8744706.
## 6 comedy          87            8096000