Question1 <- movies %>%
rename(movie_title = Film , release_year = Year)
head(Question1)
## # A tibble: 6 × 8
## movie_title Genre `Lead Studio` `Audience score %` Profitability
## <chr> <chr> <chr> <dbl> <dbl>
## 1 Zack and Miri Make a Por… Roma… The Weinstei… 70 1.75
## 2 Youth in Revolt Come… The Weinstei… 52 1.09
## 3 You Will Meet a Tall Dar… Come… Independent 35 1.21
## 4 When in Rome Come… Disney 44 0
## 5 What Happens in Vegas Come… Fox 72 6.27
## 6 Water For Elephants Drama 20th Century… 72 3.08
## # ℹ 3 more variables: `Rotten Tomatoes %` <dbl>, `Worldwide Gross` <chr>,
## # release_year <dbl>
Question2 <- Question1 %>%
select(movie_title , release_year, Genre , Profitability)
print(head(Question2))
## # A tibble: 6 × 4
## movie_title release_year Genre Profitability
## <chr> <dbl> <chr> <dbl>
## 1 Zack and Miri Make a Porno 2008 Romance 1.75
## 2 Youth in Revolt 2010 Comedy 1.09
## 3 You Will Meet a Tall Dark Stranger 2010 Comedy 1.21
## 4 When in Rome 2010 Comedy 0
## 5 What Happens in Vegas 2008 Comedy 6.27
## 6 Water For Elephants 2011 Drama 3.08
Question3 <- Question1 %>%
filter(release_year > 2000 & `Rotten Tomatoes %` > 80)
head(Question3)
## # A tibble: 6 × 8
## movie_title Genre `Lead Studio` `Audience score %` Profitability
## <chr> <chr> <chr> <dbl> <dbl>
## 1 WALL-E Animati… Disney 89 2.90
## 2 Waitress Romance Independent 67 11.1
## 3 Tangled Animati… Disney 88 1.37
## 4 Rachel Getting Married Drama Independent 61 1.38
## 5 My Week with Marilyn Drama The Weinstei… 84 0.826
## 6 Midnight in Paris Romence Sony 84 8.74
## # ℹ 3 more variables: `Rotten Tomatoes %` <dbl>, `Worldwide Gross` <chr>,
## # release_year <dbl>
Question4 <- Question3 %>%
mutate(Profitability_millions = Profitability)
head(Question4)
## # A tibble: 6 × 9
## movie_title Genre `Lead Studio` `Audience score %` Profitability
## <chr> <chr> <chr> <dbl> <dbl>
## 1 WALL-E Animati… Disney 89 2.90
## 2 Waitress Romance Independent 67 11.1
## 3 Tangled Animati… Disney 88 1.37
## 4 Rachel Getting Married Drama Independent 61 1.38
## 5 My Week with Marilyn Drama The Weinstei… 84 0.826
## 6 Midnight in Paris Romence Sony 84 8.74
## # ℹ 4 more variables: `Rotten Tomatoes %` <dbl>, `Worldwide Gross` <chr>,
## # release_year <dbl>, Profitability_millions <dbl>
Question5 <- Question4 %>%
arrange(desc(`Rotten Tomatoes %`), Profitability)
head(Question5)
## # A tibble: 6 × 9
## movie_title Genre `Lead Studio` `Audience score %` Profitability
## <chr> <chr> <chr> <dbl> <dbl>
## 1 WALL-E Animation Disney 89 2.90
## 2 Enchanted Comedy Disney 80 4.01
## 3 Midnight in Paris Romence Sony 84 8.74
## 4 Knocked Up Comedy Universal 83 6.64
## 5 Tangled Animation Disney 88 1.37
## 6 A Serious Man Drama Universal 64 4.38
## # ℹ 4 more variables: `Rotten Tomatoes %` <dbl>, `Worldwide Gross` <chr>,
## # release_year <dbl>, Profitability_millions <dbl>
Question6 <- movies %>%
rename(movie_title = Film , release_year = Year) %>%
filter(release_year > 2000 & `Rotten Tomatoes %` > 80) %>%
select(movie_title , release_year, Genre, Profitability , `Rotten Tomatoes %`) %>%
mutate(Profitability_millions = Profitability) %>%
arrange(desc(`Rotten Tomatoes %`), Profitability)
head(Question6)
Extra_credit <- movies %>%
group_by(Genre) %>%
summarize(
avg_rating = mean(`Rotten Tomatoes %`, na.rm = TRUE),
avg_profitability = mean(Profitability*1000000, na.rm = TRUE)
)
print(Extra_credit)
## # A tibble: 10 × 3
## Genre avg_rating avg_profitability
## <chr> <dbl> <dbl>
## 1 Action 11 1245333.
## 2 Animation 74.2 3759414.
## 3 Comdy 13 2649068.
## 4 Comedy 42.7 3776946.
## 5 Drama 51.5 8407218.
## 6 Fantasy 73 1783944.
## 7 Romance 42.1 3984790.
## 8 Romence 93 8744706.
## 9 comedy 87 8096000
## 10 romance 54 652603.