1. rename(): (4 points)
Rename the “Film” column to “movie_title” and “Year” to
“release_year”.
q1 <- movies %>%
rename(movie_title = Film , release_year = Year)
head(q1)
## # A tibble: 6 × 8
## movie_title Genre `Lead Studio` `Audience score %` Profitability
## <chr> <chr> <chr> <dbl> <dbl>
## 1 Zack and Miri Make a Por… Roma… The Weinstei… 70 1.75
## 2 Youth in Revolt Come… The Weinstei… 52 1.09
## 3 You Will Meet a Tall Dar… Come… Independent 35 1.21
## 4 When in Rome Come… Disney 44 0
## 5 What Happens in Vegas Come… Fox 72 6.27
## 6 Water For Elephants Drama 20th Century… 72 3.08
## # ℹ 3 more variables: `Rotten Tomatoes %` <dbl>, `Worldwide Gross` <chr>,
## # release_year <dbl>
2. select(): (4 points)
Create a new dataframe with only the columns: movie_title,
release_year, Genre, Profitability,
q2 <- q1 %>%
select(movie_title, release_year, Genre, Profitability)
head(q2)
## # A tibble: 6 × 4
## movie_title release_year Genre Profitability
## <chr> <dbl> <chr> <dbl>
## 1 Zack and Miri Make a Porno 2008 Romance 1.75
## 2 Youth in Revolt 2010 Comedy 1.09
## 3 You Will Meet a Tall Dark Stranger 2010 Comedy 1.21
## 4 When in Rome 2010 Comedy 0
## 5 What Happens in Vegas 2008 Comedy 6.27
## 6 Water For Elephants 2011 Drama 3.08
3. filter(): (4 points)
Filter the dataset to include only movies released after 2000 with a
Rotten Tomatoes % higher than 80.
q3 <- q1 %>%
filter(release_year > 2000 & `Rotten Tomatoes %` > 80)
head(q3)
## # A tibble: 6 × 8
## movie_title Genre `Lead Studio` `Audience score %` Profitability
## <chr> <chr> <chr> <dbl> <dbl>
## 1 WALL-E Animati… Disney 89 2.90
## 2 Waitress Romance Independent 67 11.1
## 3 Tangled Animati… Disney 88 1.37
## 4 Rachel Getting Married Drama Independent 61 1.38
## 5 My Week with Marilyn Drama The Weinstei… 84 0.826
## 6 Midnight in Paris Romence Sony 84 8.74
## # ℹ 3 more variables: `Rotten Tomatoes %` <dbl>, `Worldwide Gross` <chr>,
## # release_year <dbl>
4. mutate(): (4 points)
Add a new column called “Profitability_millions” that converts the
Profitability to millions of dollars.
q4 <- q3 %>%
mutate(Profitability_millions = Profitability*1000000)
head(q4)
## # A tibble: 6 × 9
## movie_title Genre `Lead Studio` `Audience score %` Profitability
## <chr> <chr> <chr> <dbl> <dbl>
## 1 WALL-E Animati… Disney 89 2.90
## 2 Waitress Romance Independent 67 11.1
## 3 Tangled Animati… Disney 88 1.37
## 4 Rachel Getting Married Drama Independent 61 1.38
## 5 My Week with Marilyn Drama The Weinstei… 84 0.826
## 6 Midnight in Paris Romence Sony 84 8.74
## # ℹ 4 more variables: `Rotten Tomatoes %` <dbl>, `Worldwide Gross` <chr>,
## # release_year <dbl>, Profitability_millions <dbl>
5. arrange(): (3 points)
Sort the filtered dataset by Rotten Tomatoes % in descending order,
and then by Profitability in descending order. five <- four %>%
arrange(desc(Rotten Tomatoes %) , desc(Profitability_millions))
q5 <- q4 %>%
arrange(desc(`Rotten Tomatoes %`) , desc(Profitability_millions))
head(q5)
## # A tibble: 6 × 9
## movie_title Genre `Lead Studio` `Audience score %` Profitability
## <chr> <chr> <chr> <dbl> <dbl>
## 1 WALL-E Animation Disney 89 2.90
## 2 Midnight in Paris Romence Sony 84 8.74
## 3 Enchanted Comedy Disney 80 4.01
## 4 Knocked Up Comedy Universal 83 6.64
## 5 Waitress Romance Independent 67 11.1
## 6 A Serious Man Drama Universal 64 4.38
## # ℹ 4 more variables: `Rotten Tomatoes %` <dbl>, `Worldwide Gross` <chr>,
## # release_year <dbl>, Profitability_millions <dbl>
6. Combining functions: (3 points)
7. Interpret question 6 (1 point)
From the resulting data, are the best movies the most popular?
The high rotten tomatoes % doesn’t mean they are the most popular
because the highest gross for movies was Mamma Mia, which wasn’t even on
the top 12 list for q6.
Create a summary dataframe that shows the average rating and
Profitability_millions for movies by Genre. Hint: You’ll need to use
group_by() and summarize().
extracredit <- q6 %>%
group_by(Genre) %>%
summarize(
average_rating = mean(`Rotten Tomatoes %`, na.rm = TRUE),
average_profitability_millions = mean(Profitability_millions, na.rm = TRUE)
)
head(extracredit)
## # A tibble: 6 × 3
## Genre average_rating average_profitability_millions
## <chr> <dbl> <dbl>
## 1 Animation 92.5 2130856.
## 2 Comedy 89.3 5038005.
## 3 Drama 85.7 2197608.
## 4 Romance 87 5544871.
## 5 Romence 93 8744706.
## 6 comedy 87 8096000