Question 1

renamed_movies  <- movies %>%
  rename(movie_title = Film, release_year = Year)

print(head(renamed_movies))
## # A tibble: 6 × 8
##   movie_title               Genre `Lead Studio` `Audience score %` Profitability
##   <chr>                     <chr> <chr>                      <dbl>         <dbl>
## 1 Zack and Miri Make a Por… Roma… The Weinstei…                 70          1.75
## 2 Youth in Revolt           Come… The Weinstei…                 52          1.09
## 3 You Will Meet a Tall Dar… Come… Independent                   35          1.21
## 4 When in Rome              Come… Disney                        44          0   
## 5 What Happens in Vegas     Come… Fox                           72          6.27
## 6 Water For Elephants       Drama 20th Century…                 72          3.08
## # ℹ 3 more variables: `Rotten Tomatoes %` <dbl>, `Worldwide Gross` <chr>,
## #   release_year <dbl>

Question 2

new_dataframe <- renamed_movies %>%
  select(movie_title, release_year, Genre, Profitability)

print(head(new_dataframe))
## # A tibble: 6 × 4
##   movie_title                        release_year Genre   Profitability
##   <chr>                                     <dbl> <chr>           <dbl>
## 1 Zack and Miri Make a Porno                 2008 Romance          1.75
## 2 Youth in Revolt                            2010 Comedy           1.09
## 3 You Will Meet a Tall Dark Stranger         2010 Comedy           1.21
## 4 When in Rome                               2010 Comedy           0   
## 5 What Happens in Vegas                      2008 Comedy           6.27
## 6 Water For Elephants                        2011 Drama            3.08

Question 3

after_2000 <- renamed_movies %>%
  filter(release_year > 2000 & `Rotten Tomatoes %` > 80)

head(after_2000)
## # A tibble: 6 × 8
##   movie_title            Genre    `Lead Studio` `Audience score %` Profitability
##   <chr>                  <chr>    <chr>                      <dbl>         <dbl>
## 1 WALL-E                 Animati… Disney                        89         2.90 
## 2 Waitress               Romance  Independent                   67        11.1  
## 3 Tangled                Animati… Disney                        88         1.37 
## 4 Rachel Getting Married Drama    Independent                   61         1.38 
## 5 My Week with Marilyn   Drama    The Weinstei…                 84         0.826
## 6 Midnight in Paris      Romence  Sony                          84         8.74 
## # ℹ 3 more variables: `Rotten Tomatoes %` <dbl>, `Worldwide Gross` <chr>,
## #   release_year <dbl>

Question 4

profitability_ratio <- renamed_movies %>%
  mutate(Profitability_millions = Profitability * 1000000)

head(profitability_ratio)
## # A tibble: 6 × 9
##   movie_title               Genre `Lead Studio` `Audience score %` Profitability
##   <chr>                     <chr> <chr>                      <dbl>         <dbl>
## 1 Zack and Miri Make a Por… Roma… The Weinstei…                 70          1.75
## 2 Youth in Revolt           Come… The Weinstei…                 52          1.09
## 3 You Will Meet a Tall Dar… Come… Independent                   35          1.21
## 4 When in Rome              Come… Disney                        44          0   
## 5 What Happens in Vegas     Come… Fox                           72          6.27
## 6 Water For Elephants       Drama 20th Century…                 72          3.08
## # ℹ 4 more variables: `Rotten Tomatoes %` <dbl>, `Worldwide Gross` <chr>,
## #   release_year <dbl>, Profitability_millions <dbl>

Question 5.

arranged_movies <- renamed_movies %>%
  arrange(desc(`Rotten Tomatoes %`), Profitability)

head(arranged_movies)
## # A tibble: 6 × 8
##   movie_title       Genre     `Lead Studio` `Audience score %` Profitability
##   <chr>             <chr>     <chr>                      <dbl>         <dbl>
## 1 WALL-E            Animation Disney                        89          2.90
## 2 Enchanted         Comedy    Disney                        80          4.01
## 3 Midnight in Paris Romence   Sony                          84          8.74
## 4 Knocked Up        Comedy    Universal                     83          6.64
## 5 Tangled           Animation Disney                        88          1.37
## 6 A Serious Man     Drama     Universal                     64          4.38
## # ℹ 3 more variables: `Rotten Tomatoes %` <dbl>, `Worldwide Gross` <chr>,
## #   release_year <dbl>

Question 6.

conclusion <- movies %>%
  rename(movie_title = Film, release_year = Year) %>%
  select(movie_title, release_year, Genre, Profitability, `Rotten Tomatoes %`) %>%
  filter(release_year > 2000 & `Rotten Tomatoes %` > 80) %>%
  mutate(Profitability_millions = Profitability * 1000000) %>%
  arrange(desc(`Rotten Tomatoes %`), Profitability)
head(conclusion)
## # A tibble: 6 × 6
##   movie_title       release_year Genre     Profitability `Rotten Tomatoes %`
##   <chr>                    <dbl> <chr>             <dbl>               <dbl>
## 1 WALL-E                    2008 Animation          2.90                  96
## 2 Enchanted                 2007 Comedy             4.01                  93
## 3 Midnight in Paris         2011 Romence            8.74                  93
## 4 Knocked Up                2007 Comedy             6.64                  91
## 5 Tangled                   2010 Animation          1.37                  89
## 6 A Serious Man             2009 Drama              4.38                  89
## # ℹ 1 more variable: Profitability_millions <dbl>

Question 7.

The best movies are not the most popular, the most profitable movie is “Waitress” but got a score of 89 on Rotten Tomatoes.

Extra Credit

renamed_movies <- renamed_movies %>%
  mutate(Genre = tolower(trimws(Genre))) %>% 
  mutate(Genre = recode(Genre,
                        "comdy" = "comedy",
                        "romence" = "romance"))

summary_df <- renamed_movies %>%
  group_by(Genre) %>%
  summarize(
    avg_rating = mean(`Audience score %`, na.rm = TRUE),
    avg_profitability_millions = mean(Profitability * 1000000, na.rm = TRUE)
  )   
head(summary_df)
## # A tibble: 6 × 3
##   Genre     avg_rating avg_profitability_millions
##   <chr>          <dbl>                      <dbl>
## 1 action          45                     1245333.
## 2 animation       70.2                   3759414.
## 3 comedy          61.4                   3851160.
## 4 drama           67.2                   8407218.
## 5 fantasy         81                     1783944.
## 6 romance         65.6                   4079972.