d <- read.csv("https://stats.dip.jp/01_ds/data/UN_jp.csv")
library(DT)
datatable(d, caption = "United Nations")
str(d)
## 'data.frame': 193 obs. of 8 variables:
## $ 国名 : chr "Afghanistan" "Albania" "Algeria" "Angola" ...
## $ 地域 : chr "Asia" "Europe" "Africa" "Africa" ...
## $ 分類 : chr "other" "other" "africa" "africa" ...
## $ 出生数 : num 5.97 1.52 2.14 5.14 2.17 1.74 1.67 1.95 1.35 2.15 ...
## $ GDP : num 499 3677 4473 4322 9162 ...
## $ 平均寿命 : num 49.5 80.4 75 53.2 79.9 ...
## $ 都市人口率: int 23 53 67 59 93 64 47 89 68 52 ...
## $ 乳児死亡率: num 12.45 1.66 2.15 9.62 1.23 ...
numeric_data <- d[, sapply(d, is.numeric)]
pca_result <- prcomp(numeric_data, scale. = TRUE)
d <- read.csv("https://stats.dip.jp/01_ds/data/UN_jp.csv")
library(DT)
library(factoextra)
## 要求されたパッケージ ggplot2 をロード中です
## Welcome! Want to learn more? See two factoextra-related books at https://goo.gl/ve3WBa
datatable(d, caption = "United Nations Data")
numeric_data <- d[, sapply(d, is.numeric)]
pca_result <- prcomp(numeric_data, scale. = TRUE)
summary(pca_result)
## Importance of components:
## PC1 PC2 PC3 PC4 PC5
## Standard deviation 1.9015 0.8551 0.63807 0.42872 0.24968
## Proportion of Variance 0.7231 0.1462 0.08143 0.03676 0.01247
## Cumulative Proportion 0.7231 0.8693 0.95077 0.98753 1.00000
fviz_screeplot(pca_result, addlabels = TRUE)
fviz_contrib(pca_result, choice = "var", axes = 1, top = 5)
fviz_contrib(pca_result, choice = "var", axes = 2, top = 5)
fviz_pca_biplot(pca_result, repel = TRUE)
#
第1主成分は、国の経済的豊かさや生活水準を示す指標であると考えられる。経済的要因を主に反映していると考えられる第2主成。
分は 国の健康状態や福祉の水準を示す指標と考えられる。
健康指標を反映していると推測される。
d <- read.csv("https://stats.dip.jp/01_ds/data/UN_jp.csv")
library(DT)
library(factoextra)
datatable(d, caption = "United Nations Data")
numeric_data <- d[, sapply(d, is.numeric)]
pca_result <- prcomp(numeric_data, scale. = TRUE)
summary(pca_result)
## Importance of components:
## PC1 PC2 PC3 PC4 PC5
## Standard deviation 1.9015 0.8551 0.63807 0.42872 0.24968
## Proportion of Variance 0.7231 0.1462 0.08143 0.03676 0.01247
## Cumulative Proportion 0.7231 0.8693 0.95077 0.98753 1.00000
pca_scores <- as.data.frame(pca_result$x)
pca_scores$Country <- d$Country
top_countries <- pca_scores[order(-pca_scores$PC1), ]
print(top_countries)
## PC1 PC2 PC3 PC4 PC5
## 100 3.83109224 -3.40874591 -2.449821829 0.470913735 0.1818589825
## 130 3.24343111 -2.55482719 -1.919451747 0.131115293 0.0872453921
## 101 3.12190057 -1.35622681 -0.051175429 0.333906823 -0.1537367124
## 168 2.99423941 -1.66584080 -1.598838521 0.199817533 -0.0813889693
## 155 2.95067732 -1.14865255 0.161850841 0.146530441 -0.0905243841
## 75 2.90070531 -0.54448865 0.539235723 0.062155404 -0.3159297853
## 143 2.83548490 -2.64120875 -0.875092705 0.216305833 0.2567804149
## 8 2.82746962 -1.63880397 -0.672135532 -0.092002558 -0.0917600874
## 16 2.66780800 -1.26135440 0.076410651 -0.055619970 -0.0347126020
## 47 2.65544524 -1.59146326 -0.659390244 0.071817752 0.1022513197
## 167 2.59331404 -1.21852935 -0.520184762 -0.131395034 -0.0214773219
## 30 2.50312270 -0.99534242 -0.563668711 0.024421620 -0.0966906275
## 77 2.49992031 -1.05856837 0.117422290 -0.311366505 -0.0406786124
## 86 2.49843477 -0.39621162 -0.982023862 -0.049543785 -0.2852510945
## 59 2.49367570 -1.04018450 -0.363058272 -0.112649877 -0.0222956117
## 123 2.49348395 -1.09571553 -0.506037339 -0.002606473 -0.0257923006
## 60 2.43795413 -0.86158994 -0.177391116 -0.288233987 -0.1438969227
## 9 2.38986989 -0.57275516 -0.969587336 0.197583847 -0.0892708680
## 65 2.32044807 -0.52539839 -0.574673060 0.120419050 -0.0600083183
## 142 2.31705064 -0.61621735 0.744353951 -0.122281013 -0.2062269545
## 185 2.27622291 -1.22306792 -0.468382066 -0.074379172 0.0348342609
## 161 2.26225264 -0.20583447 -0.139482718 -0.058347979 -0.2027167183
## 107 2.25152940 -0.12614231 0.850865836 0.132391231 -0.1596087557
## 84 2.17950363 -0.15226308 -0.559570254 -0.017214904 -0.1712432119
## 91 2.17558014 -1.66927444 0.154120780 0.101047261 0.3489256646
## 184 2.16208926 -0.64975105 -0.236469321 -0.102206482 -0.0342390121
## 144 2.14593162 0.08431411 0.368270861 -0.023403889 -0.1928059269
## 183 2.11198950 -0.93874243 -0.154693379 0.255725839 0.1892486021
## 125 2.10902610 -0.68109704 0.101558656 -0.298903559 -0.0537182399
## 82 2.02951022 -0.72079204 -1.200404173 -0.209318829 0.0061209262
## 83 1.97594794 -0.85642683 0.395286650 -0.862701431 -0.0519984948
## 44 1.96706950 -0.03544667 -0.267246784 0.089128059 -0.0576484144
## 24 1.89355409 -0.49344266 -0.222033322 -0.106128823 0.0885125052
## 122 1.78613203 -0.42093826 0.805417101 -0.024672867 -0.1212125183
## 34 1.77381672 0.13138028 0.918119762 -0.230908242 -0.1654325685
## 45 1.77142912 0.25997239 0.176452327 0.037612661 0.0245603142
## 67 1.76252707 0.20704020 -0.514326518 0.008538995 -0.0766282912
## 141 1.72959756 0.50292085 -0.377718113 0.093014311 -0.1140529925
## 186 1.60721446 -0.10357166 1.084031406 -0.212708325 -0.1706477956
## 11 1.60216550 -0.36067773 0.441357158 0.073445935 -0.0885646875
## 124 1.57038714 -0.25298286 -0.957915315 -0.140049091 0.1310171401
## 157 1.51655003 0.64107278 -0.845381475 -0.007113390 -0.0632622156
## 43 1.50858928 0.76526463 0.662945026 -0.023503534 -0.0900684859
## 56 1.45865883 0.43188052 0.220115721 -0.044820921 0.0648683761
## 5 1.45768209 -0.05290688 1.192102322 -0.264637585 -0.1304639110
## 76 1.40263280 0.55611451 0.214383185 0.187094315 0.1111799177
## 12 1.40014802 -0.43904240 0.786127214 -0.220629220 0.3103711592
## 140 1.36831626 0.77227297 -0.029306021 0.086460726 -0.0225717904
## 189 1.33728597 -0.39109722 1.110948842 -0.219646608 -0.0383450214
## 42 1.31083090 0.74234304 -0.181995711 0.062037619 0.0017796917
## 156 1.30647922 0.73374389 -0.348283891 0.196592266 0.0507144415
## 94 1.30632827 0.60821734 0.293506641 0.137919603 0.0737215102
## 99 1.30129614 0.62168539 0.250219085 0.148662715 0.1099528554
## 23 1.27956324 -0.01384334 0.975852510 0.160500203 -0.1650642018
## 131 1.26168171 -0.14728439 0.147836712 -0.038186356 0.2425258006
## 15 1.23305825 0.62506469 0.730357430 0.223564229 0.1914409384
## 40 1.21456240 0.75638371 0.254579927 -0.204124094 -0.1910668707
## 25 1.16330374 0.63000004 0.600573919 0.179242927 0.0883997119
## 146 1.14680914 0.39269641 0.526702972 0.340928355 0.1958777151
## 111 1.13146230 0.21130608 0.690510908 -0.266832044 -0.1389375157
## 95 1.12932729 -0.01236763 1.057581476 0.303576726 -0.0536681292
## 61 1.10014419 0.22810903 -0.758841113 -0.033935731 0.1931950245
## 98 1.04625468 0.03841163 0.636569350 -0.276345512 0.0201230996
## 115 0.98262075 0.84390659 0.216042616 0.106204458 0.1277148212
## 7 0.97276500 0.40071179 -0.817257039 0.261642364 -0.0107355565
## 145 0.97236720 0.88919670 0.078002339 0.251047581 -0.0360281939
## 151 0.97225873 -0.37334674 0.653239553 -0.229528922 0.1186590828
## 14 0.95603163 0.88669310 -0.634278615 0.106792651 -0.1400796233
## 39 0.93836426 -0.01256450 0.556643837 -0.276856973 0.1793187107
## 135 0.92290152 0.24449970 0.651967025 -0.330404730 -0.1410490917
## 104 0.89928915 0.25230225 0.571270393 -0.410725600 0.2564642153
## 182 0.89555653 0.75642358 0.650784378 0.352700073 0.1695323866
## 133 0.88564150 -0.15077184 0.942350539 0.322681157 0.1677407159
## 172 0.87998817 0.97256038 0.230588002 0.296385998 -0.0196586221
## 21 0.86627286 1.28453377 -0.130017301 0.386727947 -0.1029746959
## 36 0.85912323 0.29709036 0.718076737 -0.196263217 -0.0801523342
## 178 0.84037331 0.26337750 0.432105389 0.078754658 -0.1005313756
## 153 0.82534475 0.98323439 0.102538425 0.185220126 0.0694137506
## 2 0.81675282 1.13001053 0.016990057 0.097321694 -0.3024756216
## 80 0.77786873 0.49410781 0.654929108 0.398574846 -0.1579060776
## 138 0.77054624 0.21950902 0.828007485 -0.214799878 -0.0643163224
## 177 0.76458026 0.59550995 0.557831041 0.061276217 -0.1144240923
## 51 0.67546389 0.49957699 0.543048311 -0.304103183 -0.2090043701
## 6 0.64156742 0.71888893 0.468402612 0.203177314 -0.2971886794
## 105 0.63839401 1.33678305 -0.417911940 0.008466175 0.0527069268
## 53 0.59815715 0.60782394 0.485409745 -0.090929328 -0.1081630605
## 110 0.58792010 1.14426424 -0.450701595 0.210309741 0.0659061669
## 165 0.57351976 0.25816450 0.571390838 0.031238319 0.0710000535
## 49 0.54476947 0.30500658 0.607764128 -0.209427111 -0.1133927524
## 31 0.54222664 0.66348501 0.381474540 -0.192129236 -0.1218505131
## 87 0.52363655 0.03050341 0.956344128 -0.405710765 0.0636455362
## 3 0.52239741 0.45957654 0.548655345 0.066297925 -0.0403064948
## 64 0.49091757 1.00204319 0.107349622 0.338654719 -0.3367733206
## 173 0.46138327 1.46564345 -0.636568992 0.173299580 0.0234847595
## 35 0.44788110 1.04954795 -0.108749344 0.351922116 -0.0619136190
## 113 0.41370774 1.19457849 0.003255615 0.443515601 0.1922913520
## 68 0.37840920 1.03017977 -0.522282656 -0.158780737 0.0434073602
## 126 0.34346147 0.76144793 0.322582057 -0.325033650 -0.0827598921
## 169 0.34345518 0.70486669 0.182729841 -0.532312556 0.0462054844
## 17 0.31903592 0.70653968 0.029050924 -0.446256403 -0.0212122163
## 163 0.30490704 0.77481129 -0.086791818 0.168779064 0.0006195889
## 85 0.26745609 0.72923866 0.012345822 -0.043140119 -0.0875131854
## 148 0.24481581 1.38077264 -0.905218354 -0.011345508 0.0606817101
## 88 0.22480003 0.26298067 0.148387091 0.035585913 0.0937396894
## 116 0.20999983 0.59883230 0.346193155 0.116428208 -0.2024574386
## 129 0.16692351 0.69822927 0.490287103 0.308775378 0.0350308693
## 190 0.12894874 1.52139477 -0.602641673 0.113126602 -0.1191739461
## 137 0.04886559 0.35844294 0.453263768 -0.294527223 -0.1206352381
## 114 0.03909445 0.39462512 0.535619557 0.080628135 -0.1109635814
## 58 0.02384287 0.64760447 0.101139638 -0.118671389 0.2988158095
## 10 -0.05440918 0.51688193 0.043485533 0.315505173 -0.3455007169
## 52 -0.07223506 0.86034493 -0.173982425 -0.257166959 -0.0218883558
## 74 -0.07490034 0.61380833 0.119625397 -0.474752673 -0.0642914359
## 79 -0.07901641 0.87847092 -0.100379687 0.300338233 0.0900693190
## 176 -0.10798928 1.19196275 -1.608306252 0.535801133 0.0011484361
## 134 -0.11556444 -0.17378075 0.890967601 -1.204694314 0.1972060646
## 162 -0.14053496 1.77479073 -1.244184794 -0.283422599 0.0654466832
## 62 -0.22708586 -1.02553207 1.103534849 0.294783223 0.1678519189
## 139 -0.26018856 0.60372722 0.052968645 -0.364352143 0.2244130201
## 108 -0.39043150 -0.32895318 0.837817303 -1.032397101 0.4435662750
## 69 -0.46566043 0.33011295 0.042848900 -0.884782410 -0.0041458475
## 20 -0.49794601 -0.08338579 0.747993032 -0.092546416 -0.0829456758
## 72 -0.52267665 1.07923069 -0.646428226 0.275559642 -0.2903816773
## 120 -0.53685563 -1.27969900 1.894918937 0.567401986 0.5553100480
## 179 -0.56469250 0.33537419 0.087681567 0.546411367 -0.3449411024
## 92 -0.59556978 0.93450067 -0.358723883 0.019723036 -0.0927707968
## 19 -0.65688593 0.87861882 -0.359974247 0.421403401 -0.0931871625
## 187 -0.66253996 0.86464323 -0.320018272 0.386123001 -0.3938522781
## 81 -0.70694724 -0.24615001 0.705348289 -1.104359642 0.0160068959
## 180 -0.72587007 0.19612518 0.179895064 -0.401480942 0.8526349828
## 175 -0.77551522 0.91203189 -0.878744271 -0.921277988 0.1485119026
## 93 -0.79145238 0.86052428 -0.354340852 0.258983674 -0.0124888941
## 149 -0.79834260 1.02988574 -1.017817026 -0.951805797 0.1300563618
## 118 -0.79980158 0.92174735 -0.318120946 0.772986721 -0.1716202475
## 13 -0.80198608 1.05382287 -0.515708351 0.492499718 -0.2214372580
## 188 -0.88874437 0.82521047 -0.761343104 -0.779307428 0.1677010560
## 150 -0.92736616 -0.18795821 0.687323885 -0.027150555 -0.0444563049
## 121 -0.97003983 1.23403604 -0.863342311 0.141990891 0.0892628393
## 119 -0.98574010 0.36930003 -0.250879768 0.227187264 0.6265904105
## 160 -1.01057377 -0.36006103 0.598459715 1.263321179 0.7079268141
## 22 -1.04044862 -0.38865171 0.611836289 1.142252284 1.1815161660
## 112 -1.08479097 0.86915298 -0.799294436 -0.273876340 0.1625785492
## 78 -1.12785755 0.77093253 -0.460116524 0.475073269 -0.1756576850
## 66 -1.26156635 -0.09048429 0.316989968 -0.323083113 0.1476186979
## 73 -1.29431002 -0.05617762 0.454868637 0.410678175 -0.1749290274
## 170 -1.29819925 0.75054805 -0.613678267 -0.036654094 -0.4253463176
## 28 -1.47894578 0.92268767 -0.738839394 0.721218357 -0.1411852661
## 158 -1.49800892 0.76210235 -0.871751738 -0.664979831 0.1567684369
## 90 -1.49803004 0.06065534 0.086204583 0.188116862 0.0788440823
## 48 -1.50963841 -0.91304995 1.262053767 0.541544254 -0.3406713607
## 132 -1.59316180 0.27534234 -0.197213020 0.322862644 -0.5322078775
## 102 -1.63384634 0.32220091 -0.404653082 -0.792224253 0.1068465051
## 164 -1.84350574 -0.13790081 -0.023798300 -0.204911662 -0.0343526367
## 191 -1.85188805 0.07463548 -0.384561138 -0.961273768 0.1224756400
## 38 -1.89228048 -0.88155604 0.772055555 0.001173039 0.0104643898
## 193 -1.89396809 0.11485646 0.071350900 0.875064584 0.8309996426
## 136 -1.89934054 0.73656915 -1.010052184 -0.189558639 0.1761445323
## 152 -1.97264139 -0.25006254 0.098759372 -0.375989051 0.3730114218
## 55 -2.01814051 0.41079200 -0.646810802 -0.364295030 0.1969473837
## 63 -2.04004424 -0.76365802 0.696405331 -0.211062954 -0.0231655396
## 174 -2.07810207 -0.24928029 0.195839824 0.326806112 -0.0461723005
## 41 -2.17257103 -0.57471393 0.439196536 0.222881462 0.0496965255
## 109 -2.23991304 -0.36745772 0.094352790 -0.007993036 -0.1633971597
## 57 -2.37036231 0.40420847 -0.752327323 0.173994431 -0.0457553244
## 37 -2.39517050 -0.05285599 -0.407439838 -0.421572650 -0.0766112382
## 29 -2.52782603 -1.02140129 0.792100873 0.568508109 -0.0987026911
## 96 -2.52937316 0.07833358 -0.231712921 1.308240249 0.7554191737
## 89 -2.55531267 0.03430428 -0.536492424 -0.202441435 0.2955357818
## 97 -2.61920883 -0.77554454 0.377244212 -0.214610709 -0.1400218311
## 50 -2.62625083 -0.32324494 -0.389134683 -1.228984838 0.1228714436
## 171 -2.66260731 -0.21660958 -0.407554742 -0.822780634 0.4074921740
## 166 -2.66437214 0.07678476 -0.550901252 1.262068897 0.6888901987
## 18 -2.71978728 -0.68285821 0.154003038 -0.239517547 -0.1278142537
## 54 -2.93547695 -1.56150413 -0.367379632 0.408137468 -0.1457761153
## 4 -2.96145982 -1.51576691 0.714635373 0.242036700 -0.2782136202
## 117 -3.00437485 -0.67513230 0.152295716 0.328974480 0.2490091788
## 70 -3.05039270 -0.66481207 0.002915645 -0.015692996 -0.1730829906
## 128 -3.11081496 -1.22132400 0.532947605 -0.054812074 -0.0460201411
## 26 -3.19878227 -0.54356970 -0.333181191 -0.611475103 0.1980309119
## 32 -3.23071626 -0.78909255 0.186766074 0.722322570 -0.2014512394
## 27 -3.50847300 -0.05774979 -0.778606278 0.853829514 -0.2429566404
## 147 -3.54138560 -0.46918125 -0.572144971 -0.099868987 -0.4016467347
## 154 -3.58616350 -1.01049006 0.237167117 0.748332733 -0.2155445341
## 181 -3.59313854 -0.35357264 -0.785490340 -0.604770725 0.2944358996
## 106 -3.69402137 -1.16425836 0.094130723 -0.397009047 -0.0733992857
## 192 -3.72058298 -1.17901147 0.060000350 -0.466516029 0.4299297234
## 103 -3.74373895 -0.65733588 -0.514051509 -0.480041064 -0.0427874599
## 71 -3.82281566 -0.90800167 -0.083589987 0.656418175 -0.4506876820
## 159 -3.86144098 -1.28576106 0.156345813 -0.418941573 -0.2762949549
## 46 -3.91758450 -1.18188970 0.133489620 0.293458077 -0.4074172574
## 127 -4.08684402 -0.85324357 -0.618480981 -1.065648491 0.0142368136
## 33 -4.32692339 -1.23928603 -0.143904330 0.254008157 -0.8092134597
## 1 -4.61041124 -1.25115991 -0.276096761 0.231420845 -0.6637138191
fviz_pca_biplot(pca_result, repel = TRUE)
# 上記から、Luxembourgが最も豊かであると推測される。
#GDPが最も高く、平均寿命も乳児死亡率も良い数値である。高いGDPと生活の質を両立している、経済的に暮らしやすい国である。