For max var, we need at least 11, for min var, we need at least 19, for intermediate, we need at least 21.
library(pwr)
?power.anova.test
power.anova.test(groups = 4, n = NULL, between.var = var(c(18,18,20,20)), within.var = 3.5, sig.level = 0.05, power = 0.80)
##
## Balanced one-way analysis of variance power calculation
##
## groups = 4
## n = 10.56952
## between.var = 1.333333
## within.var = 3.5
## sig.level = 0.05
## power = 0.8
##
## NOTE: n is number in each group
power.anova.test(groups = 4, n = NULL, between.var = var(c(18,18.6667,19.3333, 20)), within.var = 3.5, sig.level = 0.05, power = 0.80)
##
## Balanced one-way analysis of variance power calculation
##
## groups = 4
## n = 18.17901
## between.var = 0.7407259
## within.var = 3.5
## sig.level = 0.05
## power = 0.8
##
## NOTE: n is number in each group
power.anova.test(groups = 4, n = NULL, between.var = var(c(18, 19, 19, 20)), within.var = 3.5, sig.level = 0.05, power = 0.80)
##
## Balanced one-way analysis of variance power calculation
##
## groups = 4
## n = 20.08368
## between.var = 0.6666667
## within.var = 3.5
## sig.level = 0.05
## power = 0.8
##
## NOTE: n is number in each group
f1 <- c(17.6, 18.9, 16.3, 17.4, 20.1, 21.6)
f2 <- c(16.9, 15.3, 18.6, 17.1, 19.5, 20.3)
f3 <- c(21.4, 23.6, 19.4, 18.5, 20.5, 22.3)
f4 <- c(19.3, 21.1, 16.9, 17.5, 18.3, 19.8)
dat <- data.frame(f1, f2, f3, f4)
library(tidyr)
dat <- pivot_longer(dat, c(f1, f2, f3, f4))
aov.model <- aov(value~name, data = dat)
summary(aov.model)
## Df Sum Sq Mean Sq F value Pr(>F)
## name 3 30.16 10.05 3.047 0.0525 .
## Residuals 20 65.99 3.30
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
plot(aov.model)
a. P value is less than 0.10. We reject the null hypothesis.
b. All the assumptions are met, so the model is adequate.
TukeyHSD(aov.model, conf.level = 0.90)
## Tukey multiple comparisons of means
## 90% family-wise confidence level
##
## Fit: aov(formula = value ~ name, data = dat)
##
## $name
## diff lwr upr p adj
## f2-f1 -0.7000000 -3.2670196 1.8670196 0.9080815
## f3-f1 2.3000000 -0.2670196 4.8670196 0.1593262
## f4-f1 0.1666667 -2.4003529 2.7336862 0.9985213
## f3-f2 3.0000000 0.4329804 5.5670196 0.0440578
## f4-f2 0.8666667 -1.7003529 3.4336862 0.8413288
## f4-f3 -2.1333333 -4.7003529 0.4336862 0.2090635
plot(TukeyHSD(aov.model, conf.level = 0.90))
Only the difference between fluid 2 and fluid 3 are statistically significant.