# Load packages
library(tidyverse)
library(tidyquant)
Get stock prices and convert to returns
Ra <- c("NVDA", "TSLA", "MTN") %>%
tq_get(get = "stock.prices",
from = "2022-01-01") %>%
group_by(symbol) %>%
tq_transmute(select = adjusted,
mutate_fun = periodReturn,
period = "monthly",
col_rename = "Ra")
Ra
## # A tibble: 99 × 3
## # Groups: symbol [3]
## symbol date Ra
## <chr> <date> <dbl>
## 1 NVDA 2022-01-31 -0.187
## 2 NVDA 2022-02-28 -0.00412
## 3 NVDA 2022-03-31 0.119
## 4 NVDA 2022-04-29 -0.320
## 5 NVDA 2022-05-31 0.00674
## 6 NVDA 2022-06-30 -0.188
## 7 NVDA 2022-07-29 0.198
## 8 NVDA 2022-08-31 -0.169
## 9 NVDA 2022-09-30 -0.196
## 10 NVDA 2022-10-31 0.112
## # ℹ 89 more rows
Get baseline and convert to returns
Rb <- "^NYA" %>%
tq_get(get = "stock.prices",
from = "2022-01-01") %>%
tq_transmute(select = adjusted,
mutate_fun = periodReturn,
period = "monthly",
col_rename = "Rb")
Rb
## # A tibble: 33 × 2
## date Rb
## <date> <dbl>
## 1 2022-01-31 -0.0329
## 2 2022-02-28 -0.0208
## 3 2022-03-31 0.0219
## 4 2022-04-29 -0.0633
## 5 2022-05-31 0.0136
## 6 2022-06-30 -0.0846
## 7 2022-07-29 0.0580
## 8 2022-08-31 -0.0343
## 9 2022-09-30 -0.0898
## 10 2022-10-31 0.0946
## # ℹ 23 more rows
Join the two tables
RaRb <- left_join(Ra, Rb, by = c("date" = "date"))
RaRb
## # A tibble: 99 × 4
## # Groups: symbol [3]
## symbol date Ra Rb
## <chr> <date> <dbl> <dbl>
## 1 NVDA 2022-01-31 -0.187 -0.0329
## 2 NVDA 2022-02-28 -0.00412 -0.0208
## 3 NVDA 2022-03-31 0.119 0.0219
## 4 NVDA 2022-04-29 -0.320 -0.0633
## 5 NVDA 2022-05-31 0.00674 0.0136
## 6 NVDA 2022-06-30 -0.188 -0.0846
## 7 NVDA 2022-07-29 0.198 0.0580
## 8 NVDA 2022-08-31 -0.169 -0.0343
## 9 NVDA 2022-09-30 -0.196 -0.0898
## 10 NVDA 2022-10-31 0.112 0.0946
## # ℹ 89 more rows
Calculate CAPM
RaRb_capm <- RaRb %>%
tq_performance(Ra = Ra,
Rb = Rb,
performance_fun = table.CAPM)
RaRb_capm
## # A tibble: 3 × 13
## # Groups: symbol [3]
## symbol ActivePremium Alpha AnnualizedAlpha Beta `Beta-` `Beta+` Correlation
## <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 NVDA 0.628 0.0475 0.745 2.17 4.12 1.18 0.607
## 2 TSLA -0.192 -0.003 -0.0349 1.33 1.18 1.96 0.339
## 3 MTN -0.202 -0.0166 -0.182 0.961 0.522 0.823 0.681
## # ℹ 5 more variables: `Correlationp-value` <dbl>, InformationRatio <dbl>,
## # `R-squared` <dbl>, TrackingError <dbl>, TreynorRatio <dbl>
Which Stock has a positive skewed distrobution of returns?
RaRb_capm <- RaRb %>%
tq_performance(Ra = Ra,
Rb = NULL,
performance_fun = skewness)
RaRb_capm
## # A tibble: 3 × 2
## # Groups: symbol [3]
## symbol skewness.1
## <chr> <dbl>
## 1 NVDA -0.214
## 2 TSLA 0.289
## 3 MTN 0.201