Exercise 2.1 : Analisis Pengeluaran Rumah Tangga Berdasarkan Gender Menggunakan Visualisasi Data

1. Memuat library yang diperlukan

library(ggplot2)
library(dplyr)
## 
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union

2. Membuat data frame untuk Tabel 2.3

Data ini berisi informasi pengeluaran untuk housing, food, goods, services, serta gender dari 40 individu
household_data <- data.frame(
  housing = c(820, 184, 921, 488, 721, 614, 801, 396, 864, 845, 404, 781, 457, 1029, 1047, 552, 718, 495, 382, 1090, 
              497, 839, 798, 892, 1585, 755, 388, 617, 248, 1641, 1180, 619, 253, 661, 1981, 1746, 1865, 238, 1199, 1524),
  food = c(114, 74, 66, 80, 83, 55, 56, 59, 65, 64, 97, 47, 103, 71, 90, 91, 104, 114, 77, 59, 
           591, 942, 1308, 842, 781, 764, 655, 879, 438, 440, 1243, 684, 422, 739, 869, 746, 915, 522, 1095, 964),
  goods = c(183, 6, 1686, 103, 176, 441, 357, 61, 1618, 1935, 33, 1906, 136, 244, 653, 185, 583, 65, 230, 313, 
            153, 302, 668, 287, 2476, 428, 153, 757, 22, 6471, 768, 99, 15, 71, 1489, 2662, 5184, 29, 261, 1739),
  services = c(154, 20, 455, 115, 104, 193, 214, 80, 352, 414, 47, 452, 108, 189, 298, 158, 304, 74, 147, 177, 
               291, 365, 584, 395, 1740, 438, 233, 719, 65, 2063, 813, 204, 48, 188, 1032, 1594, 1767, 75, 344, 1410),
  gender = c("female", "female", "female", "female", "female", "female", "female", "female", "female", "female", 
             "female", "female", "female", "female", "female", "female", "female", "female", "female", "female", 
             "male", "male", "male", "male", "male", "male", "male", "male", "male", "male", 
             "male", "male", "male", "male", "male", "male", "male", "male", "male", "male")
)

print(household_data)
##    housing food goods services gender
## 1      820  114   183      154 female
## 2      184   74     6       20 female
## 3      921   66  1686      455 female
## 4      488   80   103      115 female
## 5      721   83   176      104 female
## 6      614   55   441      193 female
## 7      801   56   357      214 female
## 8      396   59    61       80 female
## 9      864   65  1618      352 female
## 10     845   64  1935      414 female
## 11     404   97    33       47 female
## 12     781   47  1906      452 female
## 13     457  103   136      108 female
## 14    1029   71   244      189 female
## 15    1047   90   653      298 female
## 16     552   91   185      158 female
## 17     718  104   583      304 female
## 18     495  114    65       74 female
## 19     382   77   230      147 female
## 20    1090   59   313      177 female
## 21     497  591   153      291   male
## 22     839  942   302      365   male
## 23     798 1308   668      584   male
## 24     892  842   287      395   male
## 25    1585  781  2476     1740   male
## 26     755  764   428      438   male
## 27     388  655   153      233   male
## 28     617  879   757      719   male
## 29     248  438    22       65   male
## 30    1641  440  6471     2063   male
## 31    1180 1243   768      813   male
## 32     619  684    99      204   male
## 33     253  422    15       48   male
## 34     661  739    71      188   male
## 35    1981  869  1489     1032   male
## 36    1746  746  2662     1594   male
## 37    1865  915  5184     1767   male
## 38     238  522    29       75   male
## 39    1199 1095   261      344   male
## 40    1524  964  1739     1410   male

3. Menambahkan kolom total_expenditure (pengeluaran total)

Menjumlahkan pengeluaran pada setiap kategori (housing, food, goods, services) untuk setiap individu
household_data <- household_data %>%
  mutate(total_expenditure = housing + food + goods + services)

print(household_data)
##    housing food goods services gender total_expenditure
## 1      820  114   183      154 female              1271
## 2      184   74     6       20 female               284
## 3      921   66  1686      455 female              3128
## 4      488   80   103      115 female               786
## 5      721   83   176      104 female              1084
## 6      614   55   441      193 female              1303
## 7      801   56   357      214 female              1428
## 8      396   59    61       80 female               596
## 9      864   65  1618      352 female              2899
## 10     845   64  1935      414 female              3258
## 11     404   97    33       47 female               581
## 12     781   47  1906      452 female              3186
## 13     457  103   136      108 female               804
## 14    1029   71   244      189 female              1533
## 15    1047   90   653      298 female              2088
## 16     552   91   185      158 female               986
## 17     718  104   583      304 female              1709
## 18     495  114    65       74 female               748
## 19     382   77   230      147 female               836
## 20    1090   59   313      177 female              1639
## 21     497  591   153      291   male              1532
## 22     839  942   302      365   male              2448
## 23     798 1308   668      584   male              3358
## 24     892  842   287      395   male              2416
## 25    1585  781  2476     1740   male              6582
## 26     755  764   428      438   male              2385
## 27     388  655   153      233   male              1429
## 28     617  879   757      719   male              2972
## 29     248  438    22       65   male               773
## 30    1641  440  6471     2063   male             10615
## 31    1180 1243   768      813   male              4004
## 32     619  684    99      204   male              1606
## 33     253  422    15       48   male               738
## 34     661  739    71      188   male              1659
## 35    1981  869  1489     1032   male              5371
## 36    1746  746  2662     1594   male              6748
## 37    1865  915  5184     1767   male              9731
## 38     238  522    29       75   male               864
## 39    1199 1095   261      344   male              2899
## 40    1524  964  1739     1410   male              5637

4. Membuat visualisasi boxplot untuk membandingkan pengeluaran total antara pria dan wanita

ggplot(household_data, aes(x = gender, y = total_expenditure, fill = gender)) +
  geom_boxplot() +
  labs(title = "Perbandingan Pengeluaran Total Berdasarkan Gender", 
       x = "Gender", y = "Total Pengeluaran (HKD)") +
  theme_minimal()

5. Membuat visualisasi scatter plot untuk setiap kategori pengeluaran berdasarkan total pengeluaran dan gender

* Scatter plot untuk pengeluaran housing
ggplot(household_data, aes(x = total_expenditure, y = housing, color = gender)) +
  geom_point() +
  labs(title = "Hubungan Total Pengeluaran dan Pengeluaran Housing Berdasarkan Gender", 
       x = "Total Pengeluaran", y = "Pengeluaran Housing (HKD)") +
  theme_minimal()

* Scatter plot untuk pengeluaran food
ggplot(household_data, aes(x = total_expenditure, y = food, color = gender)) +
  geom_point() +
  labs(title = "Hubungan Total Pengeluaran dan Pengeluaran Food Berdasarkan Gender", 
       x = "Total Pengeluaran", y = "Pengeluaran Food (HKD)") +
  theme_minimal()

* Scatter plot untuk pengeluaran goods
ggplot(household_data, aes(x = total_expenditure, y = goods, color = gender)) +
  geom_point() +
  labs(title = "Hubungan Total Pengeluaran dan Pengeluaran Goods Berdasarkan Gender", 
       x = "Total Pengeluaran", y = "Pengeluaran Goods (HKD)") +
  theme_minimal()

* Scatter plot untuk pengeluaran services
ggplot(household_data, aes(x = total_expenditure, y = services, color = gender)) +
  geom_point() +
  labs(title = "Hubungan Total Pengeluaran dan Pengeluaran Services Berdasarkan Gender", 
       x = "Total Pengeluaran", y = "Pengeluaran Services (HKD)") +
  theme_minimal()

6. Menyimpulkan hasil analisis

Kesimpulan:
Dari visualisasi yang telah dibuat, dapat disimpulkan bahwa:
* Terdapat variasi signifikan dalam pengeluaran total antara pria dan wanita,dengan beberapa pria mengeluarkan jauh lebih banyak dibanding wanita.
* Hubungan antara total pengeluaran dan pengeluaran untuk berbagai kategori (housing, food, goods, services) menunjukkan bahwa pengeluaran untuk beberapa kategori (seperti goods dan services) lebih bervariasi pada pria.
* Secara umum, pria cenderung menghabiskan lebih banyak di kategori tertentu seperti goods dan services dibandingkan wanita.