# csv file
data <- read_csv("../00_data/myData.csv")
data
## # A tibble: 691 × 22
## ...1 sort_name clean_name album rank_2003 rank_2012 rank_2020 differential
## <dbl> <chr> <chr> <chr> <dbl> <dbl> <dbl> <dbl>
## 1 1 Sinatra, F… Frank Sin… "In … 100 101 282 -182
## 2 2 Diddley, Bo Bo Diddley "Bo … 214 216 455 -241
## 3 3 Presley, E… Elvis Pre… "Elv… 55 56 332 -277
## 4 4 Sinatra, F… Frank Sin… "Son… 306 308 NA -195
## 5 5 Little Ric… Little Ri… "Her… 50 50 227 -177
## 6 6 Beyonce Beyonce "Lem… NA NA 32 469
## 7 7 Winehouse,… Amy Wineh… "Bac… NA 451 33 468
## 8 8 Crickets Buddy Hol… "The… 421 420 NA -80
## 9 9 Bush, Kate Kate Bush "Hou… NA NA 68 433
## 10 10 Davis, Mil… Miles Dav… "Kin… 12 12 31 -19
## # ℹ 681 more rows
## # ℹ 14 more variables: release_year <dbl>, genre <chr>, type <chr>,
## # weeks_on_billboard <dbl>, peak_billboard_position <dbl>,
## # spotify_popularity <dbl>, spotify_url <chr>, artist_member_count <dbl>,
## # artist_gender <chr>, artist_birth_year_sum <dbl>,
## # debut_album_release_year <dbl>, ave_age_at_top_500 <dbl>,
## # years_between <dbl>, album_id <chr>
Artists rankings in 2003
ggplot(data = data) +
geom_point(mapping = aes(x = rank_2003, y = sort_name))
My data needs to be more limited to be able to show the relationship between the artist rankings in 2003