# Load packages

# Core
library(tidyverse)
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ dplyr     1.1.4     ✔ readr     2.1.5
## ✔ forcats   1.0.0     ✔ stringr   1.5.1
## ✔ ggplot2   3.5.1     ✔ tibble    3.2.1
## ✔ lubridate 1.9.3     ✔ tidyr     1.3.1
## ✔ purrr     1.0.2     
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag()    masks stats::lag()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
library(tidyquant)
## Registered S3 method overwritten by 'quantmod':
##   method            from
##   as.zoo.data.frame zoo 
## ── Attaching core tidyquant packages ──────────────────────── tidyquant 1.0.9 ──
## ✔ PerformanceAnalytics 2.0.4      ✔ TTR                  0.24.4
## ✔ quantmod             0.4.26     ✔ xts                  0.14.0── Conflicts ────────────────────────────────────────── tidyquant_conflicts() ──
## ✖ zoo::as.Date()                 masks base::as.Date()
## ✖ zoo::as.Date.numeric()         masks base::as.Date.numeric()
## ✖ dplyr::filter()                masks stats::filter()
## ✖ xts::first()                   masks dplyr::first()
## ✖ dplyr::lag()                   masks stats::lag()
## ✖ xts::last()                    masks dplyr::last()
## ✖ PerformanceAnalytics::legend() masks graphics::legend()
## ✖ quantmod::summary()            masks base::summary()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors

Goal

Take raw prices of five individual stocks and transform them into monthly returns five stocks: “SPY”, “EFA”, “IJS”, “EEM”, “AGG”

1 Import stock prices

# Choose stocks
symbols <- c("SPY", "EFA", "IJS", "EEM", "AGG")

prices <- tq_get(x = symbols,
                 get = "stock.prices",
                 from = "2012-12-31",
                 to = "2017-12-31")

2 Convert prices to returns

asset_returns_tbl <- prices %>%

    # Calculate monthly returns
    group_by(symbol) %>%
    tq_transmute(select = adjusted,
                 mutate_fun = periodReturn,
                 period = "monthly",
                 type = "log") %>%
    slice(-1) %>%
    ungroup() %>%

    set_names(c("asset", "date", "returns"))

asset_returns_tbl
## # A tibble: 300 × 3
##    asset date         returns
##    <chr> <date>         <dbl>
##  1 AGG   2013-01-31 -0.00623 
##  2 AGG   2013-02-28  0.00589 
##  3 AGG   2013-03-28  0.000985
##  4 AGG   2013-04-30  0.00964 
##  5 AGG   2013-05-31 -0.0202  
##  6 AGG   2013-06-28 -0.0158  
##  7 AGG   2013-07-31  0.00269 
##  8 AGG   2013-08-30 -0.00830 
##  9 AGG   2013-09-30  0.0111  
## 10 AGG   2013-10-31  0.00829 
## # ℹ 290 more rows

3 Make plot

asset_returns_tbl %>%
    
 ggplot(aes(x = returns)) +
    geom_density(aes(color = asset), show.legend = FALSE, alpha = 1) +
    
geom_histogram(aes(fill = asset), show.legend = FALSE, alpha = 0.3, binwidth = 0.01) +
    facet_wrap(~asset, ncol = 1) +

#labeling
labs(title = "Distribution pf Monthly, Returns 2012-2016",
         x = "Rate of Returns",
         y = "Frequency", 
    caption = " A typical monthly return is higher for SPY and IJS than AGG, EEM, and EFA.")