CSS for Our Black Theme

A CSS (Cascading Style Sheets) document is a file that contains CSS code, which is a language used to describe the style and formatting of a document written in HTML (Hypertext Markup Language) or XML (eXtensible Markup Language). CSS documents provide a powerful and flexible way to control the visual presentation of web pages, allowing you to define styles, layouts, colors, and other visual aspects of your website, separate from the actual content

A typical CSS document consists of a series of selectors and declarations. Selectors are used to target specific HTML elements, while declarations define the desired styles for those elements. Here’s the CSS document for our black theme:


code {
  color: #ff9358;  /* Text color for code (similar to 'espresso' highlight) */
}

/* Adjust lines or blocks that might have been missed */
.r-output pre, pre {
  background-color: #2d2d2d !important;  /* Black background */
  color: white !important;  /* White text */
}

/* Adjust background for tables */
table {
  background-color: #ffffff !important;  /* White background for table */
  color: #ffffff;  /* White text */
  border-collapse: collapse;
}

h1 {
    font-size: 1.6em;
    font-weight: bolder;
    color: #4eb3d3;  /* Blue color for h1 title */
}

h2 {
    font-size: 1.3em;
    font-weight: bolder;
    color: #41ae76;  /* Green color for h2 title */
}

h3, h4 {
    font-size: 1.2em;
    font-weight: bolder;
    color: #e5f5f9;  /* Light blue color for h3 and h4 titles */
}

R Markdown

This is an R Markdown document. Markdown is a simple formatting syntax for authoring HTML, PDF, and MS Word documents. For more details on using R Markdown see http://rmarkdown.rstudio.com.

When you click the Knit button a document will be generated that includes both content as well as the output of any embedded R code chunks within the document. You can embed an R code chunk like this:

Sub1

You can use library() function to load a specific package:

library(dplyr) # Package for data wrangling. 
library(kableExtra) # Package for presenting beautiful tables. 

iris %>%
  head(8) 
##   Sepal.Length Sepal.Width Petal.Length Petal.Width Species
## 1          5.1         3.5          1.4         0.2  setosa
## 2          4.9         3.0          1.4         0.2  setosa
## 3          4.7         3.2          1.3         0.2  setosa
## 4          4.6         3.1          1.5         0.2  setosa
## 5          5.0         3.6          1.4         0.2  setosa
## 6          5.4         3.9          1.7         0.4  setosa
## 7          4.6         3.4          1.4         0.3  setosa
## 8          5.0         3.4          1.5         0.2  setosa

Sub2

summary(cars)
##      speed           dist       
##  Min.   : 4.0   Min.   :  2.00  
##  1st Qu.:12.0   1st Qu.: 26.00  
##  Median :15.0   Median : 36.00  
##  Mean   :15.4   Mean   : 42.98  
##  3rd Qu.:19.0   3rd Qu.: 56.00  
##  Max.   :25.0   Max.   :120.00

Including Plots

You can also embed plots, for example:

# Package for data visualization: 
library(ggplot2)


iris %>% 
  ggplot(aes(x = Sepal.Length, y = Sepal.Width, colour = Species)) + 
  geom_point() + 
  geom_smooth(method = "lm") + 
  facet_wrap(~ Species) + 
  labs(title = "Regression Lines")

Note that the echo = FALSE parameter was added to the code chunk to prevent printing of the R code that generated the plot.

Bootswatch Themes

You can use some beautiful themes provide by Bootswatch Themes.

LS0tDQp0aXRsZTogPHNwYW4gc3R5bGU9ImNvbG9yOndoaXRlIj5CZWF1dGlmdWwgQmxhY2sgVGhlbWU8L3NwYW4+DQpzdWJ0aXRsZTogIlIgRGF0YSBTY2llbmNlIFNlcmllcyINCmF1dGhvcjogIk5ndXllbiBDaGkgRHVuZyINCm91dHB1dDoNCiAgaHRtbF9kb2N1bWVudDoNCiAgICBjb2RlX2Rvd25sb2FkOiB0cnVlDQogICAgdGhlbWU6IGRhcmtseQ0KICAgIHRvYzogeWVzDQogICAgdG9jX2Zsb2F0OiB5ZXMNCiAgICBoaWdobGlnaHQ6IGVzcHJlc3NvDQogICAgY3NzOiBzdHlsZXMuY3NzDQoNCi0tLQ0KDQpgYGB7ciBzZXR1cCwgaW5jbHVkZT1GQUxTRX0NCmtuaXRyOjpvcHRzX2NodW5rJHNldChlY2hvID0gVFJVRSwgIHdhcm5pbmc9RkFMU0UsIG1lc3NhZ2U9RkFMU0UpDQpgYGANCg0KIyBDU1MgZm9yIE91ciBCbGFjayBUaGVtZQ0KDQpBIENTUyAoQ2FzY2FkaW5nIFN0eWxlIFNoZWV0cykgZG9jdW1lbnQgaXMgYSBmaWxlIHRoYXQgY29udGFpbnMgQ1NTIGNvZGUsIHdoaWNoIGlzIGEgbGFuZ3VhZ2UgdXNlZCB0byBkZXNjcmliZSB0aGUgc3R5bGUgYW5kIGZvcm1hdHRpbmcgb2YgYSBkb2N1bWVudCB3cml0dGVuIGluIEhUTUwgKEh5cGVydGV4dCBNYXJrdXAgTGFuZ3VhZ2UpIG9yIFhNTCAoZVh0ZW5zaWJsZSBNYXJrdXAgTGFuZ3VhZ2UpLiBDU1MgZG9jdW1lbnRzIHByb3ZpZGUgYSBwb3dlcmZ1bCBhbmQgZmxleGlibGUgd2F5IHRvIGNvbnRyb2wgdGhlIHZpc3VhbCBwcmVzZW50YXRpb24gb2Ygd2ViIHBhZ2VzLCBhbGxvd2luZyB5b3UgdG8gZGVmaW5lIHN0eWxlcywgbGF5b3V0cywgY29sb3JzLCBhbmQgb3RoZXIgdmlzdWFsIGFzcGVjdHMgb2YgeW91ciB3ZWJzaXRlLCBzZXBhcmF0ZSBmcm9tIHRoZSBhY3R1YWwgY29udGVudA0KDQpBIHR5cGljYWwgQ1NTIGRvY3VtZW50IGNvbnNpc3RzIG9mIGEgc2VyaWVzIG9mIHNlbGVjdG9ycyBhbmQgZGVjbGFyYXRpb25zLiBTZWxlY3RvcnMgYXJlIHVzZWQgdG8gdGFyZ2V0IHNwZWNpZmljIEhUTUwgZWxlbWVudHMsIHdoaWxlIGRlY2xhcmF0aW9ucyBkZWZpbmUgdGhlIGRlc2lyZWQgc3R5bGVzIGZvciB0aG9zZSBlbGVtZW50cy4gSGVyZeKAmXMgdGhlIENTUyBkb2N1bWVudCBmb3Igb3VyIGJsYWNrIHRoZW1lOg0KDQpgYGB7Y3NzLCBlY2hvID0gVFJVRSwgZXZhbCA9IEZBTFNFfQ0KDQpjb2RlIHsNCiAgY29sb3I6ICNmZjkzNTg7ICAvKiBUZXh0IGNvbG9yIGZvciBjb2RlIChzaW1pbGFyIHRvICdlc3ByZXNzbycgaGlnaGxpZ2h0KSAqLw0KfQ0KDQovKiBBZGp1c3QgbGluZXMgb3IgYmxvY2tzIHRoYXQgbWlnaHQgaGF2ZSBiZWVuIG1pc3NlZCAqLw0KLnItb3V0cHV0IHByZSwgcHJlIHsNCiAgYmFja2dyb3VuZC1jb2xvcjogIzJkMmQyZCAhaW1wb3J0YW50OyAgLyogQmxhY2sgYmFja2dyb3VuZCAqLw0KICBjb2xvcjogd2hpdGUgIWltcG9ydGFudDsgIC8qIFdoaXRlIHRleHQgKi8NCn0NCg0KLyogQWRqdXN0IGJhY2tncm91bmQgZm9yIHRhYmxlcyAqLw0KdGFibGUgew0KICBiYWNrZ3JvdW5kLWNvbG9yOiAjZmZmZmZmICFpbXBvcnRhbnQ7ICAvKiBXaGl0ZSBiYWNrZ3JvdW5kIGZvciB0YWJsZSAqLw0KICBjb2xvcjogI2ZmZmZmZjsgIC8qIFdoaXRlIHRleHQgKi8NCiAgYm9yZGVyLWNvbGxhcHNlOiBjb2xsYXBzZTsNCn0NCg0KaDEgew0KICAgIGZvbnQtc2l6ZTogMS42ZW07DQogICAgZm9udC13ZWlnaHQ6IGJvbGRlcjsNCiAgICBjb2xvcjogIzRlYjNkMzsgIC8qIEJsdWUgY29sb3IgZm9yIGgxIHRpdGxlICovDQp9DQoNCmgyIHsNCiAgICBmb250LXNpemU6IDEuM2VtOw0KICAgIGZvbnQtd2VpZ2h0OiBib2xkZXI7DQogICAgY29sb3I6ICM0MWFlNzY7ICAvKiBHcmVlbiBjb2xvciBmb3IgaDIgdGl0bGUgKi8NCn0NCg0KaDMsIGg0IHsNCiAgICBmb250LXNpemU6IDEuMmVtOw0KICAgIGZvbnQtd2VpZ2h0OiBib2xkZXI7DQogICAgY29sb3I6ICNlNWY1Zjk7ICAvKiBMaWdodCBibHVlIGNvbG9yIGZvciBoMyBhbmQgaDQgdGl0bGVzICovDQp9DQoNCg0KYGBgDQoNCg0KDQojIFIgTWFya2Rvd24NCg0KDQpUaGlzIGlzIGFuIFIgTWFya2Rvd24gZG9jdW1lbnQuIE1hcmtkb3duIGlzIGEgc2ltcGxlIGZvcm1hdHRpbmcgc3ludGF4IGZvciBhdXRob3JpbmcgSFRNTCwgUERGLCBhbmQgTVMgV29yZCBkb2N1bWVudHMuIEZvciBtb3JlIGRldGFpbHMgb24gdXNpbmcgUiBNYXJrZG93biBzZWUgPGh0dHA6Ly9ybWFya2Rvd24ucnN0dWRpby5jb20+Lg0KDQpXaGVuIHlvdSBjbGljayB0aGUgKktuaXQqIGJ1dHRvbiBhIGRvY3VtZW50IHdpbGwgYmUgZ2VuZXJhdGVkIHRoYXQgaW5jbHVkZXMgYm90aCBjb250ZW50IGFzIHdlbGwgYXMgdGhlIG91dHB1dCBvZiBhbnkgZW1iZWRkZWQgUiBjb2RlIGNodW5rcyB3aXRoaW4gdGhlIGRvY3VtZW50LiBZb3UgY2FuIGVtYmVkIGFuIFIgY29kZSBjaHVuayBsaWtlIHRoaXM6DQoNCiMjIFN1YjENCg0KWW91IGNhbiB1c2UgYGxpYnJhcnkoKWAgZnVuY3Rpb24gdG8gbG9hZCBhIHNwZWNpZmljIHBhY2thZ2U6IA0KDQpgYGB7cn0NCmxpYnJhcnkoZHBseXIpICMgUGFja2FnZSBmb3IgZGF0YSB3cmFuZ2xpbmcuIA0KbGlicmFyeShrYWJsZUV4dHJhKSAjIFBhY2thZ2UgZm9yIHByZXNlbnRpbmcgYmVhdXRpZnVsIHRhYmxlcy4gDQoNCmlyaXMgJT4lDQogIGhlYWQoOCkgDQpgYGANCg0KDQojIyBTdWIyDQoNCg0KYGBge3J9DQpzdW1tYXJ5KGNhcnMpDQpgYGANCg0KDQoNCg0KDQojIEluY2x1ZGluZyBQbG90cw0KDQpZb3UgY2FuIGFsc28gZW1iZWQgcGxvdHMsIGZvciBleGFtcGxlOg0KDQpgYGB7cn0NCiMgUGFja2FnZSBmb3IgZGF0YSB2aXN1YWxpemF0aW9uOiANCmxpYnJhcnkoZ2dwbG90MikNCg0KDQppcmlzICU+JSANCiAgZ2dwbG90KGFlcyh4ID0gU2VwYWwuTGVuZ3RoLCB5ID0gU2VwYWwuV2lkdGgsIGNvbG91ciA9IFNwZWNpZXMpKSArIA0KICBnZW9tX3BvaW50KCkgKyANCiAgZ2VvbV9zbW9vdGgobWV0aG9kID0gImxtIikgKyANCiAgZmFjZXRfd3JhcCh+IFNwZWNpZXMpICsgDQogIGxhYnModGl0bGUgPSAiUmVncmVzc2lvbiBMaW5lcyIpDQpgYGANCg0KTm90ZSB0aGF0IHRoZSBgZWNobyA9IEZBTFNFYCBwYXJhbWV0ZXIgd2FzIGFkZGVkIHRvIHRoZSBjb2RlIGNodW5rIHRvIHByZXZlbnQgcHJpbnRpbmcgb2YgdGhlIFIgY29kZSB0aGF0IGdlbmVyYXRlZCB0aGUgcGxvdC4NCg0KDQojIEJvb3Rzd2F0Y2ggVGhlbWVzDQoNCllvdSBjYW4gdXNlIHNvbWUgYmVhdXRpZnVsIHRoZW1lcyBwcm92aWRlIGJ5IFtCb290c3dhdGNoIFRoZW1lc10oaHR0cHM6Ly9ib290c3dhdGNoLmNvbS8pLiANCg0K