CSS for Our Black Theme
A CSS (Cascading Style Sheets) document is a file that contains CSS
code, which is a language used to describe the style and formatting of a
document written in HTML (Hypertext Markup Language) or XML (eXtensible
Markup Language). CSS documents provide a powerful and flexible way to
control the visual presentation of web pages, allowing you to define
styles, layouts, colors, and other visual aspects of your website,
separate from the actual content
A typical CSS document consists of a series of selectors and
declarations. Selectors are used to target specific HTML elements, while
declarations define the desired styles for those elements. Here’s the
CSS document for our black theme:
code {
color: #ff9358; /* Text color for code (similar to 'espresso' highlight) */
}
/* Adjust lines or blocks that might have been missed */
.r-output pre, pre {
background-color: #2d2d2d !important; /* Black background */
color: white !important; /* White text */
}
/* Adjust background for tables */
table {
background-color: #ffffff !important; /* White background for table */
color: #ffffff; /* White text */
border-collapse: collapse;
}
h1 {
font-size: 1.6em;
font-weight: bolder;
color: #4eb3d3; /* Blue color for h1 title */
}
h2 {
font-size: 1.3em;
font-weight: bolder;
color: #41ae76; /* Green color for h2 title */
}
h3, h4 {
font-size: 1.2em;
font-weight: bolder;
color: #e5f5f9; /* Light blue color for h3 and h4 titles */
}
R Markdown
This is an R Markdown document. Markdown is a simple formatting
syntax for authoring HTML, PDF, and MS Word documents. For more details
on using R Markdown see http://rmarkdown.rstudio.com.
When you click the Knit button a document will be generated
that includes both content as well as the output of any embedded R code
chunks within the document. You can embed an R code chunk like this:
Sub1
You can use library()
function to load a specific
package:
library(dplyr) # Package for data wrangling.
library(kableExtra) # Package for presenting beautiful tables.
iris %>%
head(8)
## Sepal.Length Sepal.Width Petal.Length Petal.Width Species
## 1 5.1 3.5 1.4 0.2 setosa
## 2 4.9 3.0 1.4 0.2 setosa
## 3 4.7 3.2 1.3 0.2 setosa
## 4 4.6 3.1 1.5 0.2 setosa
## 5 5.0 3.6 1.4 0.2 setosa
## 6 5.4 3.9 1.7 0.4 setosa
## 7 4.6 3.4 1.4 0.3 setosa
## 8 5.0 3.4 1.5 0.2 setosa
Sub2
## speed dist
## Min. : 4.0 Min. : 2.00
## 1st Qu.:12.0 1st Qu.: 26.00
## Median :15.0 Median : 36.00
## Mean :15.4 Mean : 42.98
## 3rd Qu.:19.0 3rd Qu.: 56.00
## Max. :25.0 Max. :120.00
Including Plots
You can also embed plots, for example:
# Package for data visualization:
library(ggplot2)
iris %>%
ggplot(aes(x = Sepal.Length, y = Sepal.Width, colour = Species)) +
geom_point() +
geom_smooth(method = "lm") +
facet_wrap(~ Species) +
labs(title = "Regression Lines")

Note that the echo = FALSE
parameter was added to the
code chunk to prevent printing of the R code that generated the
plot.
LS0tDQp0aXRsZTogPHNwYW4gc3R5bGU9ImNvbG9yOndoaXRlIj5CZWF1dGlmdWwgQmxhY2sgVGhlbWU8L3NwYW4+DQpzdWJ0aXRsZTogIlIgRGF0YSBTY2llbmNlIFNlcmllcyINCmF1dGhvcjogIk5ndXllbiBDaGkgRHVuZyINCm91dHB1dDoNCiAgaHRtbF9kb2N1bWVudDoNCiAgICBjb2RlX2Rvd25sb2FkOiB0cnVlDQogICAgdGhlbWU6IGRhcmtseQ0KICAgIHRvYzogeWVzDQogICAgdG9jX2Zsb2F0OiB5ZXMNCiAgICBoaWdobGlnaHQ6IGVzcHJlc3NvDQogICAgY3NzOiBzdHlsZXMuY3NzDQoNCi0tLQ0KDQpgYGB7ciBzZXR1cCwgaW5jbHVkZT1GQUxTRX0NCmtuaXRyOjpvcHRzX2NodW5rJHNldChlY2hvID0gVFJVRSwgIHdhcm5pbmc9RkFMU0UsIG1lc3NhZ2U9RkFMU0UpDQpgYGANCg0KIyBDU1MgZm9yIE91ciBCbGFjayBUaGVtZQ0KDQpBIENTUyAoQ2FzY2FkaW5nIFN0eWxlIFNoZWV0cykgZG9jdW1lbnQgaXMgYSBmaWxlIHRoYXQgY29udGFpbnMgQ1NTIGNvZGUsIHdoaWNoIGlzIGEgbGFuZ3VhZ2UgdXNlZCB0byBkZXNjcmliZSB0aGUgc3R5bGUgYW5kIGZvcm1hdHRpbmcgb2YgYSBkb2N1bWVudCB3cml0dGVuIGluIEhUTUwgKEh5cGVydGV4dCBNYXJrdXAgTGFuZ3VhZ2UpIG9yIFhNTCAoZVh0ZW5zaWJsZSBNYXJrdXAgTGFuZ3VhZ2UpLiBDU1MgZG9jdW1lbnRzIHByb3ZpZGUgYSBwb3dlcmZ1bCBhbmQgZmxleGlibGUgd2F5IHRvIGNvbnRyb2wgdGhlIHZpc3VhbCBwcmVzZW50YXRpb24gb2Ygd2ViIHBhZ2VzLCBhbGxvd2luZyB5b3UgdG8gZGVmaW5lIHN0eWxlcywgbGF5b3V0cywgY29sb3JzLCBhbmQgb3RoZXIgdmlzdWFsIGFzcGVjdHMgb2YgeW91ciB3ZWJzaXRlLCBzZXBhcmF0ZSBmcm9tIHRoZSBhY3R1YWwgY29udGVudA0KDQpBIHR5cGljYWwgQ1NTIGRvY3VtZW50IGNvbnNpc3RzIG9mIGEgc2VyaWVzIG9mIHNlbGVjdG9ycyBhbmQgZGVjbGFyYXRpb25zLiBTZWxlY3RvcnMgYXJlIHVzZWQgdG8gdGFyZ2V0IHNwZWNpZmljIEhUTUwgZWxlbWVudHMsIHdoaWxlIGRlY2xhcmF0aW9ucyBkZWZpbmUgdGhlIGRlc2lyZWQgc3R5bGVzIGZvciB0aG9zZSBlbGVtZW50cy4gSGVyZeKAmXMgdGhlIENTUyBkb2N1bWVudCBmb3Igb3VyIGJsYWNrIHRoZW1lOg0KDQpgYGB7Y3NzLCBlY2hvID0gVFJVRSwgZXZhbCA9IEZBTFNFfQ0KDQpjb2RlIHsNCiAgY29sb3I6ICNmZjkzNTg7ICAvKiBUZXh0IGNvbG9yIGZvciBjb2RlIChzaW1pbGFyIHRvICdlc3ByZXNzbycgaGlnaGxpZ2h0KSAqLw0KfQ0KDQovKiBBZGp1c3QgbGluZXMgb3IgYmxvY2tzIHRoYXQgbWlnaHQgaGF2ZSBiZWVuIG1pc3NlZCAqLw0KLnItb3V0cHV0IHByZSwgcHJlIHsNCiAgYmFja2dyb3VuZC1jb2xvcjogIzJkMmQyZCAhaW1wb3J0YW50OyAgLyogQmxhY2sgYmFja2dyb3VuZCAqLw0KICBjb2xvcjogd2hpdGUgIWltcG9ydGFudDsgIC8qIFdoaXRlIHRleHQgKi8NCn0NCg0KLyogQWRqdXN0IGJhY2tncm91bmQgZm9yIHRhYmxlcyAqLw0KdGFibGUgew0KICBiYWNrZ3JvdW5kLWNvbG9yOiAjZmZmZmZmICFpbXBvcnRhbnQ7ICAvKiBXaGl0ZSBiYWNrZ3JvdW5kIGZvciB0YWJsZSAqLw0KICBjb2xvcjogI2ZmZmZmZjsgIC8qIFdoaXRlIHRleHQgKi8NCiAgYm9yZGVyLWNvbGxhcHNlOiBjb2xsYXBzZTsNCn0NCg0KaDEgew0KICAgIGZvbnQtc2l6ZTogMS42ZW07DQogICAgZm9udC13ZWlnaHQ6IGJvbGRlcjsNCiAgICBjb2xvcjogIzRlYjNkMzsgIC8qIEJsdWUgY29sb3IgZm9yIGgxIHRpdGxlICovDQp9DQoNCmgyIHsNCiAgICBmb250LXNpemU6IDEuM2VtOw0KICAgIGZvbnQtd2VpZ2h0OiBib2xkZXI7DQogICAgY29sb3I6ICM0MWFlNzY7ICAvKiBHcmVlbiBjb2xvciBmb3IgaDIgdGl0bGUgKi8NCn0NCg0KaDMsIGg0IHsNCiAgICBmb250LXNpemU6IDEuMmVtOw0KICAgIGZvbnQtd2VpZ2h0OiBib2xkZXI7DQogICAgY29sb3I6ICNlNWY1Zjk7ICAvKiBMaWdodCBibHVlIGNvbG9yIGZvciBoMyBhbmQgaDQgdGl0bGVzICovDQp9DQoNCg0KYGBgDQoNCg0KDQojIFIgTWFya2Rvd24NCg0KDQpUaGlzIGlzIGFuIFIgTWFya2Rvd24gZG9jdW1lbnQuIE1hcmtkb3duIGlzIGEgc2ltcGxlIGZvcm1hdHRpbmcgc3ludGF4IGZvciBhdXRob3JpbmcgSFRNTCwgUERGLCBhbmQgTVMgV29yZCBkb2N1bWVudHMuIEZvciBtb3JlIGRldGFpbHMgb24gdXNpbmcgUiBNYXJrZG93biBzZWUgPGh0dHA6Ly9ybWFya2Rvd24ucnN0dWRpby5jb20+Lg0KDQpXaGVuIHlvdSBjbGljayB0aGUgKktuaXQqIGJ1dHRvbiBhIGRvY3VtZW50IHdpbGwgYmUgZ2VuZXJhdGVkIHRoYXQgaW5jbHVkZXMgYm90aCBjb250ZW50IGFzIHdlbGwgYXMgdGhlIG91dHB1dCBvZiBhbnkgZW1iZWRkZWQgUiBjb2RlIGNodW5rcyB3aXRoaW4gdGhlIGRvY3VtZW50LiBZb3UgY2FuIGVtYmVkIGFuIFIgY29kZSBjaHVuayBsaWtlIHRoaXM6DQoNCiMjIFN1YjENCg0KWW91IGNhbiB1c2UgYGxpYnJhcnkoKWAgZnVuY3Rpb24gdG8gbG9hZCBhIHNwZWNpZmljIHBhY2thZ2U6IA0KDQpgYGB7cn0NCmxpYnJhcnkoZHBseXIpICMgUGFja2FnZSBmb3IgZGF0YSB3cmFuZ2xpbmcuIA0KbGlicmFyeShrYWJsZUV4dHJhKSAjIFBhY2thZ2UgZm9yIHByZXNlbnRpbmcgYmVhdXRpZnVsIHRhYmxlcy4gDQoNCmlyaXMgJT4lDQogIGhlYWQoOCkgDQpgYGANCg0KDQojIyBTdWIyDQoNCg0KYGBge3J9DQpzdW1tYXJ5KGNhcnMpDQpgYGANCg0KDQoNCg0KDQojIEluY2x1ZGluZyBQbG90cw0KDQpZb3UgY2FuIGFsc28gZW1iZWQgcGxvdHMsIGZvciBleGFtcGxlOg0KDQpgYGB7cn0NCiMgUGFja2FnZSBmb3IgZGF0YSB2aXN1YWxpemF0aW9uOiANCmxpYnJhcnkoZ2dwbG90MikNCg0KDQppcmlzICU+JSANCiAgZ2dwbG90KGFlcyh4ID0gU2VwYWwuTGVuZ3RoLCB5ID0gU2VwYWwuV2lkdGgsIGNvbG91ciA9IFNwZWNpZXMpKSArIA0KICBnZW9tX3BvaW50KCkgKyANCiAgZ2VvbV9zbW9vdGgobWV0aG9kID0gImxtIikgKyANCiAgZmFjZXRfd3JhcCh+IFNwZWNpZXMpICsgDQogIGxhYnModGl0bGUgPSAiUmVncmVzc2lvbiBMaW5lcyIpDQpgYGANCg0KTm90ZSB0aGF0IHRoZSBgZWNobyA9IEZBTFNFYCBwYXJhbWV0ZXIgd2FzIGFkZGVkIHRvIHRoZSBjb2RlIGNodW5rIHRvIHByZXZlbnQgcHJpbnRpbmcgb2YgdGhlIFIgY29kZSB0aGF0IGdlbmVyYXRlZCB0aGUgcGxvdC4NCg0KDQojIEJvb3Rzd2F0Y2ggVGhlbWVzDQoNCllvdSBjYW4gdXNlIHNvbWUgYmVhdXRpZnVsIHRoZW1lcyBwcm92aWRlIGJ5IFtCb290c3dhdGNoIFRoZW1lc10oaHR0cHM6Ly9ib290c3dhdGNoLmNvbS8pLiANCg0K