library(dplyr)
## 
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union
library(readr)

Load the movies dataset

movies <- read_csv("https://gist.githubusercontent.com/tiangechen/b68782efa49a16edaf07dc2cdaa855ea/raw/0c794a9717f18b094eabab2cd6a6b9a226903577/movies.csv")
## Rows: 77 Columns: 8
## ── Column specification ────────────────────────────────────────────────────────
## Delimiter: ","
## chr (4): Film, Genre, Lead Studio, Worldwide Gross
## dbl (4): Audience score %, Profitability, Rotten Tomatoes %, Year
## 
## ℹ Use `spec()` to retrieve the full column specification for this data.
## ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.

1. rename(): (4 points)

q1  <- movies %>%  
  rename(movie_title = Film, release_year = Year)
print(head(q1))
## # A tibble: 6 × 8
##   movie_title               Genre `Lead Studio` `Audience score %` Profitability
##   <chr>                     <chr> <chr>                      <dbl>         <dbl>
## 1 Zack and Miri Make a Por… Roma… The Weinstei…                 70          1.75
## 2 Youth in Revolt           Come… The Weinstei…                 52          1.09
## 3 You Will Meet a Tall Dar… Come… Independent                   35          1.21
## 4 When in Rome              Come… Disney                        44          0   
## 5 What Happens in Vegas     Come… Fox                           72          6.27
## 6 Water For Elephants       Drama 20th Century…                 72          3.08
## # ℹ 3 more variables: `Rotten Tomatoes %` <dbl>, `Worldwide Gross` <chr>,
## #   release_year <dbl>

2. select(): (4 points)

q2 <- q1 %>%
  select(movie_title, release_year, Genre, Profitability)
print(head(q2))
## # A tibble: 6 × 4
##   movie_title                        release_year Genre   Profitability
##   <chr>                                     <dbl> <chr>           <dbl>
## 1 Zack and Miri Make a Porno                 2008 Romance          1.75
## 2 Youth in Revolt                            2010 Comedy           1.09
## 3 You Will Meet a Tall Dark Stranger         2010 Comedy           1.21
## 4 When in Rome                               2010 Comedy           0   
## 5 What Happens in Vegas                      2008 Comedy           6.27
## 6 Water For Elephants                        2011 Drama            3.08

3. filter(): (4 points)

q3 <- q1 %>%
  filter(release_year > 2000 & `Rotten Tomatoes %` > 80)
print(q3)
## # A tibble: 12 × 8
##    movie_title            Genre   `Lead Studio` `Audience score %` Profitability
##    <chr>                  <chr>   <chr>                      <dbl>         <dbl>
##  1 WALL-E                 Animat… Disney                        89         2.90 
##  2 Waitress               Romance Independent                   67        11.1  
##  3 Tangled                Animat… Disney                        88         1.37 
##  4 Rachel Getting Married Drama   Independent                   61         1.38 
##  5 My Week with Marilyn   Drama   The Weinstei…                 84         0.826
##  6 Midnight in Paris      Romence Sony                          84         8.74 
##  7 Knocked Up             Comedy  Universal                     83         6.64 
##  8 Jane Eyre              Romance Universal                     77         0    
##  9 Enchanted              Comedy  Disney                        80         4.01 
## 10 Beginners              Comedy  Independent                   80         4.47 
## 11 A Serious Man          Drama   Universal                     64         4.38 
## 12 (500) Days of Summer   comedy  Fox                           81         8.10 
## # ℹ 3 more variables: `Rotten Tomatoes %` <dbl>, `Worldwide Gross` <chr>,
## #   release_year <dbl>

4. mutate(): (4 points)

q4 <- q1 %>% 
  mutate(Profitability_millions = Profitability * 1000000)
print(select(q4, movie_title, Profitability, Profitability_millions))
## # A tibble: 77 × 3
##    movie_title                        Profitability Profitability_millions
##    <chr>                                      <dbl>                  <dbl>
##  1 Zack and Miri Make a Porno                 1.75                1747542.
##  2 Youth in Revolt                            1.09                1090000 
##  3 You Will Meet a Tall Dark Stranger         1.21                1211818.
##  4 When in Rome                               0                         0 
##  5 What Happens in Vegas                      6.27                6267647.
##  6 Water For Elephants                        3.08                3081421.
##  7 WALL-E                                     2.90                2896019.
##  8 Waitress                                  11.1                11089742.
##  9 Waiting For Forever                        0.005                  5000 
## 10 Valentine's Day                            4.18                4184038.
## # ℹ 67 more rows

5. arrange(): (3 points)

q5 <- q1 %>%
  arrange(desc(`Rotten Tomatoes %`), desc(Profitability))
head(q5)
## # A tibble: 6 × 8
##   movie_title       Genre     `Lead Studio` `Audience score %` Profitability
##   <chr>             <chr>     <chr>                      <dbl>         <dbl>
## 1 WALL-E            Animation Disney                        89          2.90
## 2 Midnight in Paris Romence   Sony                          84          8.74
## 3 Enchanted         Comedy    Disney                        80          4.01
## 4 Knocked Up        Comedy    Universal                     83          6.64
## 5 Waitress          Romance   Independent                   67         11.1 
## 6 A Serious Man     Drama     Universal                     64          4.38
## # ℹ 3 more variables: `Rotten Tomatoes %` <dbl>, `Worldwide Gross` <chr>,
## #   release_year <dbl>

6. Combining functions: (3 points)

q6 <- movies %>%
  rename(movie_title = Film, release_year = Year) %>%
  filter(release_year > 2000 & `Rotten Tomatoes %` > 80) %>%
  arrange (desc(`Rotten Tomatoes %`), desc(Profitability)) %>%  
  select(movie_title, release_year, Genre, Profitability , `Rotten Tomatoes %`) %>%
  mutate(Profitability_millions = Profitability * 1000000) 
  
head(q6)  
## # A tibble: 6 × 6
##   movie_title       release_year Genre     Profitability `Rotten Tomatoes %`
##   <chr>                    <dbl> <chr>             <dbl>               <dbl>
## 1 WALL-E                    2008 Animation          2.90                  96
## 2 Midnight in Paris         2011 Romence            8.74                  93
## 3 Enchanted                 2007 Comedy             4.01                  93
## 4 Knocked Up                2007 Comedy             6.64                  91
## 5 Waitress                  2007 Romance           11.1                   89
## 6 A Serious Man             2009 Drama              4.38                  89
## # ℹ 1 more variable: Profitability_millions <dbl>

7. Interpret question 6 (1 point)

EXTRA CREDIT (4 points)

summary_df <- q4 %>%
  group_by(Genre) %>%
  summarize(
    Avg_Rating = mean(`Rotten Tomatoes %`, na.rm = TRUE),
    Avg_Profitability = mean(Profitability_millions, na.rm = TRUE)
  )

print(summary_df)
## # A tibble: 10 × 3
##    Genre     Avg_Rating Avg_Profitability
##    <chr>          <dbl>             <dbl>
##  1 Action          11            1245333.
##  2 Animation       74.2          3759414.
##  3 Comdy           13            2649068.
##  4 Comedy          42.7          3776946.
##  5 Drama           51.5          8407218.
##  6 Fantasy         73            1783944.
##  7 Romance         42.1          3984790.
##  8 Romence         93            8744706.
##  9 comedy          87            8096000 
## 10 romance         54             652603.