library(ggplot2)
#Q1
data<-read.csv("https://opportunityinsights.org/wp-content/uploads/2018/10/tract_covariates.csv")
#Q2
d1 <- data[, c("czname", "hhinc_mean2000", "popdensity2000")]
#Q3
d2 <- d1[d1$czname == 'San Antonio', ]
#Q4
ggplot(d2, aes(x = hhinc_mean2000)) +
geom_histogram()
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## Warning: Removed 2 rows containing non-finite outside the scale range
## (`stat_bin()`).

#Q5
ggplot(d2, aes(y = popdensity2000)) +
geom_boxplot()

#Q6
ggplot(d2, aes(x = hhinc_mean2000)) + geom_density()
## Warning: Removed 2 rows containing non-finite outside the scale range
## (`stat_density()`).

#Q7
ggplot(d2, aes(x= hhinc_mean2000)) +
stat_ecdf(geom = "step")
## Warning: Removed 2 rows containing non-finite outside the scale range
## (`stat_ecdf()`).

#Q8
ggplot(d2, aes(x= hhinc_mean2000 , y = popdensity2000)) +
geom_point()+
labs(x = "hhinc_mean2000", y = "popdensity2000")
## Warning: Removed 2 rows containing missing values or values outside the scale range
## (`geom_point()`).

#Q9
ggplot(d2, aes(x =hhinc_mean2000)) +
stat_ecdf()+
labs(x = "mean household income 2000", y="CDF")
## Warning: Removed 2 rows containing non-finite outside the scale range
## (`stat_ecdf()`).

#Q10
library(plotly)
##
## Attaching package: 'plotly'
##
## The following object is masked from 'package:ggplot2':
##
## last_plot
##
## The following object is masked from 'package:stats':
##
## filter
##
## The following object is masked from 'package:graphics':
##
## layout
n <- ggplot(d2, aes(x = hhinc_mean2000, y = popdensity2000)) +
geom_point()
ggplotly(n)