## 
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union
## Rows: 77 Columns: 8
## ── Column specification ────────────────────────────────────────────────────────
## Delimiter: ","
## chr (4): Film, Genre, Lead Studio, Worldwide Gross
## dbl (4): Audience score %, Profitability, Rotten Tomatoes %, Year
## 
## ℹ Use `spec()` to retrieve the full column specification for this data.
## ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.

Question 1.

Rename the “Film” column to “movie_title” and “Year” to “release_year”.

renamed_movies  <- movies %>%  
  rename(movie_title = Film, release_year = Year)

print(head(renamed_movies))
## # A tibble: 6 × 8
##   movie_title               Genre `Lead Studio` `Audience score %` Profitability
##   <chr>                     <chr> <chr>                      <dbl>         <dbl>
## 1 Zack and Miri Make a Por… Roma… The Weinstei…                 70          1.75
## 2 Youth in Revolt           Come… The Weinstei…                 52          1.09
## 3 You Will Meet a Tall Dar… Come… Independent                   35          1.21
## 4 When in Rome              Come… Disney                        44          0   
## 5 What Happens in Vegas     Come… Fox                           72          6.27
## 6 Water For Elephants       Drama 20th Century…                 72          3.08
## # ℹ 3 more variables: `Rotten Tomatoes %` <dbl>, `Worldwide Gross` <chr>,
## #   release_year <dbl>

Question 2.

Create a new dataframe with only the columns: movie_title, release_year, Genre, Profitability,

new_dataframe <- renamed_movies %>% 
  select(movie_title, release_year, Genre, Profitability)

print(head(new_dataframe))
## # A tibble: 6 × 4
##   movie_title                        release_year Genre   Profitability
##   <chr>                                     <dbl> <chr>           <dbl>
## 1 Zack and Miri Make a Porno                 2008 Romance          1.75
## 2 Youth in Revolt                            2010 Comedy           1.09
## 3 You Will Meet a Tall Dark Stranger         2010 Comedy           1.21
## 4 When in Rome                               2010 Comedy           0   
## 5 What Happens in Vegas                      2008 Comedy           6.27
## 6 Water For Elephants                        2011 Drama            3.08

Question 3.

Filter the dataset to include only movies released after 2000 with a Rotten Tomatoes % higher than 80.

after_2000 <- renamed_movies %>%  
  filter(release_year > 2000 & `Rotten Tomatoes %` > 80)

print(after_2000)
## # A tibble: 12 × 8
##    movie_title            Genre   `Lead Studio` `Audience score %` Profitability
##    <chr>                  <chr>   <chr>                      <dbl>         <dbl>
##  1 WALL-E                 Animat… Disney                        89         2.90 
##  2 Waitress               Romance Independent                   67        11.1  
##  3 Tangled                Animat… Disney                        88         1.37 
##  4 Rachel Getting Married Drama   Independent                   61         1.38 
##  5 My Week with Marilyn   Drama   The Weinstei…                 84         0.826
##  6 Midnight in Paris      Romence Sony                          84         8.74 
##  7 Knocked Up             Comedy  Universal                     83         6.64 
##  8 Jane Eyre              Romance Universal                     77         0    
##  9 Enchanted              Comedy  Disney                        80         4.01 
## 10 Beginners              Comedy  Independent                   80         4.47 
## 11 A Serious Man          Drama   Universal                     64         4.38 
## 12 (500) Days of Summer   comedy  Fox                           81         8.10 
## # ℹ 3 more variables: `Rotten Tomatoes %` <dbl>, `Worldwide Gross` <chr>,
## #   release_year <dbl>

Question 4.

Add a new column called “Profitability_millions” that converts the Profitability to millions of dollars.

profitability_ratio <- renamed_movies %>% 
  mutate(profitabilty_millions = Profitability * 1000000)

print(head(profitability_ratio))
## # A tibble: 6 × 9
##   movie_title               Genre `Lead Studio` `Audience score %` Profitability
##   <chr>                     <chr> <chr>                      <dbl>         <dbl>
## 1 Zack and Miri Make a Por… Roma… The Weinstei…                 70          1.75
## 2 Youth in Revolt           Come… The Weinstei…                 52          1.09
## 3 You Will Meet a Tall Dar… Come… Independent                   35          1.21
## 4 When in Rome              Come… Disney                        44          0   
## 5 What Happens in Vegas     Come… Fox                           72          6.27
## 6 Water For Elephants       Drama 20th Century…                 72          3.08
## # ℹ 4 more variables: `Rotten Tomatoes %` <dbl>, `Worldwide Gross` <chr>,
## #   release_year <dbl>, profitabilty_millions <dbl>

Question 5.

Sort the filtered dataset by Rotten Tomatoes % in descending order, and then by Profitability in descending order. five <- four %>% arrange(desc(Rotten Tomatoes %) , desc(Profitability_millions))

arranged_movies <- renamed_movies %>%  
  arrange(desc(`Rotten Tomatoes %`), Profitability)

print(select(arranged_movies, `Rotten Tomatoes %`, Profitability))
## # A tibble: 77 × 2
##    `Rotten Tomatoes %` Profitability
##                  <dbl>         <dbl>
##  1                  96          2.90
##  2                  93          4.01
##  3                  93          8.74
##  4                  91          6.64
##  5                  89          1.37
##  6                  89          4.38
##  7                  89         11.1 
##  8                  87          8.10
##  9                  85          0   
## 10                  85          1.38
## # ℹ 67 more rows

Question 6.

Use the pipe operator (%>%) to chain these operations together, starting with the original dataset and ending with a final dataframe that incorporates all the above transformations.

conclusion <- movies %>%
  rename(movie_title = Film, release_year = Year)%>%
  select(movie_title, release_year, Genre, Profitability, `Rotten Tomatoes %` )%>%
  filter(release_year > 2000 & `Rotten Tomatoes %` > 80)%>%
  mutate(profitabilty_millions = Profitability * 1000000)%>%
  arrange(desc(`Rotten Tomatoes %`), Profitability)

head(conclusion)
## # A tibble: 6 × 6
##   movie_title       release_year Genre     Profitability `Rotten Tomatoes %`
##   <chr>                    <dbl> <chr>             <dbl>               <dbl>
## 1 WALL-E                    2008 Animation          2.90                  96
## 2 Enchanted                 2007 Comedy             4.01                  93
## 3 Midnight in Paris         2011 Romence            8.74                  93
## 4 Knocked Up                2007 Comedy             6.64                  91
## 5 Tangled                   2010 Animation          1.37                  89
## 6 A Serious Man             2009 Drama              4.38                  89
## # ℹ 1 more variable: profitabilty_millions <dbl>

Question 7.

The best movies are not the most popular, the most profitable movie is Waitress but got a score of 89 on Rotten Tomatoes.

Extra Credit

summary_df <- renamed_movies %>%
  group_by(Genre) %>%
    summarize(
      avg_rating = mean(`Audience score %`, na.rm = TRUE),          
      avg_profitability_millions = mean(Profitability * 1000000, na.rm = TRUE)  
    )

head(summary_df)
## # A tibble: 6 × 3
##   Genre     avg_rating avg_profitability_millions
##   <chr>          <dbl>                      <dbl>
## 1 Action          45                     1245333.
## 2 Animation       70.2                   3759414.
## 3 Comdy           61                     2649068.
## 4 Comedy          61.0                   3776946.
## 5 Drama           67.2                   8407218.
## 6 Fantasy         81                     1783944.