Code
library(gtsummary)
library(tidyverse)
::theme_gtsummary_compact()
gtsummary<- dget("df_avert") df_avert
library(gtsummary)
library(tidyverse)
::theme_gtsummary_compact()
gtsummary<- dget("df_avert") df_avert
<-
df_sbp %>%
df_avert select(record_id, starts_with("sbp_m")) %>%
pivot_longer(
cols = starts_with("sbp_m"), names_to = "month", values_to = "sbp") %>%
separate(col = month, into = c("x", "month"), sep = "_") %>%
select(-x)
<-
df_dbp %>%
df_avert select(record_id, starts_with("dbp_m")) %>%
pivot_longer(
cols = starts_with("dbp_m"), names_to = "month", values_to = "dbp") %>%
separate(col = month, into = c("x", "month"), sep = "_") %>%
select(-x)
<-
df_bp_lt_140_90 %>%
df_avert select(record_id, starts_with("bp_lt_140_90_m")) %>%
pivot_longer(
cols = starts_with("bp_lt_140_90_m"),
names_to = "month",
values_to = "bp_lt_140_90") %>%
mutate(month = str_extract(month, "m\\d+$"))
<-
df_bp_lt_130_80 %>%
df_avert select(record_id, starts_with("bp_lt_130_80_m")) %>%
pivot_longer(
cols = starts_with("bp_lt_130_80_m"),
names_to = "month",
values_to = "bp_lt_130_80") %>%
mutate(month = str_extract(month, "m\\d+$"))
<-
df_sbp_cat %>%
df_avert select(record_id, starts_with("sbp_cat_m")) %>%
pivot_longer(
cols = starts_with("sbp_cat_m"),
names_to = "month",
values_to = "sbp_cat") %>%
mutate(month = str_extract(month, "m\\d+$"))
<-
df_dbp_cat %>%
df_avert select(record_id, starts_with("dbp_cat_m")) %>%
pivot_longer(
cols = starts_with("dbp_cat_m"),
names_to = "month",
values_to = "dbp_cat") %>%
mutate(month = str_extract(month, "m\\d+$"))
<-
df_new_avert %>%
df_sbp full_join(df_dbp) %>%
full_join(df_bp_lt_140_90) %>%
full_join(df_bp_lt_130_80) %>%
full_join(df_sbp_cat) %>%
full_join(df_dbp_cat)
Joining with `by = join_by(record_id, month)`
Joining with `by = join_by(record_id, month)`
Joining with `by = join_by(record_id, month)`
Joining with `by = join_by(record_id, month)`
Joining with `by = join_by(record_id, month)`
%>%
df_new_avert select(-record_id) %>%
mutate(
month = factor(
month, levels = c("m0", "m1", "m3", "m6", "m9", "m12"),
labels = c("Month 0", "Month 1", "Month 3", "Month 6", "Month 9",
"Month 12"))) %>%
::tbl_summary(
gtsummaryby = month,
label = list(
sbp = "Systolic BP",
dbp = "Diastolic BP",
bp_lt_140_90 = "Blood Pressure < 140/90 mm Hg",
bp_lt_130_80 = "Blood Pressure < 130 / 80 mm Hg",
sbp_cat = "SBP categories",
dbp_cat = "DBP categories")) %>%
::add_overall(last=TRUE) %>%
gtsummary::bold_labels() %>%
gtsummary::add_p() gtsummary
The following errors were returned during `::()`, `gtsummary()`, and `add_p()`:
✖ For variable `sbp_cat` (`month`) and "estimate", "p.value", "conf.low", and
"conf.high" statistics: FEXACT error 6. LDKEY=620 is too small for this
problem, (ii := key2[itp=1016] = 315670294, ldstp=18600) Try increasing the
size of the workspace and possibly 'mult'
Characteristic |
Month 0 |
Month 1 |
Month 3 |
Month 6 |
Month 9 |
Month 12 |
Overall |
p-value 2 |
---|---|---|---|---|---|---|---|---|
Systolic BP | 155 (144, 172) | 145 (135, 156) | 145 (135, 158) | 151 (133, 166) | 145 (136, 155) | 141 (134, 150) | 146 (136, 159) | 0.003 |
Unknown | 0 | 5 | 11 | 11 | 6 | 5 | 38 | |
Diastolic BP | 96 (86, 107) | 90 (85, 95) | 87 (82, 98) | 93 (82, 109) | 88 (81, 95) | 85 (81, 95) | 90 (82, 100) | 0.004 |
Unknown | 0 | 5 | 11 | 11 | 6 | 5 | 38 | |
Blood Pressure < 140/90 mm Hg | 25 (40%) | 35 (61%) | 34 (67%) | 20 (39%) | 33 (59%) | 40 (70%) | 187 (56%) | 0.001 |
Unknown | 0 | 5 | 11 | 11 | 6 | 5 | 38 | |
Blood Pressure < 130 / 80 mm Hg | 8 (13%) | 13 (23%) | 8 (16%) | 13 (25%) | 18 (32%) | 16 (28%) | 76 (23%) | 0.12 |
Unknown | 0 | 5 | 11 | 11 | 6 | 5 | 38 | |
SBP categories | ||||||||
< 120 mm Hg | 2 (3.2%) | 3 (5.3%) | 3 (5.9%) | 6 (12%) | 2 (3.6%) | 3 (5.3%) | 19 (5.7%) | |
120 – 139 mm Hg | 6 (9.7%) | 17 (30%) | 15 (29%) | 10 (20%) | 15 (27%) | 23 (40%) | 86 (26%) | |
140 – 159 mm Hg | 30 (48%) | 27 (47%) | 22 (43%) | 18 (35%) | 29 (52%) | 21 (37%) | 147 (44%) | |
160 – 179 mm Hg | 12 (19%) | 4 (7.0%) | 5 (9.8%) | 13 (25%) | 4 (7.1%) | 9 (16%) | 47 (14%) | |
>=180 mm Hg | 12 (19%) | 6 (11%) | 6 (12%) | 4 (7.8%) | 6 (11%) | 1 (1.8%) | 35 (10%) | |
Unknown | 0 | 5 | 11 | 11 | 6 | 5 | 38 | |
DBP categories | 0.003 | |||||||
< 80 mm Hg | 5 (8.1%) | 9 (16%) | 4 (7.8%) | 9 (18%) | 12 (21%) | 12 (21%) | 51 (15%) | |
80 – 89 mm Hg | 16 (26%) | 19 (33%) | 29 (57%) | 8 (16%) | 18 (32%) | 26 (46%) | 116 (35%) | |
90 – 99 mm Hg | 15 (24%) | 16 (28%) | 7 (14%) | 15 (29%) | 15 (27%) | 11 (19%) | 79 (24%) | |
100 – 109 mm Hg | 13 (21%) | 7 (12%) | 6 (12%) | 7 (14%) | 6 (11%) | 4 (7.0%) | 43 (13%) | |
>=110 mm Hg | 13 (21%) | 6 (11%) | 5 (9.8%) | 12 (24%) | 5 (8.9%) | 4 (7.0%) | 45 (13%) | |
Unknown | 0 | 5 | 11 | 11 | 6 | 5 | 38 | |
1
Median (Q1, Q3); n (%) |
||||||||
2
Kruskal-Wallis rank sum test; Pearson’s Chi-squared test |
%>%
df_avert drop_na(bp_lt_140_90_m12) %>%
select(
bp_lt_140_90_m12, ageyrs, male, formal_education, income_in_usd,
type_of_domicile, cigarette, alcohol, anti_hpt_b4s, anti_hpt_as,
anti_diabetics_as, ccb_as, arb_acei_as, diuretic_as, betablocker_as,
vaso_hydralazine_as, mra_as, methyldopa_as, tmt_aspirin, statins_as,
bmi_m0, whr_m0, sbp_m0, dbp_m0, no_of_antihyp, whr_m0, rbs_m0, moca_m0,
mrs_m0, nihss_m0, hillbone_m0, morisky_m1, hpt_med_side_eff_m1, %>%
hillbone_m12, morisky_m12, hpt_med_side_eff_m12) ::tbl_summary(
gtsummarytype = list(
mrs_m0 = "continuous",
no_of_antihyp = "continuous",
hillbone_m0 = "continuous",
hillbone_m12 = "continuous",
morisky_m1 = "continuous",
morisky_m12 = "continuous"),
by = bp_lt_140_90_m12,
digits = list(
::all_categorical() ~ c(0,1),
gtsummary::all_continuous() ~ c(0,1),
gtsummary~ c(0,0)),
no_of_antihyp statistic = list(
::all_categorical() ~ "{n} ({p})",
gtsummary::all_continuous() ~ "{mean} ({sd})",
gtsummary~ "{median} ({min},{max})"),
no_of_antihyp missing_text = "Missing"
%>%
) ::add_overall(last = TRUE) %>%
gtsummary::modify_spanning_header(
gtsummary::all_stat_cols() ~ "**BP Controlled (<140 / 90 mm Hg) at month 12**") %>%
gtsummary::add_p(
gtsummarypvalue_fun = function(x) gtsummary::style_pvalue(x, digits = 3)) %>%
::bold_labels() %>%
gtsummary::add_stat_label(location = "column") gtsummary
The following warnings were returned during `::()`, `gtsummary()`, and
`add_p()`:
! For variable `ageyrs` (`bp_lt_140_90_m12`) and "estimate", "statistic",
"p.value", "conf.low", and "conf.high" statistics: cannot compute exact
p-value with ties
! For variable `ageyrs` (`bp_lt_140_90_m12`) and "estimate", "statistic",
"p.value", "conf.low", and "conf.high" statistics: cannot compute exact
confidence intervals with ties
! For variable `dbp_m0` (`bp_lt_140_90_m12`) and "estimate", "statistic",
"p.value", "conf.low", and "conf.high" statistics: cannot compute exact
p-value with ties
! For variable `dbp_m0` (`bp_lt_140_90_m12`) and "estimate", "statistic",
"p.value", "conf.low", and "conf.high" statistics: cannot compute exact
confidence intervals with ties
! For variable `hillbone_m0` (`bp_lt_140_90_m12`) and "estimate", "statistic",
"p.value", "conf.low", and "conf.high" statistics: cannot compute exact
p-value with ties
! For variable `hillbone_m0` (`bp_lt_140_90_m12`) and "estimate", "statistic",
"p.value", "conf.low", and "conf.high" statistics: cannot compute exact
confidence intervals with ties
! For variable `hillbone_m12` (`bp_lt_140_90_m12`) and "estimate", "statistic",
"p.value", "conf.low", and "conf.high" statistics: cannot compute exact
p-value with ties
! For variable `hillbone_m12` (`bp_lt_140_90_m12`) and "estimate", "statistic",
"p.value", "conf.low", and "conf.high" statistics: cannot compute exact
confidence intervals with ties
! For variable `moca_m0` (`bp_lt_140_90_m12`) and "estimate", "statistic",
"p.value", "conf.low", and "conf.high" statistics: cannot compute exact
p-value with ties
! For variable `moca_m0` (`bp_lt_140_90_m12`) and "estimate", "statistic",
"p.value", "conf.low", and "conf.high" statistics: cannot compute exact
confidence intervals with ties
! For variable `morisky_m1` (`bp_lt_140_90_m12`) and "estimate", "statistic",
"p.value", "conf.low", and "conf.high" statistics: cannot compute exact
p-value with ties
! For variable `morisky_m1` (`bp_lt_140_90_m12`) and "estimate", "statistic",
"p.value", "conf.low", and "conf.high" statistics: cannot compute exact
confidence intervals with ties
! For variable `morisky_m12` (`bp_lt_140_90_m12`) and "estimate", "statistic",
"p.value", "conf.low", and "conf.high" statistics: cannot compute exact
p-value with ties
! For variable `morisky_m12` (`bp_lt_140_90_m12`) and "estimate", "statistic",
"p.value", "conf.low", and "conf.high" statistics: cannot compute exact
confidence intervals with ties
! For variable `mrs_m0` (`bp_lt_140_90_m12`) and "estimate", "statistic",
"p.value", "conf.low", and "conf.high" statistics: cannot compute exact
p-value with ties
! For variable `mrs_m0` (`bp_lt_140_90_m12`) and "estimate", "statistic",
"p.value", "conf.low", and "conf.high" statistics: cannot compute exact
confidence intervals with ties
! For variable `nihss_m0` (`bp_lt_140_90_m12`) and "estimate", "statistic",
"p.value", "conf.low", and "conf.high" statistics: cannot compute exact
p-value with ties
! For variable `nihss_m0` (`bp_lt_140_90_m12`) and "estimate", "statistic",
"p.value", "conf.low", and "conf.high" statistics: cannot compute exact
confidence intervals with ties
! For variable `no_of_antihyp` (`bp_lt_140_90_m12`) and "estimate",
"statistic", "p.value", "conf.low", and "conf.high" statistics: cannot
compute exact p-value with ties
! For variable `no_of_antihyp` (`bp_lt_140_90_m12`) and "estimate",
"statistic", "p.value", "conf.low", and "conf.high" statistics: cannot
compute exact confidence intervals with ties
! For variable `rbs_m0` (`bp_lt_140_90_m12`) and "estimate", "statistic",
"p.value", "conf.low", and "conf.high" statistics: cannot compute exact
p-value with ties
! For variable `rbs_m0` (`bp_lt_140_90_m12`) and "estimate", "statistic",
"p.value", "conf.low", and "conf.high" statistics: cannot compute exact
confidence intervals with ties
! For variable `sbp_m0` (`bp_lt_140_90_m12`) and "estimate", "statistic",
"p.value", "conf.low", and "conf.high" statistics: cannot compute exact
p-value with ties
! For variable `sbp_m0` (`bp_lt_140_90_m12`) and "estimate", "statistic",
"p.value", "conf.low", and "conf.high" statistics: cannot compute exact
confidence intervals with ties
! For variable `whr_m0` (`bp_lt_140_90_m12`) and "estimate", "statistic",
"p.value", "conf.low", and "conf.high" statistics: cannot compute exact
p-value with ties
! For variable `whr_m0` (`bp_lt_140_90_m12`) and "estimate", "statistic",
"p.value", "conf.low", and "conf.high" statistics: cannot compute exact
confidence intervals with ties
Characteristic |
Statistic |
BP Controlled (<140 / 90 mm Hg) at month 12 |
p-value 1 |
||
---|---|---|---|---|---|
No |
Yes |
Overall |
|||
Age (years) | Mean (SD) | 51 (8.4) | 53 (12.1) | 52 (11.1) | 0.496 |
Sex, male (%) | n (%) | 11 (64.7) | 16 (40.0) | 27 (47.4) | 0.087 |
Educational level | 0.958 | ||||
0 | n (%) | 2 (11.8) | 3 (7.7) | 5 (8.9) | |
1 | n (%) | 10 (58.8) | 21 (53.8) | 31 (55.4) | |
2 | n (%) | 5 (29.4) | 13 (33.3) | 18 (32.1) | |
3 | n (%) | 0 (0.0) | 2 (5.1) | 2 (3.6) | |
Missing | n | 0 | 1 | 1 | |
Income (USD) | 0.912 | ||||
0 | n (%) | 1 (6.7) | 5 (12.8) | 6 (11.1) | |
1 | n (%) | 9 (60.0) | 23 (59.0) | 32 (59.3) | |
2 | n (%) | 5 (33.3) | 11 (28.2) | 16 (29.6) | |
Missing | n | 2 | 1 | 3 | |
Type of domicile | >0.999 | ||||
1 | n (%) | 2 (11.8) | 5 (12.5) | 7 (12.3) | |
2 | n (%) | 15 (88.2) | 35 (87.5) | 50 (87.7) | |
Cigarette smoking | n (%) | 1 (5.9) | 4 (10.0) | 5 (8.8) | >0.999 |
Alcohol use | n (%) | 4 (23.5) | 9 (22.5) | 13 (22.8) | >0.999 |
Antihypertensive before ICH | n (%) | 8 (47.1) | 23 (57.5) | 31 (54.4) | 0.469 |
Antihypertensive after ICH | n (%) | 17 (100.0) | 38 (95.0) | 55 (96.5) | >0.999 |
Anti-diabetics after ICH | n (%) | 2 (11.8) | 6 (15.0) | 8 (14.0) | >0.999 |
CCB | n (%) | 13 (76.5) | 31 (77.5) | 44 (77.2) | >0.999 |
ARB/ACE-I | n (%) | 16 (94.1) | 30 (75.0) | 46 (80.7) | 0.146 |
DIURETICS | n (%) | 10 (58.8) | 17 (42.5) | 27 (47.4) | 0.259 |
BETABLOCKER | n (%) | 7 (41.2) | 17 (42.5) | 24 (42.1) | 0.926 |
VASODILATOR | n (%) | 3 (17.6) | 12 (30.0) | 15 (26.3) | 0.513 |
MRA | n (%) | 3 (17.6) | 2 (5.0) | 5 (8.8) | 0.151 |
CENTRALLY ACTING | n (%) | 1 (5.9) | 6 (15.0) | 7 (12.3) | 0.662 |
Treatment: Aspirin | 0.308 | ||||
0 | n (%) | 6 (35.3) | 20 (50.0) | 26 (45.6) | |
75 | n (%) | 11 (64.7) | 20 (50.0) | 31 (54.4) | |
Statin use after stroke | n (%) | 10 (58.8) | 24 (60.0) | 34 (59.6) | 0.934 |
BMI (Month 0) | Mean (SD) | 26 (6.6) | 26 (13.4) | 26 (11.8) | 0.622 |
WAIST-TO-HIP RATIO (Month 0) | Mean (SD) | 1 (0.0) | 1 (0.1) | 1 (0.1) | 0.834 |
Baseline systolic BP (Month 0) | Mean (SD) | 158 (22.3) | 156 (18.1) | 157 (19.3) | 0.469 |
Baseline diastolic BP (Month 0) | Mean (SD) | 100 (13.4) | 95 (13.8) | 96 (13.7) | 0.303 |
Antihypertensive meds) | Median (Min,Max) | 3 (2,5) | 3 (0,5) | 3 (0,5) | 0.606 |
Random blood glucose (Month 0) | Mean (SD) | 7 (1.5) | 7 (2.2) | 7 (2.0) | 0.688 |
MOCA (Month 0) | Mean (SD) | 19 (6.1) | 15 (6.0) | 16 (6.2) | 0.070 |
Modified Rankin Score (Month 0) | Mean (SD) | 2 (1.1) | 2 (1.0) | 2 (1.0) | 0.270 |
NIHSS (Month 0) | Mean (SD) | 1 (2.7) | 3 (3.7) | 2 (3.5) | 0.305 |
Hillbone (Month 0) | Mean (SD) | 53 (1.9) | 53 (1.5) | 53 (1.6) | 0.731 |
Morisky (Month 1) | Mean (SD) | 0 (0.2) | 0 (0.4) | 0 (0.3) | 0.811 |
Missing | n | 0 | 1 | 1 | |
HTN Side Effects (Month 1) | n (%) | 0 (0.0) | 3 (7.9) | 3 (5.5) | 0.544 |
Missing | n | 0 | 2 | 2 | |
Hillbone (Month 12) | Mean (SD) | 52 (1.1) | 53 (0.9) | 53 (1.0) | 0.300 |
Adherence scores at month 12 | Mean (SD) | 0 (0.7) | 0 (0.7) | 0 (0.7) | 0.336 |
HTN Side Effects (Month 12) | n (%) | 0 (0.0) | 1 (2.5) | 1 (1.8) | >0.999 |
1
Wilcoxon rank sum test; Pearson’s Chi-squared test; Fisher’s exact test; Wilcoxon rank sum exact test |
%>%
df_avert drop_na(bp_lt_140_90_m12) %>%
select(
bp_lt_140_90_m12, ageyrs, male, formal_education, income_in_usd,
type_of_domicile, cigarette, alcohol, anti_hpt_b4s, anti_hpt_as,
anti_diabetics_as, ccb_as, arb_acei_as, diuretic_as, betablocker_as,
vaso_hydralazine_as, mra_as, methyldopa_as, tmt_aspirin, statins_as,
bmi_m0, whr_m0, sbp_m0, dbp_m0, no_of_antihyp, whr_m0, rbs_m0, moca_m0,
mrs_m0, nihss_m0, hillbone_m0, morisky_m1, hpt_med_side_eff_m1, %>%
hillbone_m12, morisky_m12, hpt_med_side_eff_m12) tbl_uvregression(
method = glm,
y = bp_lt_140_90_m12,
method.args = family(binomial),
exponentiate = TRUE,
pvalue_fun = function(x) style_pvalue(x, digits = 3)) %>%
::bold_p() %>%
gtsummary::modify_header(
gtsummaryupdate = list(estimate ~ "**Estimate**", label ~ "**Variable**"))
There was a warning running `tbl_regression()` for variable "formal_education".
See message below.
! glm.fit: fitted probabilities numerically 0 or 1 occurred, glm.fit: fitted
probabilities numerically 0 or 1 occurred, glm.fit: fitted probabilities
numerically 0 or 1 occurred, glm.fit: fitted probabilities numerically 0 or 1
occurred, glm.fit: fitted probabilities numerically 0 or 1 occurred, glm.fit:
fitted probabilities numerically 0 or 1 occurred, glm.fit: fitted
probabilities numerically 0 or 1 occurred, glm.fit: fitted probabilities
numerically 0 or 1 occurred, glm.fit: algorithm did not converge, glm.fit:
fitted probabilities numerically 0 or 1 occurred, glm.fit: fitted
probabilities numerically 0 or 1 occurred, glm.fit: fitted probabilities
numerically 0 or 1 occurred, glm.fit: fitted probabilities numerically 0 or 1
occurred, glm.fit: fitted probabilities numerically 0 or 1 occurred, glm.fit:
fitted probabilities numerically 0 or 1 occurred, glm.fit: fitted
probabilities numerically 0 or 1 occurred, glm.fit: fitted probabilities
numerically 0 or 1 occurred, glm.fit: fitted probabilities numerically 0 or 1
occurred, and glm.fit: fitted probabilities numerically 0 or 1 occurred
There was a warning running `tbl_regression()` for variable "anti_hpt_as". See
message below.
! glm.fit: fitted probabilities numerically 0 or 1 occurred, glm.fit: fitted
probabilities numerically 0 or 1 occurred, glm.fit: fitted probabilities
numerically 0 or 1 occurred, glm.fit: fitted probabilities numerically 0 or 1
occurred, glm.fit: fitted probabilities numerically 0 or 1 occurred, glm.fit:
fitted probabilities numerically 0 or 1 occurred, glm.fit: fitted
probabilities numerically 0 or 1 occurred, glm.fit: fitted probabilities
numerically 0 or 1 occurred, glm.fit: fitted probabilities numerically 0 or 1
occurred, glm.fit: fitted probabilities numerically 0 or 1 occurred, glm.fit:
fitted probabilities numerically 0 or 1 occurred, glm.fit: fitted
probabilities numerically 0 or 1 occurred, glm.fit: fitted probabilities
numerically 0 or 1 occurred, glm.fit: fitted probabilities numerically 0 or 1
occurred, glm.fit: fitted probabilities numerically 0 or 1 occurred, glm.fit:
fitted probabilities numerically 0 or 1 occurred, glm.fit: fitted
probabilities numerically 0 or 1 occurred, glm.fit: fitted probabilities
numerically 0 or 1 occurred, glm.fit: fitted probabilities numerically 0 or 1
occurred, and glm.fit: fitted probabilities numerically 0 or 1 occurred
There was a warning running `tbl_regression()` for variable
"hpt_med_side_eff_m1". See message below.
! glm.fit: fitted probabilities numerically 0 or 1 occurred, glm.fit: fitted
probabilities numerically 0 or 1 occurred, glm.fit: fitted probabilities
numerically 0 or 1 occurred, glm.fit: fitted probabilities numerically 0 or 1
occurred, glm.fit: fitted probabilities numerically 0 or 1 occurred, glm.fit:
fitted probabilities numerically 0 or 1 occurred, glm.fit: fitted
probabilities numerically 0 or 1 occurred, glm.fit: fitted probabilities
numerically 0 or 1 occurred, glm.fit: fitted probabilities numerically 0 or 1
occurred, and glm.fit: fitted probabilities numerically 0 or 1 occurred
There was a warning running `tbl_regression()` for variable
"hpt_med_side_eff_m12". See message below.
! glm.fit: fitted probabilities numerically 0 or 1 occurred, glm.fit: fitted
probabilities numerically 0 or 1 occurred, glm.fit: fitted probabilities
numerically 0 or 1 occurred, glm.fit: fitted probabilities numerically 0 or 1
occurred, glm.fit: fitted probabilities numerically 0 or 1 occurred, glm.fit:
fitted probabilities numerically 0 or 1 occurred, glm.fit: fitted
probabilities numerically 0 or 1 occurred, glm.fit: fitted probabilities
numerically 0 or 1 occurred, glm.fit: fitted probabilities numerically 0 or 1
occurred, glm.fit: fitted probabilities numerically 0 or 1 occurred, and
collapsing to unique 'x' values
Warning: The `update` argument of `modify_header()` is deprecated as of gtsummary 2.0.0.
ℹ Use `modify_header(...)` input instead. Dynamic dots allow for syntax like
`modify_header(!!!list(...))`.
ℹ The deprecated feature was likely used in the gtsummary package.
Please report the issue at <https://github.com/ddsjoberg/gtsummary/issues>.
Variable |
N |
Estimate 1 |
95% CI 1 |
p-value |
---|---|---|---|---|
Age (years) | 57 | 1.01 | 0.96, 1.07 | 0.620 |
Sex, male (%) | 57 | |||
No | — | — | ||
Yes | 0.36 | 0.11, 1.15 | 0.093 | |
Educational level | 56 | |||
0 | — | — | ||
1 | 1.40 | 0.16, 9.81 | 0.734 | |
2 | 1.73 | 0.19, 13.9 | 0.602 | |
3 | 10,434,241 | 0.00, |
0.992 | |
Income (USD) | 54 | |||
0 | — | — | ||
1 | 0.51 | 0.02, 3.79 | 0.564 | |
2 | 0.44 | 0.02, 3.81 | 0.501 | |
Type of domicile | 57 | |||
1 | — | — | ||
2 | 0.93 | 0.12, 4.89 | 0.938 | |
Cigarette smoking | 57 | |||
No | — | — | ||
Yes | 1.78 | 0.24, 36.3 | 0.619 | |
Alcohol use | 57 | |||
No | — | — | ||
Yes | 0.94 | 0.26, 3.98 | 0.932 | |
Antihypertensive before ICH | 57 | |||
No | — | — | ||
Yes | 1.52 | 0.49, 4.86 | 0.470 | |
Antihypertensive after ICH | 57 | |||
No | — | — | ||
Yes | 0.00 | 0.993 | ||
Anti-diabetics after ICH | 57 | |||
No | — | — | ||
Yes | 1.32 | 0.27, 9.75 | 0.748 | |
CCB | 57 | |||
No | — | — | ||
Yes | 1.06 | 0.25, 3.92 | 0.932 | |
ARB/ACE-I | 57 | |||
No | — | — | ||
Yes | 0.19 | 0.01, 1.11 | 0.126 | |
DIURETICS | 57 | |||
No | — | — | ||
Yes | 0.52 | 0.16, 1.62 | 0.262 | |
BETABLOCKER | 57 | |||
No | — | — | ||
Yes | 1.06 | 0.34, 3.44 | 0.926 | |
VASODILATOR | 57 | |||
No | — | — | ||
Yes | 2.00 | 0.53, 9.82 | 0.338 | |
MRA | 57 | |||
No | — | — | ||
Yes | 0.25 | 0.03, 1.63 | 0.146 | |
CENTRALLY ACTING | 57 | |||
No | — | — | ||
Yes | 2.82 | 0.43, 55.7 | 0.355 | |
Treatment: Aspirin | 57 | |||
0 | — | — | ||
75 | 0.55 | 0.16, 1.72 | 0.311 | |
Statin use after stroke | 57 | |||
No | — | — | ||
Yes | 1.05 | 0.32, 3.32 | 0.934 | |
BMI (Month 0) | 57 | 1.00 | 0.95, 1.08 | 0.926 |
WAIST-TO-HIP RATIO (Month 0) | 57 | 1.86 | 0.00, 11,022 | 0.886 |
Baseline systolic BP (Month 0) | 57 | 0.99 | 0.96, 1.02 | 0.644 |
Baseline diastolic BP (Month 0) | 57 | 0.97 | 0.93, 1.02 | 0.240 |
Antihypertensive meds) | 57 | 0.83 | 0.50, 1.36 | 0.472 |
Random blood glucose (Month 0) | 57 | 1.04 | 0.79, 1.44 | 0.808 |
MOCA (Month 0) | 57 | 0.91 | 0.81, 1.00 | 0.055 |
Modified Rankin Score (Month 0) | 57 | 1.33 | 0.75, 2.50 | 0.339 |
NIHSS (Month 0) | 57 | 1.11 | 0.93, 1.39 | 0.277 |
Hillbone (Month 0) | 57 | 0.97 | 0.68, 1.39 | 0.876 |
Morisky (Month 1) | 56 | 1.54 | 0.29, 26.4 | 0.665 |
HTN Side Effects (Month 1) | 55 | 20,664,623 | 0.00, |
0.994 |
Hillbone (Month 12) | 57 | 1.35 | 0.75, 2.44 | 0.305 |
Adherence scores at month 12 | 57 | 0.76 | 0.34, 1.82 | 0.510 |
HTN Side Effects (Month 12) | 57 | 2,509,816 | 0.00, |
0.992 |
1
OR = Odds Ratio, CI = Confidence Interval |
<-
df_sbp_long %>%
df_avert pivot_longer(
cols = c(sbp_m0, sbp_m1, sbp_m3, sbp_m6, sbp_m9, sbp_m12),
names_to = "month",
values_to = "sbp") %>%
mutate(month = str_extract(month, "\\d+") %>% as.numeric())
%>%
df_sbp_long ggplot(aes(x = month, y = sbp, group = record_id)) +
geom_line()
Warning: Removed 18 rows containing missing values or values outside the scale range
(`geom_line()`).
<- bind_rows(
x ::lme(
nlme~ month*ageyrs,
sbp random = ~month|record_id,
data = df_sbp_long,
na.action = na.omit,
method = "ML") %>%
::tidy(conf.int=T, effects = "fixed"),
broom.mixed
::lme(
nlme~ month*male,
sbp random = ~month|record_id,
data = df_sbp_long,
na.action = na.omit,
method = "ML") %>%
::tidy(conf.int=T, effects = "fixed"),
broom.mixed
::lme(
nlme~ month*formal_education,
sbp random = ~month|record_id,
data = df_sbp_long,
na.action = na.omit,
method = "ML") %>%
::tidy(conf.int=T, effects = "fixed"),
broom.mixed
::lme(
nlme~ month*income_in_usd,
sbp random = ~month|record_id,
data = df_sbp_long,
na.action = na.omit,
method = "ML") %>%
::tidy(conf.int=T, effects = "fixed"),
broom.mixed
::lme(
nlme~ month*type_of_domicile,
sbp random = ~month|record_id,
data = df_sbp_long,
na.action = na.omit,
method = "ML") %>%
::tidy(conf.int=T, effects = "fixed"),
broom.mixed
::lme(
nlme~ month*cigarette,
sbp random = ~month|record_id,
data = df_sbp_long,
na.action = na.omit,
method = "ML") %>%
::tidy(conf.int=T, effects = "fixed"),
broom.mixed
::lme(
nlme~ month*alcohol,
sbp random = ~month|record_id,
data = df_sbp_long,
na.action = na.omit,
method = "ML") %>%
::tidy(conf.int=T, effects = "fixed"),
broom.mixed
::lme(
nlme~ month*anti_hpt_b4s,
sbp random = ~month|record_id,
data = df_sbp_long,
na.action = na.omit,
method = "ML") %>%
::tidy(conf.int=T, effects = "fixed"),
broom.mixed
::lme(
nlme~ month*anti_hpt_as,
sbp random = ~month|record_id,
data = df_sbp_long,
na.action = na.omit,
method = "ML") %>%
::tidy(conf.int=T, effects = "fixed"),
broom.mixed
::lme(
nlme~ month*anti_diabetics_as,
sbp random = ~month|record_id,
data = df_sbp_long,
na.action = na.omit,
method = "ML") %>%
::tidy(conf.int=T, effects = "fixed"),
broom.mixed
::lme(
nlme~ month*ccb_as,
sbp random = ~month|record_id,
data = df_sbp_long,
na.action = na.omit,
method = "ML") %>%
::tidy(conf.int=T, effects = "fixed"),
broom.mixed
::lme(
nlme~ month*arb_acei_as,
sbp random = ~month|record_id,
data = df_sbp_long,
na.action = na.omit,
method = "ML") %>%
::tidy(conf.int=T, effects = "fixed"),
broom.mixed
::lme(
nlme~ month*diuretic_as,
sbp random = ~month|record_id,
data = df_sbp_long,
na.action = na.omit,
method = "ML") %>%
::tidy(conf.int=T, effects = "fixed"),
broom.mixed
::lme(
nlme~ month*betablocker_as,
sbp random = ~month|record_id,
data = df_sbp_long,
na.action = na.omit,
method = "ML") %>%
::tidy(conf.int=T, effects = "fixed"),
broom.mixed
::lme(
nlme~ month*vaso_hydralazine_as,
sbp random = ~month|record_id,
data = df_sbp_long,
na.action = na.omit,
method = "ML") %>%
::tidy(conf.int=T, effects = "fixed"),
broom.mixed
::lme(
nlme~ month*mra_as,
sbp random = ~month|record_id,
data = df_sbp_long,
na.action = na.omit,
method = "ML") %>%
::tidy(conf.int=T, effects = "fixed"),
broom.mixed
::lme(
nlme~ month*methyldopa_as,
sbp random = ~month|record_id,
data = df_sbp_long,
na.action = na.omit,
method = "ML") %>%
::tidy(conf.int=T, effects = "fixed"),
broom.mixed
::lme(
nlme~ month*tmt_aspirin,
sbp random = ~month|record_id,
data = df_sbp_long,
na.action = na.omit,
method = "ML") %>%
::tidy(conf.int=T, effects = "fixed"),
broom.mixed
::lme(
nlme~ month*statins_as,
sbp random = ~month|record_id,
data = df_sbp_long,
na.action = na.omit,
method = "ML") %>%
::tidy(conf.int=T, effects = "fixed"),
broom.mixed
::lme(
nlme~ month*bmi_m0,
sbp random = ~month|record_id,
data = df_sbp_long,
na.action = na.omit,
method = "ML") %>%
::tidy(conf.int=T, effects = "fixed"),
broom.mixed
::lme(
nlme~ month*whr_m0,
sbp random = ~month|record_id,
data = df_sbp_long,
na.action = na.omit,
method = "ML") %>%
::tidy(conf.int=T, effects = "fixed"),
broom.mixed
::lme(
nlme~ month*dbp_m0,
sbp random = ~month|record_id,
data = df_sbp_long,
na.action = na.omit,
method = "ML") %>%
::tidy(conf.int=T, effects = "fixed"),
broom.mixed
::lme(
nlme~ month*no_of_antihyp,
sbp random = ~month|record_id,
data = df_sbp_long,
na.action = na.omit,
method = "ML") %>%
::tidy(conf.int=T, effects = "fixed"),
broom.mixed
::lme(
nlme~ month*whr_m0,
sbp random = ~month|record_id,
data = df_sbp_long,
na.action = na.omit,
method = "ML") %>%
::tidy(conf.int=T, effects = "fixed"),
broom.mixed
::lme(
nlme~ month*rbs_m0,
sbp random = ~month|record_id,
data = df_sbp_long,
na.action = na.omit,
method = "ML") %>%
::tidy(conf.int=T, effects = "fixed"),
broom.mixed
::lme(
nlme~ month*moca_m0,
sbp random = ~month|record_id,
data = df_sbp_long,
na.action = na.omit,
method = "ML") %>%
::tidy(conf.int=T, effects = "fixed"),
broom.mixed
::lme(
nlme~ month*mrs_m0,
sbp random = ~month|record_id,
data = df_sbp_long,
na.action = na.omit,
method = "ML") %>%
::tidy(conf.int=T, effects = "fixed"),
broom.mixed
::lme(
nlme~ month*nihss_m0,
sbp random = ~month|record_id,
data = df_sbp_long,
na.action = na.omit,
method = "ML") %>%
::tidy(conf.int=T, effects = "fixed"),
broom.mixed
::lme(
nlme~ month*hillbone_m0,
sbp random = ~month|record_id,
data = df_sbp_long,
na.action = na.omit,
method = "ML") %>%
::tidy(conf.int=T, effects = "fixed"),
broom.mixed
::lme(
nlme~ month*morisky_m1,
sbp random = ~month|record_id,
data = df_sbp_long,
na.action = na.omit,
method = "ML") %>%
::tidy(conf.int=T, effects = "fixed"),
broom.mixed
::lme(
nlme~ month*hpt_med_side_eff_m1,
sbp random = ~month|record_id,
data = df_sbp_long,
na.action = na.omit,
method = "ML") %>%
::tidy(conf.int=T, effects = "fixed"),
broom.mixed
::lme(
nlme~ month*hillbone_m12,
sbp random = ~month|record_id,
data = df_sbp_long,
na.action = na.omit,
method = "ML") %>%
::tidy(conf.int=T, effects = "fixed"),
broom.mixed
::lme(
nlme~ month*morisky_m12,
sbp random = ~month|record_id,
data = df_sbp_long,
na.action = na.omit,
method = "ML") %>%
::tidy(conf.int=T, effects = "fixed"),
broom.mixed
::lme(
nlme~ month*hpt_med_side_eff_m12,
sbp random = ~month|record_id,
data = df_sbp_long,
na.action = na.omit,
method = "ML") %>%
::tidy(conf.int=T, effects = "fixed"))
broom.mixed
<-
y ::lme(
nlme~ month*ageyrs + month*dbp_m0,
sbp random = ~month|record_id,
data = df_sbp_long,
na.action = na.omit, method = "ML") %>%
::tidy(conf.int=T, effects = "fixed") %>%
broom.mixedrename(
effect2 = effect, estimate2 = estimate, std.error2 = std.error,
df2 = df, statistic2 = statistic, p.value2 = p.value,
conf.low2 = conf.low, conf.high2 = conf.high)
%>%
x left_join(y)%>%
filter(str_detect(term,":")) %>%
select(term, estimate, conf.low, conf.high, p.value,
%>%
estimate2, conf.low2, conf.high2, p.value2) mutate(
across(c(estimate:conf.high, estimate2:conf.high2), ~round(.x, 2)),
across(c(p.value, p.value2), ~round(.x, 3)),
Crude_Est. = paste(estimate, "(", conf.low, ", ", conf.high, ")", sep=""),
Adj_Est. = paste(estimate2, "(", conf.low2, ", ", conf.high2, ")", sep=""),
Adj_Est. = case_when(Adj_Est. == "NA(NA, NA)" ~ "", TRUE ~ Adj_Est.),
term = str_remove(term, "visit:")
%>%
) select(
`Crude Estimate` = Crude_Est., `Crude p-value` = p.value,
term, `Adj Estimate` = Adj_Est., `Adj p-value` = p.value2
%>%
) ::p_format(digits = 3, accuracy = 0.001)%>%
rstatixmutate(term = str_remove(term, "month:")) %>%
::flextable(cwidth = 1) %>%
flextable::width(j=c(2,4), width = 1.6) %>%
flextable::theme_vanilla() flextable
Joining with `by = join_by(term)`
term | Crude Estimate | Crude p-value | Adj Estimate | Adj p-value |
---|---|---|---|---|
ageyrs | -0.05(-0.09, 0) | 0.030 | -0.04(-0.07, 0) | 0.055 |
maleYes | -0.24(-1.19, 0.71) | 0.621 | ||
formal_education1 | -0.52(-2.17, 1.14) | 0.543 | ||
formal_education2 | -0.93(-2.68, 0.82) | 0.302 | ||
formal_education3 | -0.91(-3.6, 1.78) | 0.512 | ||
income_in_usd1 | -0.82(-2.38, 0.73) | 0.304 | ||
income_in_usd2 | -0.77(-2.45, 0.9) | 0.368 | ||
type_of_domicile2 | 0.53(-0.93, 1.99) | 0.477 | ||
cigaretteYes | 0.21(-1.5, 1.91) | 0.812 | ||
alcoholYes | -0.42(-1.55, 0.71) | 0.466 | ||
anti_hpt_b4sYes | -0.5(-1.45, 0.45) | 0.302 | ||
anti_hpt_asYes | -0.67(-3.14, 1.79) | 0.592 | ||
anti_diabetics_asYes | 0.05(-1.32, 1.41) | 0.947 | ||
ccb_asYes | 0.99(-0.08, 2.07) | 0.072 | ||
arb_acei_asYes | -0.32(-1.51, 0.87) | 0.597 | ||
diuretic_asYes | -0.04(-0.99, 0.91) | 0.936 | ||
betablocker_asYes | -0.21(-1.18, 0.75) | 0.664 | ||
vaso_hydralazine_asYes | 0.19(-0.89, 1.27) | 0.734 | ||
mra_asYes | 1.09(-0.58, 2.77) | 0.203 | ||
methyldopa_asYes | 0.58(-0.88, 2.04) | 0.438 | ||
tmt_aspirin75 | 0.24(-0.72, 1.2) | 0.630 | ||
statins_asYes | 0.18(-0.79, 1.16) | 0.714 | ||
bmi_m0 | -0.01(-0.05, 0.03) | 0.577 | ||
whr_m0 | -5.02(-12.07, 2.03) | 0.165 | ||
dbp_m0 | -0.06(-0.09, -0.03) | 0.000 | -0.06(-0.09, -0.03) | 0.000 |
no_of_antihyp | 0.18(-0.22, 0.58) | 0.372 | ||
whr_m0 | -5.02(-12.07, 2.03) | 0.165 | ||
rbs_m0 | -0.09(-0.32, 0.15) | 0.486 | ||
moca_m0 | 0.02(-0.06, 0.09) | 0.659 | ||
mrs_m0 | -0.25(-0.71, 0.22) | 0.305 | ||
nihss_m0 | -0.01(-0.14, 0.12) | 0.875 | ||
hillbone_m0 | -0.02(-0.31, 0.28) | 0.918 | ||
morisky_m1 | -0.66(-1.98, 0.66) | 0.328 | ||
hpt_med_side_eff_m1 | 0.55(-1.49, 2.6) | 0.596 | ||
hillbone_m12 | -0.33(-0.8, 0.15) | 0.178 | ||
morisky_m12 | 0.17(-0.51, 0.85) | 0.624 | ||
hpt_med_side_eff_m12 | -0.48(-3.93, 2.97) | 0.786 |
<-
df_dbp_long %>%
df_avert pivot_longer(
cols = c(dbp_m0, dbp_m1, dbp_m3, dbp_m6, dbp_m9, dbp_m12),
names_to = "month",
values_to = "dbp") %>%
mutate(month = str_extract(month, "\\d+") %>% as.numeric())
%>%
df_dbp_long ggplot(aes(x = month, y = dbp, group = record_id)) +
geom_line()
Warning: Removed 18 rows containing missing values or values outside the scale range
(`geom_line()`).
<- bind_rows(
x ::lme(
nlme~ month*ageyrs,
dbp random = ~month|record_id,
data = df_dbp_long,
na.action = na.omit,
method = "ML") %>%
::tidy(conf.int=T, effects = "fixed"),
broom.mixed
::lme(
nlme~ month*male,
dbp random = ~month|record_id,
data = df_dbp_long,
na.action = na.omit,
method = "ML") %>%
::tidy(conf.int=T, effects = "fixed"),
broom.mixed
::lme(
nlme~ month*formal_education,
dbp random = ~month|record_id,
data = df_dbp_long,
na.action = na.omit,
method = "ML") %>%
::tidy(conf.int=T, effects = "fixed"),
broom.mixed
::lme(
nlme~ month*income_in_usd,
dbp random = ~month|record_id,
data = df_dbp_long,
na.action = na.omit,
method = "ML") %>%
::tidy(conf.int=T, effects = "fixed"),
broom.mixed
::lme(
nlme~ month*type_of_domicile,
dbp random = ~month|record_id,
data = df_dbp_long,
na.action = na.omit,
method = "ML") %>%
::tidy(conf.int=T, effects = "fixed"),
broom.mixed
::lme(
nlme~ month*cigarette,
dbp random = ~month|record_id,
data = df_dbp_long,
na.action = na.omit,
method = "ML") %>%
::tidy(conf.int=T, effects = "fixed"),
broom.mixed
::lme(
nlme~ month*alcohol,
dbp random = ~month|record_id,
data = df_dbp_long,
na.action = na.omit,
method = "ML") %>%
::tidy(conf.int=T, effects = "fixed"),
broom.mixed
::lme(
nlme~ month*anti_hpt_b4s,
dbp random = ~month|record_id,
data = df_dbp_long,
na.action = na.omit,
method = "ML") %>%
::tidy(conf.int=T, effects = "fixed"),
broom.mixed
::lme(
nlme~ month*anti_hpt_as,
dbp random = ~month|record_id,
data = df_dbp_long,
na.action = na.omit,
method = "ML") %>%
::tidy(conf.int=T, effects = "fixed"),
broom.mixed
::lme(
nlme~ month*anti_diabetics_as,
dbp random = ~month|record_id,
data = df_dbp_long,
na.action = na.omit,
method = "ML") %>%
::tidy(conf.int=T, effects = "fixed"),
broom.mixed
::lme(
nlme~ month*ccb_as,
dbp random = ~month|record_id,
data = df_dbp_long,
na.action = na.omit,
method = "ML") %>%
::tidy(conf.int=T, effects = "fixed"),
broom.mixed
::lme(
nlme~ month*arb_acei_as,
dbp random = ~month|record_id,
data = df_dbp_long,
na.action = na.omit,
method = "ML") %>%
::tidy(conf.int=T, effects = "fixed"),
broom.mixed
::lme(
nlme~ month*diuretic_as,
dbp random = ~month|record_id,
data = df_dbp_long,
na.action = na.omit,
method = "ML") %>%
::tidy(conf.int=T, effects = "fixed"),
broom.mixed
::lme(
nlme~ month*betablocker_as,
dbp random = ~month|record_id,
data = df_dbp_long,
na.action = na.omit,
method = "ML") %>%
::tidy(conf.int=T, effects = "fixed"),
broom.mixed
::lme(
nlme~ month*vaso_hydralazine_as,
dbp random = ~month|record_id,
data = df_dbp_long,
na.action = na.omit,
method = "ML") %>%
::tidy(conf.int=T, effects = "fixed"),
broom.mixed
::lme(
nlme~ month*mra_as,
dbp random = ~month|record_id,
data = df_dbp_long,
na.action = na.omit,
method = "ML") %>%
::tidy(conf.int=T, effects = "fixed"),
broom.mixed
::lme(
nlme~ month*methyldopa_as,
dbp random = ~month|record_id,
data = df_dbp_long,
na.action = na.omit,
method = "ML") %>%
::tidy(conf.int=T, effects = "fixed"),
broom.mixed
::lme(
nlme~ month*tmt_aspirin,
dbp random = ~month|record_id,
data = df_dbp_long,
na.action = na.omit,
method = "ML") %>%
::tidy(conf.int=T, effects = "fixed"),
broom.mixed
::lme(
nlme~ month*statins_as,
dbp random = ~month|record_id,
data = df_dbp_long,
na.action = na.omit,
method = "ML") %>%
::tidy(conf.int=T, effects = "fixed"),
broom.mixed
::lme(
nlme~ month*bmi_m0,
dbp random = ~month|record_id,
data = df_dbp_long,
na.action = na.omit,
method = "ML") %>%
::tidy(conf.int=T, effects = "fixed"),
broom.mixed
::lme(
nlme~ month*whr_m0,
dbp random = ~month|record_id,
data = df_dbp_long,
na.action = na.omit,
method = "ML") %>%
::tidy(conf.int=T, effects = "fixed"),
broom.mixed
::lme(
nlme~ month*no_of_antihyp,
dbp random = ~month|record_id,
data = df_dbp_long,
na.action = na.omit,
method = "ML") %>%
::tidy(conf.int=T, effects = "fixed"),
broom.mixed
::lme(
nlme~ month*whr_m0,
dbp random = ~month|record_id,
data = df_dbp_long,
na.action = na.omit,
method = "ML") %>%
::tidy(conf.int=T, effects = "fixed"),
broom.mixed
::lme(
nlme~ month*rbs_m0,
dbp random = ~month|record_id,
data = df_dbp_long,
na.action = na.omit,
method = "ML") %>%
::tidy(conf.int=T, effects = "fixed"),
broom.mixed
::lme(
nlme~ month*moca_m0,
dbp random = ~month|record_id,
data = df_dbp_long,
na.action = na.omit,
method = "ML") %>%
::tidy(conf.int=T, effects = "fixed"),
broom.mixed
::lme(
nlme~ month*mrs_m0,
dbp random = ~month|record_id,
data = df_dbp_long,
na.action = na.omit,
method = "ML") %>%
::tidy(conf.int=T, effects = "fixed"),
broom.mixed
::lme(
nlme~ month*nihss_m0,
dbp random = ~month|record_id,
data = df_dbp_long,
na.action = na.omit,
method = "ML") %>%
::tidy(conf.int=T, effects = "fixed"),
broom.mixed
::lme(
nlme~ month*hillbone_m0,
dbp random = ~month|record_id,
data = df_dbp_long,
na.action = na.omit,
method = "ML") %>%
::tidy(conf.int=T, effects = "fixed"),
broom.mixed
::lme(
nlme~ month*morisky_m1,
dbp random = ~month|record_id,
data = df_dbp_long,
na.action = na.omit,
method = "ML") %>%
::tidy(conf.int=T, effects = "fixed"),
broom.mixed
::lme(
nlme~ month*hpt_med_side_eff_m1,
dbp random = ~month|record_id,
data = df_dbp_long,
na.action = na.omit,
method = "ML") %>%
::tidy(conf.int=T, effects = "fixed"),
broom.mixed
::lme(
nlme~ month*hillbone_m12,
dbp random = ~month|record_id,
data = df_dbp_long,
na.action = na.omit,
method = "ML") %>%
::tidy(conf.int=T, effects = "fixed"),
broom.mixed
::lme(
nlme~ month*morisky_m12,
dbp random = ~month|record_id,
data = df_dbp_long,
na.action = na.omit,
method = "ML") %>%
::tidy(conf.int=T, effects = "fixed"),
broom.mixed
::lme(
nlme~ month*hpt_med_side_eff_m12,
dbp random = ~month|record_id,
data = df_dbp_long,
na.action = na.omit,
method = "ML") %>%
::tidy(conf.int=T, effects = "fixed")
broom.mixed
)
<-
y ::lme(
nlme~ month*ageyrs,
dbp random = ~month|record_id,
data = df_dbp_long,
na.action = na.omit, method = "ML") %>%
::tidy(conf.int=T, effects = "fixed") %>%
broom.mixedrename(
effect2 = effect, estimate2 = estimate, std.error2 = std.error,
df2 = df, statistic2 = statistic, p.value2 = p.value,
conf.low2 = conf.low, conf.high2 = conf.high)
%>%
x left_join(y)%>%
filter(str_detect(term,":")) %>%
select(term, estimate, conf.low, conf.high, p.value,
%>%
estimate2, conf.low2, conf.high2, p.value2) mutate(
across(c(estimate:conf.high, estimate2:conf.high2), ~round(.x, 2)),
across(c(p.value, p.value2), ~round(.x, 3)),
Crude_Est. = paste(estimate, "(", conf.low, ", ", conf.high, ")", sep=""),
Adj_Est. = paste(estimate2, "(", conf.low2, ", ", conf.high2, ")", sep=""),
Adj_Est. = case_when(Adj_Est. == "NA(NA, NA)" ~ "", TRUE ~ Adj_Est.),
term = str_remove(term, "visit:")
%>%
) select(
`Crude Estimate` = Crude_Est., `Crude p-value` = p.value,
term, `Adj Estimate` = Adj_Est., `Adj p-value` = p.value2
%>%
) ::p_format(digits = 3, accuracy = 0.001)%>%
rstatixmutate(term = str_remove(term, "month:")) %>%
::flextable(cwidth = 1) %>%
flextable::width(j=c(2,4), width = 1.6) %>%
flextable::theme_vanilla() flextable
Joining with `by = join_by(term)`
term | Crude Estimate | Crude p-value | Adj Estimate | Adj p-value |
---|---|---|---|---|
ageyrs | -0.04(-0.06, -0.01) | 0.015 | -0.04(-0.06, -0.01) | 0.015 |
maleYes | 0.22(-0.44, 0.87) | 0.519 | ||
formal_education1 | -0.33(-1.48, 0.82) | 0.578 | ||
formal_education2 | -0.35(-1.57, 0.87) | 0.575 | ||
formal_education3 | 0.05(-1.83, 1.93) | 0.959 | ||
income_in_usd1 | -0.17(-1.25, 0.91) | 0.760 | ||
income_in_usd2 | -0.25(-1.42, 0.92) | 0.676 | ||
type_of_domicile2 | 0.69(-0.29, 1.67) | 0.169 | ||
cigaretteYes | 0.18(-0.99, 1.35) | 0.762 | ||
alcoholYes | -0.25(-1.02, 0.53) | 0.529 | ||
anti_hpt_b4sYes | -0.39(-1.04, 0.26) | 0.243 | ||
anti_hpt_asYes | -0.72(-2.41, 0.97) | 0.406 | ||
anti_diabetics_asYes | -0.06(-0.99, 0.87) | 0.898 | ||
ccb_asYes | 0.25(-0.52, 1.02) | 0.523 | ||
arb_acei_asYes | -0.15(-0.97, 0.67) | 0.729 | ||
diuretic_asYes | 0.15(-0.51, 0.8) | 0.663 | ||
betablocker_asYes | -0.16(-0.82, 0.5) | 0.639 | ||
vaso_hydralazine_asYes | 0.24(-0.5, 0.99) | 0.518 | ||
mra_asYes | 0.62(-0.55, 1.78) | 0.301 | ||
methyldopa_asYes | 0.05(-0.96, 1.05) | 0.927 | ||
tmt_aspirin75 | 0.41(-0.25, 1.06) | 0.223 | ||
statins_asYes | 0.13(-0.54, 0.79) | 0.710 | ||
bmi_m0 | 0(-0.03, 0.03) | 0.964 | ||
whr_m0 | -3.32(-8.16, 1.53) | 0.182 | ||
no_of_antihyp | 0.1(-0.18, 0.38) | 0.479 | ||
whr_m0 | -3.32(-8.16, 1.53) | 0.182 | ||
rbs_m0 | -0.08(-0.24, 0.08) | 0.326 | ||
moca_m0 | 0(-0.05, 0.06) | 0.856 | ||
mrs_m0 | -0.1(-0.42, 0.22) | 0.554 | ||
nihss_m0 | 0.03(-0.06, 0.12) | 0.503 | ||
hillbone_m0 | 0.01(-0.19, 0.21) | 0.943 | ||
morisky_m1 | -0.65(-1.54, 0.23) | 0.149 | ||
hpt_med_side_eff_m1 | 0.64(-0.74, 2.02) | 0.365 | ||
hillbone_m12 | -0.21(-0.53, 0.11) | 0.192 | ||
morisky_m12 | 0.02(-0.44, 0.47) | 0.948 | ||
hpt_med_side_eff_m12 | -0.22(-2.54, 2.09) | 0.851 |