These data were collected from 2007 - 2009 by Dr. Kristen Gorman with the Palmer Station Long Term Ecological Research Program, part of the US Long Term Ecological Research Network. The data were imported directly from the Environmental Data Initiative (EDI) Data Portal, and are available for use by CC0 license (“No Rights Reserved”) in accordance with the Palmer Station Data Policy.

Unit 2.1 Qualitative Variables

Step 1: Collect the Data

Check the appropriateness of response variable for regression: View a histogram of response variable. It should be continuous, and approximately unimodal and symmetric, with few outliers.

pendata<-read.csv("https://raw.githubusercontent.com/kvaranyak4/STAT3220/main/penguins.csv")
head(pendata)
names(pendata)
## [1] "X"                 "species"           "island"           
## [4] "bill_length_mm"    "bill_depth_mm"     "flipper_length_mm"
## [7] "body_mass_g"       "sex"               "year"
hist(pendata$body_mass_g, xlab="Body Mass", main="Histogram of Body Mass (in grams)") 

Step 2: Hypothesize Relationship (Exploratory Data Analysis)

We explore the box plots and means for each qualitative variable explanatory variable then classify the relationships as existent or not.

#Summary Statistics for response variable grouped by each level of the response
tapply(pendata$body_mass_g,pendata$species,summary)
$Adelie
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max.    NA's 
   2850    3350    3700    3701    4000    4775       1 

$Chinstrap
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
   2700    3488    3700    3733    3950    4800 

$Gentoo
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max.    NA's 
   3950    4700    5000    5076    5500    6300       1 
tapply(pendata$body_mass_g,pendata$sex,summary)
$female
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
   2700    3350    3650    3862    4550    5200 

$male
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
   3250    3900    4300    4546    5312    6300 
#Box plots for species and sex
boxplot(body_mass_g~species,pendata, ylab="Body Mass (grams)")

boxplot(body_mass_g~sex,pendata, ylab="Body Mass (grams)")

#Scatter plots for quantitative variables
for (i in names(pendata)[4:6]) {
  plot(pendata[,i], pendata$body_mass_g,xlab=i,ylab="Body Mass (grams)")
}

#Correlations for quantitative variables
round(cor(pendata[4:6],pendata$body_mass_g,use="complete.obs"),3)
                    [,1]
bill_length_mm     0.595
bill_depth_mm     -0.472
flipper_length_mm  0.871

\(E(bodymass)=\beta_0+\beta_1 SpeciesC+\beta_2 SpeciesG+\beta_3 SexM\)

Step 3: Estimate the model parameters (fit the model using R)

#note: the syntax in R does not necessarily match the parameters
penmod1<-lm(body_mass_g~species+sex,data=pendata)
summary(penmod1)

Call:
lm(formula = body_mass_g ~ species + sex, data = pendata)

Residuals:
    Min      1Q  Median      3Q     Max 
-816.87 -217.80  -16.87  227.61  882.20 

Coefficients:
                 Estimate Std. Error t value Pr(>|t|)    
(Intercept)       3372.39      31.43 107.308   <2e-16 ***
speciesChinstrap    26.92      46.48   0.579    0.563    
speciesGentoo     1377.86      39.10  35.236   <2e-16 ***
sexmale            667.56      34.70  19.236   <2e-16 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 316.6 on 329 degrees of freedom
  (11 observations deleted due to missingness)
Multiple R-squared:  0.8468,    Adjusted R-squared:  0.8454 
F-statistic: 606.1 on 3 and 329 DF,  p-value: < 2.2e-16

The prediction equation is:

\(\widehat{bodymass}=3372.39+26.92SpeciesC+1377.86SpeciesG+667.56SexM\)

Interpret the estimates

  • The estimated mean body mass for Adelie female penguins is 3372.39 grams.
  • The estimated mean body mass for Chinstrap penguins is 26.92 grams higher than Adelie penguins, given gender is held constant.
  • The estimated mean body mass for Gentoo penguins is 1377.86 grams higher than Adelie penguins, given gender is held constant.
  • The estimated mean body mass for male penguins is 667.56 grams higher than female penguins, given species is held constant.

Note

We can recode our base level using the relevel function.

recodedSpecies<-relevel(factor(pendata$species),ref="Chinstrap")
penmod6<-lm(body_mass_g~recodedSpecies,data=pendata)
summary(penmod6)

Call:
lm(formula = body_mass_g ~ recodedSpecies, data = pendata)

Residuals:
     Min       1Q   Median       3Q      Max 
-1126.02  -333.09   -33.09   316.91  1223.98 

Coefficients:
                     Estimate Std. Error t value Pr(>|t|)    
(Intercept)           3733.09      56.06   66.59   <2e-16 ***
recodedSpeciesAdelie   -32.43      67.51   -0.48    0.631    
recodedSpeciesGentoo  1342.93      69.86   19.22   <2e-16 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 462.3 on 339 degrees of freedom
  (2 observations deleted due to missingness)
Multiple R-squared:  0.6697,    Adjusted R-squared:  0.6677 
F-statistic: 343.6 on 2 and 339 DF,  p-value: < 2.2e-16

Step 4: Specify the distribution of the errors and find the estimate of the variance

Step 5: Evaluate the Utility of the model

First we Perform the Global F Test:

  • Hypotheses:

    • \(H_0: \beta_1= \beta_2=\beta_3=0\) (the model is not adequate)
    • \(H_a\):at least one of \(\beta_1 , \beta_2 , \beta_3\) does not equal 0 (the model is adequate)
  • Distribution of test statistic: F with 3, 329 DF

  • Test Statistic: F=606.1

  • Pvalue: <2.2e-16

  • Decision: pvalue<0.05 -> REJECT H0

  • Conclusion: The model with species and sex is adequate at body mass for the penguins.

What terms can we test “individually?”

  • Species is determined by two parameters (SpeciesC and SpeciesG dummy variables), so we would want to keep or remove BOTH of those dummy variables. We will cover this later.

  • We can test sex because it is only one parameter in the model.

  • Hypotheses:

    • \(H_0: \beta_3=0\)
    • \(H_a:\beta_3 \neq 0\)
  • Distribution of test statistic: T with 329 DF

  • Test Statistic: t=19.236

  • Pvalue: <2.2e-16

  • Decision: pvalue<0.05 -> REJECT H0

  • Conclusion: The sex of the penguin is significant at predicting the body mass of a penguin given species is a constant in the model. We will keep it in the model.

Quantitative predictors

Note we can include both qualitative and quantitative predictors in the model.

penmod2<-lm(body_mass_g~species+sex+bill_depth_mm,data=pendata)
summary(penmod2)

Call:
lm(formula = body_mass_g ~ species + sex + bill_depth_mm, data = pendata)

Residuals:
   Min     1Q Median     3Q    Max 
-851.2 -187.7   -3.5  221.7  936.3 

Coefficients:
                 Estimate Std. Error t value Pr(>|t|)    
(Intercept)       1576.99     357.08   4.416 1.37e-05 ***
speciesChinstrap    19.44      44.87   0.433    0.665    
speciesGentoo     1721.70      77.88  22.106  < 2e-16 ***
sexmale            513.99      45.24  11.360  < 2e-16 ***
bill_depth_mm      102.04      20.22   5.046 7.48e-07 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 305.5 on 328 degrees of freedom
  (11 observations deleted due to missingness)
Multiple R-squared:  0.8578,    Adjusted R-squared:  0.8561 
F-statistic: 494.8 on 4 and 328 DF,  p-value: < 2.2e-16

Interpret the estimates

For each millimeter increase in bill depth, we expect the body weight of a penguin to increase by 102.04 grams, given species and sex are held constant.

Visualizing Quantative and Qualitative Variables

Create a scatter plot of the quantative varibale vs the response. Then label the observations by the qualitative variable.

plot(body_mass_g~bill_depth_mm , col=factor(species),data=pendata,xlab="Bill Depth",ylab="Body Mass (grams)") 
legend("topright",legend = levels(factor(pendata$species)), pch = 19,
       col = factor(levels(factor(pendata$species))))

NOTE: When we group the observations on the scatter plot for Bill Depth by species, the relationships for each level are positive, despite the overall negative trend. Also we see each species would have a similar slope, but different y-intercept.

Let’s suppose we simplify the model to just species and bill depth:

\(E(body mass)=\beta_0+\beta_1SpeciesC+ \beta_2SpeciesG+\beta_3 BillDepth\) , where SpeciesC= 1 if Chinstrap, 0 otherwise and SpeciesG = 1 if Gentoo, 0 otherwise

  • The body mass- bill depth y intercept for Adelie (SpeciesC=0,SpeciesG=0) will be: \(\beta_0\)
  • The body mass- bill depth y intercept for Chinstrap (SpeciesC=1,SpeciesG=0) will be: \(\beta_0+\beta_1\)
  • The body mass- bill depth y intercept for Gentoo (SpeciesC=0,SpeciesG=1) will be: \(\beta_0+\beta_2\)
  • All species will have the same body mass- bill depth slope of \(\beta_3\)

What if there were different slopes for each group? We will explore this next time!

Unit 2.2 Interactions

We will explore the various styles of interactions through several combinations of variables.

Qualitative X Quantitative

EDA: Grouped Scatter Plot (Species X Bill Depth)

If an interaction is present, we would note non-parallel (different) slopes for each level of the qualitative variable.

plot(body_mass_g~bill_depth_mm , col=factor(species),data=pendata,xlab="Bill Depth",ylab="Body Mass (grams)") 
legend("topright",legend = levels(factor(pendata$species)), pch = 19,
       col = factor(levels(factor(pendata$species))))

There does not appear to be strong evidence of an interaction because the bill depth-body mass slopes for each species appear to be the same.

How would these “different slopes” show up in the model?

Write a model for E(y) as a function of bill depth and species that hypothesizes different bill depth-body mass slopes for each species.

\(E(body mass)=\beta_0+\beta_1SpeciesC+ \beta_2SpeciesG+\beta_3 BillDepth\)

\(+\beta_4SpeciesC*BillDepth+ \beta_5SpeciesG*BillDepth\)

, where SpeciesC= 1 if Chinstrap, 0 otherwise and SpeciesG = 1 if Gentoo, 0 otherwise

  • The coefficient (slope) for BillDepth is \(\beta_3+\beta_4SpeciesC+ \beta_5SpeciesG\)
    • The bill depth-body mass slope for Adelie (SpeciesC=0,SpeciesG=0) will be: \(\beta_3\)

    • The bill depth-body mass slope for Chinstrap (SpeciesC=1,SpeciesG=0) will be: \(\beta_3+\beta_4\)

    • The bill depth-body mass slope for Gentoo (SpeciesC=0,SpeciesG=1) will be: \(\beta_3+\beta_5\)

    • In the last section we saw that by just including the dummy variables, we account for different y-intercepts for each species.

Fit the model with the interaction Species X Bill Depth

penmod3<-lm(body_mass_g~species+bill_depth_mm+species*bill_depth_mm,data=pendata)
summary(penmod3)

Call:
lm(formula = body_mass_g ~ species + bill_depth_mm + species * 
    bill_depth_mm, data = pendata)

Residuals:
    Min      1Q  Median      3Q     Max 
-845.89 -254.74  -28.46  228.01 1161.41 

Coefficients:
                               Estimate Std. Error t value Pr(>|t|)    
(Intercept)                     -283.28     437.94  -0.647   0.5182    
speciesChinstrap                 247.06     829.77   0.298   0.7661    
speciesGentoo                   -175.71     658.43  -0.267   0.7897    
bill_depth_mm                    217.15      23.82   9.117   <2e-16 ***
speciesChinstrap:bill_depth_mm   -12.53      45.01  -0.278   0.7809    
speciesGentoo:bill_depth_mm      152.29      40.49   3.761   0.0002 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 354.9 on 336 degrees of freedom
  (2 observations deleted due to missingness)
Multiple R-squared:  0.807, Adjusted R-squared:  0.8041 
F-statistic:   281 on 5 and 336 DF,  p-value: < 2.2e-16
#Note we can also simplify the syntax
penmod3a<-lm(body_mass_g~species*bill_depth_mm,data=pendata)
summary(penmod3a)

Call:
lm(formula = body_mass_g ~ species * bill_depth_mm, data = pendata)

Residuals:
    Min      1Q  Median      3Q     Max 
-845.89 -254.74  -28.46  228.01 1161.41 

Coefficients:
                               Estimate Std. Error t value Pr(>|t|)    
(Intercept)                     -283.28     437.94  -0.647   0.5182    
speciesChinstrap                 247.06     829.77   0.298   0.7661    
speciesGentoo                   -175.71     658.43  -0.267   0.7897    
bill_depth_mm                    217.15      23.82   9.117   <2e-16 ***
speciesChinstrap:bill_depth_mm   -12.53      45.01  -0.278   0.7809    
speciesGentoo:bill_depth_mm      152.29      40.49   3.761   0.0002 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 354.9 on 336 degrees of freedom
  (2 observations deleted due to missingness)
Multiple R-squared:  0.807, Adjusted R-squared:  0.8041 
F-statistic:   281 on 5 and 336 DF,  p-value: < 2.2e-16

Write the prediction equation

\(\widehat{body mass}=-283.28+247.06SpeciesC-175.71SpeciesG+217.15 BillDepth\)

\(-12.53SpeciesC*BillDepth+ 152.29SpeciesG*BillDepth\)

Interpret the slope for bill depth

  • The slope is estimated as \(217.15 -12.53SpeciesC+ 152.29SpeciesG\)
    • For a one millimeter increase in bill depth, the expected body mass will increase by 217.15 grams for the Adelie penguins.
    • For a one millimeter increase in bill depth, the expected body mass will increase by 204.62 (= 217.15-12.53) grams for the Chinstrap penguins.
    • For a one millimeter increase in bill depth, the expected body mass will increase by 369.44 (= 217.15+152.29) grams for the Gentoo penguins.

Qualitative X Qualitative

EDA: Interaction Plot (Sex X Species)

If an interaction is present, we would notice extreme crossing of levels. The relationship of one variable with the response DEPENDS on the other variable.

# We need to verify there are observations for every combination of level
table(pendata$species,pendata$sex)
           
            female male
  Adelie        73   73
  Chinstrap     34   34
  Gentoo        58   61
# We can plot interactions either way
interaction.plot(pendata$species, pendata$sex, pendata$body_mass_g,fun=mean,trace.label="Sex", xlab="Species",ylab="Mean Body Mass")

interaction.plot(pendata$sex, pendata$species, pendata$body_mass_g,fun=mean,trace.label="Species", xlab="Sex",ylab="Mean Body Mass")

There is not strong evidence of an interaction because there is not crossing of the levels.

Write a model for E(y) as a function of sex and species and its interaction.

\(E(body mass)=\beta_0+\beta_1SpeciesC+ \beta_2SpeciesG+\beta_3 SexM\)

\(+\beta_4SpeciesC*SexM+ \beta_5SpeciesG*SexM\)

, where SpeciesC= 1 if Chinstrap, 0 otherwise and SpeciesG = 1 if Gentoo, 0 otherwise, SexM= 1 if Male, 0 if female

  • There are many ways to interpret these betas. For instance, the average value of males’ body mass depends on the species. Or the average body mass of a particular species depends on the sex of the penguin. Remember qualitative variables do not have “slope” coefficients. Instead we interpret as the (difference in the) average value of y, given a combination of categorical levels.

Fit the model with the interaction Species X Sex

penmod4<-lm(body_mass_g~species+sex+species*sex,data=pendata)
summary(penmod4)

Call:
lm(formula = body_mass_g ~ species + sex + species * sex, data = pendata)

Residuals:
    Min      1Q  Median      3Q     Max 
-827.21 -213.97   11.03  206.51  861.03 

Coefficients:
                         Estimate Std. Error t value Pr(>|t|)    
(Intercept)               3368.84      36.21  93.030  < 2e-16 ***
speciesChinstrap           158.37      64.24   2.465  0.01420 *  
speciesGentoo             1310.91      54.42  24.088  < 2e-16 ***
sexmale                    674.66      51.21  13.174  < 2e-16 ***
speciesChinstrap:sexmale  -262.89      90.85  -2.894  0.00406 ** 
speciesGentoo:sexmale      130.44      76.44   1.706  0.08886 .  
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 309.4 on 327 degrees of freedom
  (11 observations deleted due to missingness)
Multiple R-squared:  0.8546,    Adjusted R-squared:  0.8524 
F-statistic: 384.3 on 5 and 327 DF,  p-value: < 2.2e-16
#Note we can use simplified syntax
penmod4a<-lm(body_mass_g~species*sex,data=pendata)
summary(penmod4a)

Call:
lm(formula = body_mass_g ~ species * sex, data = pendata)

Residuals:
    Min      1Q  Median      3Q     Max 
-827.21 -213.97   11.03  206.51  861.03 

Coefficients:
                         Estimate Std. Error t value Pr(>|t|)    
(Intercept)               3368.84      36.21  93.030  < 2e-16 ***
speciesChinstrap           158.37      64.24   2.465  0.01420 *  
speciesGentoo             1310.91      54.42  24.088  < 2e-16 ***
sexmale                    674.66      51.21  13.174  < 2e-16 ***
speciesChinstrap:sexmale  -262.89      90.85  -2.894  0.00406 ** 
speciesGentoo:sexmale      130.44      76.44   1.706  0.08886 .  
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 309.4 on 327 degrees of freedom
  (11 observations deleted due to missingness)
Multiple R-squared:  0.8546,    Adjusted R-squared:  0.8524 
F-statistic: 384.3 on 5 and 327 DF,  p-value: < 2.2e-16

Write the prediction equation

\(\widehat{body mass}=3368.84+158.37SpeciesC+1310.91SpeciesG+674.66 SexM\)

\(-262.89SpeciesC*SexM+ 130.44SpeciesG*SexM\)

Plug in the appropriate 1s and 0s for the dummy variables to interpret the coefficients.

  • The average body mass for Adelie female penguins is 3368.84 grams.

  • The estimated mean body mass for Chinstrap penguins is (158.31-262.89)=104.58 grams lower than Adelie penguins, for male penguins.

  • The estimated mean body mass for Chinstrap penguins is 158.31 grams lower than Adelie penguins, for female penguins.

  • The estimated mean body mass for Gentoo penguins is (1310.91+130.44)=1441.35 grams higher than Adelie penguins, for male penguins.

  • The estimated mean body mass for Gentoo penguins is 1310.91 grams higher than Adelie penguins, for female penguins.

  • The estimated mean body mass for male penguins is (674.66-262.89)=411.77 grams higher than female penguins, for Chinstrap penguins.

  • The estimated mean body mass for male penguins is (674.66+130.44)=805.1 grams higher than female penguins, for Gentoo penguins.

  • The estimated mean body mass for male penguins is 674.66 grams higher than female penguins, for Adelie penguins.

Quantitative X Quantitative

EDA: There is none (Bill Length X Bill Depth)

There is no visualization for two quantitative variables having an interaction. We base our justificaiton off of intuition or research.

Write a model for E(y) as a function of bill depth and bill length that allows for an interaction.

\(E(body mass)=\beta_0+\beta_1BillLength+\beta_2 BillDepth\)

\(+\beta_3BillLength*BillDepth\)

  • The coefficient (slope) for BillLength is \(\beta_1+\beta_3BillDepth\)
  • The coefficient (slope) for BillDepth is \(\beta_2+\beta_3BillLength\)

Fit the model with the interaction Bill Length X Bill Depth

penmod5<-lm(body_mass_g~bill_length_mm+bill_depth_mm+bill_length_mm*bill_depth_mm,data=pendata)
summary(penmod5)

Call:
lm(formula = body_mass_g ~ bill_length_mm + bill_depth_mm + bill_length_mm * 
    bill_depth_mm, data = pendata)

Residuals:
     Min       1Q   Median       3Q      Max 
-1811.29  -355.81     4.35   354.80  1606.90 

Coefficients:
                               Estimate Std. Error t value Pr(>|t|)    
(Intercept)                  -25583.278   2668.939  -9.586   <2e-16 ***
bill_length_mm                  715.006     58.681  12.185   <2e-16 ***
bill_depth_mm                  1484.934    149.405   9.939   <2e-16 ***
bill_length_mm:bill_depth_mm    -36.079      3.297 -10.944   <2e-16 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 503.5 on 338 degrees of freedom
  (2 observations deleted due to missingness)
Multiple R-squared:  0.6093,    Adjusted R-squared:  0.6058 
F-statistic: 175.7 on 3 and 338 DF,  p-value: < 2.2e-16
#We can used shortened syntax
penmod5a<-lm(body_mass_g~bill_length_mm*bill_depth_mm,data=pendata)
summary(penmod5a)

Call:
lm(formula = body_mass_g ~ bill_length_mm * bill_depth_mm, data = pendata)

Residuals:
     Min       1Q   Median       3Q      Max 
-1811.29  -355.81     4.35   354.80  1606.90 

Coefficients:
                               Estimate Std. Error t value Pr(>|t|)    
(Intercept)                  -25583.278   2668.939  -9.586   <2e-16 ***
bill_length_mm                  715.006     58.681  12.185   <2e-16 ***
bill_depth_mm                  1484.934    149.405   9.939   <2e-16 ***
bill_length_mm:bill_depth_mm    -36.079      3.297 -10.944   <2e-16 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 503.5 on 338 degrees of freedom
  (2 observations deleted due to missingness)
Multiple R-squared:  0.6093,    Adjusted R-squared:  0.6058 
F-statistic: 175.7 on 3 and 338 DF,  p-value: < 2.2e-16

\(\widehat{body mass}=-25583.278+715.006BillLength+1484.934 BillDepth-36.079 BillLength*BillDepth\)

Suppose a penguin has a bill depth of 17mm. What is the slope of bill length?

  • The slope estimate for BillLength is \(715.006-36.079*BillDepth\). When bill depth is 17, our slope is \(715.006-36.079*17= 101.663\). Therefore, for a one millimeter increase in bill length, the expected body mass will increase by 101.66 grams when bill depth is held constant at 17mm.

Unit 2.3: A Complete Analysis

Step 1: Collect the Data

Check the appropriateness of response variable for regression: View a histogram of response variable. It should be continuous, and approximately unimodal and symmetric, with few outliers.

pendata<-read.csv("https://raw.githubusercontent.com/kvaranyak4/STAT3220/main/penguins.csv")
head(pendata)
names(pendata)
## [1] "X"                 "species"           "island"           
## [4] "bill_length_mm"    "bill_depth_mm"     "flipper_length_mm"
## [7] "body_mass_g"       "sex"               "year"
hist(pendata$body_mass_g, xlab="Body Mass", main="Histogram of Body Mass (in grams)") 

Step 2: Hypothesize Relationship (Exploratory Data Analysis)

We will explore the relationship with quantitative variables with scatter plots and correlations and classify each relationship as linear, curvilinear, or none. We explore the box plots and means for each qualitative variable explanatory variable then classify the relationships as existent or not. Additionally, we can explore interactions.

#Scatter plots for quantitative variables
for (i in names(pendata)[4:6]) {
  plot(pendata[,i], pendata$body_mass_g,xlab=i,ylab="Body Mass (grams)")
}

#Correlations for quantitative variables
round(cor(pendata[4:6],pendata$body_mass_g,use="complete.obs"),3)
                    [,1]
bill_length_mm     0.595
bill_depth_mm     -0.472
flipper_length_mm  0.871
#Summary Statistics for response variable grouped by each level of the response
tapply(pendata$body_mass_g,pendata$species,summary)
$Adelie
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max.    NA's 
   2850    3350    3700    3701    4000    4775       1 

$Chinstrap
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
   2700    3488    3700    3733    3950    4800 

$Gentoo
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max.    NA's 
   3950    4700    5000    5076    5500    6300       1 
tapply(pendata$body_mass_g,pendata$sex,summary)
$female
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
   2700    3350    3650    3862    4550    5200 

$male
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
   3250    3900    4300    4546    5312    6300 
#Box plots for Qualitative species and sex
boxplot(body_mass_g~species,pendata, ylab="Body Mass (grams)")

boxplot(body_mass_g~sex,pendata, ylab="Body Mass (grams)")

# Interactions for species X Sex We need to verify there are observations for every combination of level
table(pendata$species,pendata$sex)
           
            female male
  Adelie        73   73
  Chinstrap     34   34
  Gentoo        58   61
# plot interaction for Species X Sex
interaction.plot(pendata$species, pendata$sex, pendata$body_mass_g,fun=mean,trace.label="Sex", xlab="Species",ylab="Mean Body Mass")

# Interaction between Bill Depth X Species
plot(body_mass_g~bill_depth_mm , col=factor(species),data=pendata,xlab="Bill Depth",ylab="Body Mass (grams)") 
legend("topright",legend = levels(factor(pendata$species)), pch = 19,
       col = factor(levels(factor(pendata$species))))

# Interaction bill depth/sex
plot(body_mass_g~bill_depth_mm , col=factor(sex),data=pendata,xlab="Bill Depth",ylab="Body Mass (grams)") 
legend("topright",
       legend = levels(factor(pendata$sex)),
       pch = 19,
       col = factor(levels(factor(pendata$sex))))

# Interaction bill length/species
plot(body_mass_g~bill_length_mm , col=factor(species),data=pendata,xlab="Bill Length",ylab="Body Mass (grams)") 
legend("topright",
       legend = levels(factor(pendata$species)),
       pch = 19,
       col = factor(levels(factor(pendata$species))))

# Interaction bill length/sex
plot(body_mass_g~bill_length_mm , col=factor(sex),data=pendata,xlab="Bill Length",ylab="Body Mass (grams)") 
legend("topright",
       legend = levels(factor(pendata$sex)),
       pch = 19,
       col = factor(levels(factor(pendata$sex))))

# Interaction flipper length/species
plot(body_mass_g~flipper_length_mm , col=factor(species),data=pendata,xlab="Flipper Length",ylab="Body Mass (grams)") 
legend("topright",
       legend = levels(factor(pendata$species)),
       pch = 19,
       col = factor(levels(factor(pendata$species))))

# Interaction flipper/sex
plot(body_mass_g~flipper_length_mm , col=factor(sex),data=pendata,xlab="Flipper Length",ylab="Body Mass (grams)") 
legend("topright",
       legend = levels(factor(pendata$sex)),
       pch = 19,
       col = factor(levels(factor(pendata$sex))))

  • There appears to be relationships with each of the qualitative explanatory variables (Species and sex) because the mean value of y is different for each level.

  • bill length and flipper length have positive linear relationships with the response.

  • bill depth has a negative relationship. however it appears there might be groups in within with positive relationship.

  • The only interaction that appears to be relevant in EDA is Bill Depth X Species

Step 3: Estimate the model parameters (fit the model using R)

Quantitative Variables

First we will add the quantitative variables of interest and the QUANT X QUANT interactions that we believe may be important. Here, we believe Bill Depth X Bill Length may be a useful interaction.

\(E(bodymass)=\beta_0+\beta_1BillDep+\beta_2BillLen+\beta_3FlipperLen+\beta_7BillDep*BillLen\)

penmod1f<-lm(body_mass_g~bill_depth_mm+bill_length_mm+flipper_length_mm+bill_depth_mm*bill_length_mm,data=pendata)
summary(penmod1f)

Call:
lm(formula = body_mass_g ~ bill_depth_mm + bill_length_mm + flipper_length_mm + 
    bill_depth_mm * bill_length_mm, data = pendata)

Residuals:
     Min       1Q   Median       3Q      Max 
-1161.66  -252.74   -39.99   239.65  1139.91 

Coefficients:
                               Estimate Std. Error t value Pr(>|t|)    
(Intercept)                  -20370.313   1960.714 -10.389  < 2e-16 ***
bill_depth_mm                   858.001    114.277   7.508 5.42e-13 ***
bill_length_mm                  352.102     47.415   7.426 9.25e-13 ***
flipper_length_mm                43.350      2.486  17.441  < 2e-16 ***
bill_depth_mm:bill_length_mm    -19.071      2.585  -7.379 1.26e-12 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 365.6 on 337 degrees of freedom
  (2 observations deleted due to missingness)
Multiple R-squared:  0.7946,    Adjusted R-squared:  0.7922 
F-statistic:   326 on 4 and 337 DF,  p-value: < 2.2e-16

Start with Global F test

  • Hypotheses:

    • \(H_0: \beta_1= \beta_2=\beta_3=\beta_4=0\) (the model is not adequate)
    • \(H_a\):at least one of \(\beta_1 , \beta_2 , \beta_3,\beta_4\) does not equal 0 (the model is adequate)
  • Distribution of test statistic: F with 4, 337 DF

  • Test Statistic: F=326

  • Pvalue: <0.0001

  • Decision: 0.0001<0.05 -> REJECT H0

  • Conclusion: The model with bill depth, bill length, flipper length, and the interaction of bill length and bill depth is adequate at predicting the body mass of penguins.

Test the “most important predictors”: Is the interaction significant?: We look at a t-test here because this interaction accounts for just one parameter.

  • Hypotheses:
    • \(H_0: \beta_4=0\) (the interaction does not contribute to predicting body mass)
    • \(H_a:\beta_4 \neq 0\) (the interaction contributes to predicting body mass)
  • Distribution of test statistic: T with 337 DF
  • Test Statistic: t=-7.379
  • Pvalue: <0.0001
  • Decision: <0.0001<0.05 -> REJECT H0
  • Conclusion: The interaction between bill depth and bill length is significant at predicting body mass of penguins.

We will not do any further testing as we do not have another variables of interest.

Qualitative variables

We will add the qualitative variables to the model. We did not believe the interaction between species and sex looked important, so we will not add it.

penmod2f<-lm(body_mass_g~bill_depth_mm+bill_length_mm+flipper_length_mm+bill_depth_mm*bill_length_mm+species+sex,data=pendata)
summary(penmod2f)

Call:
lm(formula = body_mass_g ~ bill_depth_mm + bill_length_mm + flipper_length_mm + 
    bill_depth_mm * bill_length_mm + species + sex, data = pendata)

Residuals:
    Min      1Q  Median      3Q     Max 
-706.90 -175.12   -6.14  176.80  880.08 

Coefficients:
                              Estimate Std. Error t value Pr(>|t|)    
(Intercept)                  -6290.446   1832.633  -3.432 0.000675 ***
bill_depth_mm                  333.924     98.231   3.399 0.000760 ***
bill_length_mm                 130.274     41.058   3.173 0.001653 ** 
flipper_length_mm               16.535      2.888   5.725 2.35e-08 ***
speciesChinstrap              -200.763     82.322  -2.439 0.015273 *  
speciesGentoo                  923.788    132.379   6.978 1.68e-11 ***
sexmale                        391.603     47.370   8.267 3.55e-15 ***
bill_depth_mm:bill_length_mm    -6.344      2.290  -2.770 0.005919 ** 
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 284.4 on 325 degrees of freedom
  (11 observations deleted due to missingness)
Multiple R-squared:  0.8778,    Adjusted R-squared:  0.8752 
F-statistic: 333.7 on 7 and 325 DF,  p-value: < 2.2e-16

NOTE: The model that is fit to match this syntax is:

It is ordered this way despite the order in the lm() function because R builds the model with first order terms listed first

\(E(bodymass)=\beta_0+\beta_1BillDep+\beta_2BillLen+\beta_3FlipperLen+\beta_4SpeciesC+\beta_5SpeciesG+\beta_6SexM+\beta_7BillDep*BillLen\)

  • where Species C= 1 if Chinstrap, 0 otherwise
  • SpeciesG = 1 if Gentoo, 0 otherwise
  • SexM = 1 if male, 0 otherwise

Test the “most important predictors”: Is the species significant?: We look at a nested f test here because species accounts for two parameters.

#fit the reduced model
redpenmod2f<-lm(body_mass_g~bill_depth_mm+bill_length_mm+flipper_length_mm+bill_depth_mm*bill_length_mm+sex,data=pendata)
summary(redpenmod2f)

Call:
lm(formula = body_mass_g ~ bill_depth_mm + bill_length_mm + flipper_length_mm + 
    bill_depth_mm * bill_length_mm + sex, data = pendata)

Residuals:
     Min       1Q   Median       3Q      Max 
-1027.84  -216.45   -26.22   200.94   903.55 

Coefficients:
                               Estimate Std. Error t value Pr(>|t|)    
(Intercept)                  -14086.152   1833.599  -7.682 1.83e-13 ***
bill_depth_mm                   610.319    103.472   5.898 9.16e-09 ***
bill_length_mm                  283.535     42.278   6.707 8.77e-11 ***
flipper_length_mm                34.146      2.396  14.253  < 2e-16 ***
sexmale                         492.047     49.009  10.040  < 2e-16 ***
bill_depth_mm:bill_length_mm    -15.633      2.300  -6.798 5.03e-11 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 319.5 on 327 degrees of freedom
  (11 observations deleted due to missingness)
Multiple R-squared:  0.8449,    Adjusted R-squared:  0.8426 
F-statistic: 356.3 on 5 and 327 DF,  p-value: < 2.2e-16
#syntax for nested test is anova(REDUCED,COMPLETE)
anova(redpenmod2f,penmod2f)
  • Hypotheses:
    • \(H_0: \beta_4=\beta_5=0\) (the species does not contribute to predicting body mass)
    • \(H_a:\beta_4, \beta_5 \neq 0\) (the species contributes to predicting body mass)
  • Distribution of test statistic: F 2 with 325 DF
  • Test Statistic: F=43.795
  • Pvalue: <0.0001
  • Decision: <0.0001<0.05 -> REJECT H0
  • Conclusion: The species is significant at predicting body mass of penguins. We will keep both dummy variables in the model and not test them individually.

We will not do any further testing as we did not have another variable of interest.

Qual X Quant Interaction

We will add the interaction between bill depth and species because we thought that looked most important.

penmod3f<-lm(body_mass_g~bill_depth_mm+bill_length_mm+flipper_length_mm+bill_depth_mm*bill_length_mm+species+sex+species*bill_depth_mm,data=pendata)
summary(penmod3f)

Call:
lm(formula = body_mass_g ~ bill_depth_mm + bill_length_mm + flipper_length_mm + 
    bill_depth_mm * bill_length_mm + species + sex + species * 
    bill_depth_mm, data = pendata)

Residuals:
    Min      1Q  Median      3Q     Max 
-763.71 -170.22   -3.61  167.06  887.00 

Coefficients:
                                Estimate Std. Error t value Pr(>|t|)    
(Intercept)                    -4562.344   2259.560  -2.019   0.0443 *  
bill_depth_mm                    241.956    126.493   1.913   0.0567 .  
bill_length_mm                    90.930     55.312   1.644   0.1012    
flipper_length_mm                 15.946      2.924   5.453 9.88e-08 ***
speciesChinstrap                 742.233    911.667   0.814   0.4162    
speciesGentoo                    400.335    584.241   0.685   0.4937    
sexmale                          386.571     47.305   8.172 6.96e-15 ***
bill_depth_mm:bill_length_mm      -4.100      3.160  -1.298   0.1953    
bill_depth_mm:speciesChinstrap   -52.218     51.172  -1.020   0.3083    
bill_depth_mm:speciesGentoo       38.098     36.315   1.049   0.2949    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 283.6 on 323 degrees of freedom
  (11 observations deleted due to missingness)
Multiple R-squared:  0.8793,    Adjusted R-squared:  0.876 
F-statistic: 261.6 on 9 and 323 DF,  p-value: < 2.2e-16

NOTE: The model that is fit to match this syntax is:

\(E(bodymass)=\beta_0+\beta_1BillDep+\beta_2BillLen+\beta_3FlipperLen+\beta_4SpeciesC+\beta_5SpeciesG+\beta_6SexM+\beta_7BillDep*BillLen+\beta_8SpeciesC*BillDep+\beta_9SpeciesG*BillDep\)

  • where Species C= 1 if Chinstrap, 0 otherwise
  • SpeciesG = 1 if Gentoo, 0 otherwise
  • SexM = 1 if male, 0 otherwise

Test the “most important predictors”: Is the species X bill depth interaction significant?: We look at a nested f test here because this interaction accounts for two parameters.

# updated reduced model
redpenmod3f<-lm(body_mass_g~bill_depth_mm+bill_length_mm+flipper_length_mm+bill_depth_mm*bill_length_mm+species+sex,data=pendata)
summary(redpenmod3f)

Call:
lm(formula = body_mass_g ~ bill_depth_mm + bill_length_mm + flipper_length_mm + 
    bill_depth_mm * bill_length_mm + species + sex, data = pendata)

Residuals:
    Min      1Q  Median      3Q     Max 
-706.90 -175.12   -6.14  176.80  880.08 

Coefficients:
                              Estimate Std. Error t value Pr(>|t|)    
(Intercept)                  -6290.446   1832.633  -3.432 0.000675 ***
bill_depth_mm                  333.924     98.231   3.399 0.000760 ***
bill_length_mm                 130.274     41.058   3.173 0.001653 ** 
flipper_length_mm               16.535      2.888   5.725 2.35e-08 ***
speciesChinstrap              -200.763     82.322  -2.439 0.015273 *  
speciesGentoo                  923.788    132.379   6.978 1.68e-11 ***
sexmale                        391.603     47.370   8.267 3.55e-15 ***
bill_depth_mm:bill_length_mm    -6.344      2.290  -2.770 0.005919 ** 
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 284.4 on 325 degrees of freedom
  (11 observations deleted due to missingness)
Multiple R-squared:  0.8778,    Adjusted R-squared:  0.8752 
F-statistic: 333.7 on 7 and 325 DF,  p-value: < 2.2e-16
anova(redpenmod3f,penmod3f)
  • Hypotheses:
    • \(H_0: \beta_8=\beta_9=0\) (the interaction does not contribute to predicting body mass)
    • \(H_a:\beta_8, \beta_9 \neq 0\) (the interaction contributes to predicting body mass)
  • Distribution of test statistic: F 2 with 323 DF
  • Test Statistic: F=1.99
  • Pvalue: 0.137
  • Decision: 0.137>0.05 -> FAIL TO REJECT H0
  • Conclusion: The interaction between species and bill depth is not significant at predicting body mass of penguins. We will remove it from the model.

We will not do any further testing as we did not have another variable of interest.

Our final model is:

\(E(bodymass)=\beta_0+\beta_1BillDep+\beta_2BillLen+\beta_3FlipperLen+\beta_4SpeciesC+\beta_5SpeciesG+\beta_6SexM+\beta_7BillDep*BillLen\)

  • where Species C= 1 if Chinstrap, 0 otherwise
  • SpeciesG = 1 if Gentoo, 0 otherwise
  • SexM = 1 if male, 0 otherwise

Interpret the estimates

penmod2f<-lm(body_mass_g~bill_depth_mm+bill_length_mm+flipper_length_mm+bill_depth_mm*bill_length_mm+species+sex,data=pendata)
summary(penmod2f)

Call:
lm(formula = body_mass_g ~ bill_depth_mm + bill_length_mm + flipper_length_mm + 
    bill_depth_mm * bill_length_mm + species + sex, data = pendata)

Residuals:
    Min      1Q  Median      3Q     Max 
-706.90 -175.12   -6.14  176.80  880.08 

Coefficients:
                              Estimate Std. Error t value Pr(>|t|)    
(Intercept)                  -6290.446   1832.633  -3.432 0.000675 ***
bill_depth_mm                  333.924     98.231   3.399 0.000760 ***
bill_length_mm                 130.274     41.058   3.173 0.001653 ** 
flipper_length_mm               16.535      2.888   5.725 2.35e-08 ***
speciesChinstrap              -200.763     82.322  -2.439 0.015273 *  
speciesGentoo                  923.788    132.379   6.978 1.68e-11 ***
sexmale                        391.603     47.370   8.267 3.55e-15 ***
bill_depth_mm:bill_length_mm    -6.344      2.290  -2.770 0.005919 ** 
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 284.4 on 325 degrees of freedom
  (11 observations deleted due to missingness)
Multiple R-squared:  0.8778,    Adjusted R-squared:  0.8752 
F-statistic: 333.7 on 7 and 325 DF,  p-value: < 2.2e-16
confint(penmod2f)
                                   2.5 %      97.5 %
(Intercept)                  -9895.76579 -2685.12579
bill_depth_mm                  140.67493   527.17252
bill_length_mm                  49.49987   211.04754
flipper_length_mm               10.85320    22.21621
speciesChinstrap              -362.71468   -38.81151
speciesGentoo                  663.36072  1184.21605
sexmale                        298.41317   484.79374
bill_depth_mm:bill_length_mm   -10.84883    -1.83918

Step 4: Specify the distribution of the errors and find the estimate of the variance

  • \(\epsilon \overset{\mathrm{iid}}{\sim} N(0,\sigma^2 )\)
  • estimate of \(\sigma\) is \(\sqrt{MSE}=284.4\)
  • Approximately 95% of our predictions will be within 2*284.4=568.8 grams of the actual body mass for the penguins.

Step 5: Evaluate the Utility of the model

First we Perform the Global F Test:

  • Hypotheses:

    • \(H_0: \beta_1= ...=\beta_7=0\) (the model is not adequate)
    • \(H_a\):at least one of \(\beta_1 , ... \beta_7\) does not equal 0 (the model is adequate)
  • Distribution of test statistic: F with 7,325 DF

  • Test Statistic: F=333.7

  • Pvalue: <2.2e-16

  • Decision: pvalue<0.05 -> REJECT H0

  • Conclusion: The model is adequate at body mass for the penguins.

Further Assessment:

  • Adjusted R-Sq: 0.87 ( it is close to R2, which indicates a good fit)
    • 87.5% of the variation in body explained by the model with bill depth, bill length, flipper length, species, sex, and the interaction between bill depth and bill length.
  • Confidence Interval for Betas Do they appear wide or narrow?

Step 6: Check the Model Assumptions

We will cover this in Unit 3

Step 7: Use the model for prediction or estimation

# Or we can create a data frame with the new values.
newpen<-data.frame(bill_depth_mm=17,bill_length_mm=40,flipper_length_mm=205,species="Gentoo",sex="female")
newpen
predict(penmod2f,newpen, interval="prediction")
       fit      lwr      upr
1 4596.685 4009.935 5183.436

We are 95% confident that a penguin with a bill depth of 17, bill length of 40, flipper length of 205, Gentoo species, and female to have a body mass between 4009.935 and 5183 grams.