Ph.D. Cpurse Work -2024 on Quantitative Methods

Day 6-7 material

———————————————————————–

library(dplyr)
## 
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union
library(tidyverse)
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ forcats   1.0.0     ✔ readr     2.1.5
## ✔ ggplot2   3.5.1     ✔ stringr   1.5.1
## ✔ lubridate 1.9.3     ✔ tibble    3.2.1
## ✔ purrr     1.0.2     ✔ tidyr     1.3.1
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag()    masks stats::lag()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
library(ggplot2)
library(gridExtra)
## 
## Attaching package: 'gridExtra'
## 
## The following object is masked from 'package:dplyr':
## 
##     combine
# Meaning of Probability
prob=c()

trial=seq(10,2000,10)
for (n in trial){
  hc=0
  for (i in 1:n){
    r=sample(0:1,1) #randomly select 1(head) or 0(tail)
    if (r==1){
      hc=hc+1 #increment the hc variable if head occurs 
    }
  pct=round(hc/n,3) #probability of occurring head after n trials 
  }
  prob=c(prob,pct) # probality of occuring head for different value of n
}
#Create the data frame
df1=data.frame(trial,prob)
# Create the column names
names(df1)=c("n","Prob")
df1
##        n  Prob
## 1     10 0.700
## 2     20 0.350
## 3     30 0.433
## 4     40 0.550
## 5     50 0.400
## 6     60 0.433
## 7     70 0.443
## 8     80 0.462
## 9     90 0.433
## 10   100 0.380
## 11   110 0.645
## 12   120 0.458
## 13   130 0.554
## 14   140 0.493
## 15   150 0.560
## 16   160 0.506
## 17   170 0.559
## 18   180 0.500
## 19   190 0.521
## 20   200 0.485
## 21   210 0.476
## 22   220 0.477
## 23   230 0.565
## 24   240 0.446
## 25   250 0.492
## 26   260 0.577
## 27   270 0.456
## 28   280 0.489
## 29   290 0.507
## 30   300 0.457
## 31   310 0.481
## 32   320 0.503
## 33   330 0.533
## 34   340 0.485
## 35   350 0.489
## 36   360 0.525
## 37   370 0.514
## 38   380 0.513
## 39   390 0.456
## 40   400 0.527
## 41   410 0.498
## 42   420 0.514
## 43   430 0.467
## 44   440 0.520
## 45   450 0.467
## 46   460 0.520
## 47   470 0.483
## 48   480 0.502
## 49   490 0.504
## 50   500 0.500
## 51   510 0.488
## 52   520 0.477
## 53   530 0.479
## 54   540 0.506
## 55   550 0.522
## 56   560 0.523
## 57   570 0.491
## 58   580 0.490
## 59   590 0.459
## 60   600 0.490
## 61   610 0.498
## 62   620 0.521
## 63   630 0.508
## 64   640 0.498
## 65   650 0.463
## 66   660 0.480
## 67   670 0.463
## 68   680 0.482
## 69   690 0.528
## 70   700 0.507
## 71   710 0.490
## 72   720 0.493
## 73   730 0.501
## 74   740 0.514
## 75   750 0.516
## 76   760 0.496
## 77   770 0.496
## 78   780 0.512
## 79   790 0.530
## 80   800 0.506
## 81   810 0.499
## 82   820 0.498
## 83   830 0.489
## 84   840 0.505
## 85   850 0.518
## 86   860 0.510
## 87   870 0.460
## 88   880 0.502
## 89   890 0.511
## 90   900 0.498
## 91   910 0.510
## 92   920 0.520
## 93   930 0.492
## 94   940 0.520
## 95   950 0.502
## 96   960 0.520
## 97   970 0.515
## 98   980 0.511
## 99   990 0.481
## 100 1000 0.465
## 101 1010 0.515
## 102 1020 0.508
## 103 1030 0.502
## 104 1040 0.488
## 105 1050 0.479
## 106 1060 0.493
## 107 1070 0.480
## 108 1080 0.523
## 109 1090 0.509
## 110 1100 0.512
## 111 1110 0.522
## 112 1120 0.497
## 113 1130 0.487
## 114 1140 0.493
## 115 1150 0.523
## 116 1160 0.470
## 117 1170 0.509
## 118 1180 0.493
## 119 1190 0.504
## 120 1200 0.502
## 121 1210 0.501
## 122 1220 0.503
## 123 1230 0.468
## 124 1240 0.519
## 125 1250 0.495
## 126 1260 0.490
## 127 1270 0.494
## 128 1280 0.498
## 129 1290 0.495
## 130 1300 0.495
## 131 1310 0.505
## 132 1320 0.485
## 133 1330 0.479
## 134 1340 0.505
## 135 1350 0.505
## 136 1360 0.485
## 137 1370 0.502
## 138 1380 0.492
## 139 1390 0.462
## 140 1400 0.503
## 141 1410 0.470
## 142 1420 0.501
## 143 1430 0.497
## 144 1440 0.489
## 145 1450 0.501
## 146 1460 0.498
## 147 1470 0.478
## 148 1480 0.518
## 149 1490 0.485
## 150 1500 0.490
## 151 1510 0.478
## 152 1520 0.505
## 153 1530 0.505
## 154 1540 0.516
## 155 1550 0.508
## 156 1560 0.504
## 157 1570 0.499
## 158 1580 0.487
## 159 1590 0.481
## 160 1600 0.477
## 161 1610 0.486
## 162 1620 0.499
## 163 1630 0.505
## 164 1640 0.491
## 165 1650 0.487
## 166 1660 0.521
## 167 1670 0.515
## 168 1680 0.485
## 169 1690 0.520
## 170 1700 0.500
## 171 1710 0.488
## 172 1720 0.502
## 173 1730 0.499
## 174 1740 0.511
## 175 1750 0.482
## 176 1760 0.506
## 177 1770 0.497
## 178 1780 0.456
## 179 1790 0.494
## 180 1800 0.491
## 181 1810 0.501
## 182 1820 0.493
## 183 1830 0.511
## 184 1840 0.515
## 185 1850 0.511
## 186 1860 0.498
## 187 1870 0.505
## 188 1880 0.484
## 189 1890 0.501
## 190 1900 0.486
## 191 1910 0.481
## 192 1920 0.507
## 193 1930 0.505
## 194 1940 0.514
## 195 1950 0.492
## 196 1960 0.484
## 197 1970 0.485
## 198 1980 0.501
## 199 1990 0.497
## 200 2000 0.488
#Draw the line graph no of trails(n) vs probability
ggplot(df1)+
  geom_line(mapping=aes(x=n,y=Prob),color="blue")+
  geom_abline(slope=0,intercept = 0.5,colour="red")

#Binomial Distribution 
#No of trials=t
# Two outcomes: Success(Occurring head), Failure(Occurring tail)
#no of success=n. 
#Probability of success is p = 0.5

n=10
v=rep(0,n) #The vector v stores the no of heads
print(v)
##  [1] 0 0 0 0 0 0 0 0 0 0
t=20000
for (j in 1:t){
  hn=0  # Initially the no of heads is 0
  for (i in 1:n){
    x=sample(0:1,1) #random selection of one outcome(head) from two(head and tail) makes the probability of success=0.5 
    if (x==1){
      hn=hn+1 #increase the hc which denotes head count
    }
  }
  v[hn]=v[hn]+1 #Uodating the vector v
}
df=data.frame(1:n,v)
names(df)=c("hc","no")
df
##    hc   no
## 1   1  159
## 2   2  876
## 3   3 2326
## 4   4 4044
## 5   5 4907
## 6   6 4126
## 7   7 2389
## 8   8  917
## 9   9  211
## 10 10   18
df=df%>%mutate(prob=no/t)
df
##    hc   no    prob
## 1   1  159 0.00795
## 2   2  876 0.04380
## 3   3 2326 0.11630
## 4   4 4044 0.20220
## 5   5 4907 0.24535
## 6   6 4126 0.20630
## 7   7 2389 0.11945
## 8   8  917 0.04585
## 9   9  211 0.01055
## 10 10   18 0.00090
#Draw the bar chart which displays binomial distribution where n=10 and p=0.5
ggplot(df)+
  geom_bar(aes(x=hc,y=prob),stat="identity")

#Calculate the parameters of binomial distribution
#mean=no of success(n)*Probability of success(p)
#standard deviation=n*p*(1-p)
meanb=n*0.5
sdb=n*0.5*(1-0.5)
meanb # Note that the graph also shows the mean =5
## [1] 5
sdb
## [1] 2.5
#Binomial distribution in r
x=10 #No of successes
size=100 #No of trials
prob=0.5 #Probability of success)
#dbinom(x,size,prob) gives the probability of 
  #exactly x no of success in size no of 
  #trials where the probability of success = prob
dbinom(x,size,prob) #Probability of getting exactly 10 heads out of 100 toss and probability of getting head =0.5 
## [1] 1.365543e-17
#pbinom(x,size,prob) gives the probability of 
  #atleast x no of success in size no of 
  #trials where the probability of success = prob
pbinom(x,size,prob) #Probability of getting atleast 10 heads out of 100 toss and probability of getting head =0.5
## [1] 1.531645e-17
#rbinom(n,size,prob) gives a sample of n 
  #items which follows a binomial distribution 
  #with parameter size and probability p 
rbinom(1000,size,prob) # selecting sample of 1000 items
##    [1] 46 54 47 40 52 49 53 46 53 49 42 62 51 47 49 45 51 53 53 43 51 48 54 49
##   [25] 56 43 43 46 47 48 42 39 44 50 46 52 48 51 54 46 55 49 45 46 49 51 55 49
##   [49] 55 56 46 50 47 51 49 52 44 57 60 53 50 55 47 42 54 57 56 54 55 55 51 52
##   [73] 53 59 45 55 44 53 52 55 46 55 57 59 60 56 48 53 50 52 55 49 42 56 47 53
##   [97] 39 45 54 53 52 52 57 52 54 49 52 39 36 47 44 56 47 50 51 51 48 37 54 56
##  [121] 43 53 50 48 48 54 48 55 49 56 55 44 48 45 59 56 58 46 43 54 54 50 54 49
##  [145] 52 50 56 52 49 55 51 53 45 50 47 50 43 49 59 58 49 53 49 44 55 47 42 45
##  [169] 49 50 54 51 52 40 48 54 45 57 53 51 51 50 55 54 52 51 48 52 46 48 51 49
##  [193] 48 50 51 48 50 50 54 48 53 48 47 48 53 44 46 55 51 52 45 48 44 50 45 54
##  [217] 48 47 44 53 44 49 52 53 53 54 55 61 48 36 54 57 48 57 54 51 50 51 46 47
##  [241] 42 48 50 53 58 46 56 47 56 50 50 51 43 51 56 49 56 49 43 49 52 40 51 47
##  [265] 49 45 43 45 53 48 52 45 50 57 45 53 57 57 57 46 54 53 46 44 52 49 43 50
##  [289] 50 46 54 47 54 57 41 43 53 51 50 62 52 49 44 48 47 54 50 57 53 53 45 44
##  [313] 53 58 55 42 43 48 49 41 52 49 47 58 50 55 50 55 50 53 53 48 51 55 48 55
##  [337] 49 50 43 51 48 53 57 62 40 41 45 63 52 46 51 51 47 50 53 54 56 46 46 43
##  [361] 53 51 55 45 41 50 54 45 52 40 48 53 53 44 54 49 51 40 45 52 41 49 52 54
##  [385] 36 44 59 48 51 58 48 40 43 52 53 49 50 44 54 60 51 44 53 48 51 55 48 57
##  [409] 48 45 55 47 50 53 49 54 51 52 50 43 49 53 50 53 51 47 54 50 55 51 55 50
##  [433] 45 62 46 48 53 50 59 48 53 41 49 46 50 53 58 47 56 48 50 49 49 56 48 49
##  [457] 45 48 52 53 50 52 49 47 49 54 54 50 52 42 52 54 51 55 50 52 47 62 53 51
##  [481] 56 52 55 53 42 49 45 47 45 52 46 47 44 47 48 50 43 49 51 46 64 47 46 45
##  [505] 50 55 49 52 51 49 57 50 47 56 43 54 43 64 47 46 47 42 59 46 49 42 49 53
##  [529] 55 54 53 56 53 54 60 43 54 48 48 56 40 47 48 48 51 50 44 55 55 45 50 50
##  [553] 51 44 50 55 58 54 46 54 50 47 45 52 44 49 38 57 53 51 53 50 47 48 47 48
##  [577] 55 52 48 45 48 52 53 52 51 54 49 54 48 47 50 42 49 47 48 61 56 47 40 43
##  [601] 59 50 48 43 50 55 51 49 54 41 42 55 55 50 55 53 49 50 51 56 50 51 54 54
##  [625] 45 52 55 57 55 53 43 58 50 42 57 60 54 52 55 49 48 49 59 47 54 48 49 50
##  [649] 57 56 56 52 51 48 56 53 48 52 50 50 32 43 49 52 44 54 57 48 53 53 49 44
##  [673] 49 45 59 52 46 61 50 46 43 54 50 51 51 51 51 51 53 44 57 47 53 46 61 45
##  [697] 53 48 52 39 49 46 50 43 52 42 42 50 53 39 49 41 49 48 50 52 52 49 45 51
##  [721] 51 56 47 43 49 48 46 54 49 46 54 47 54 42 42 53 46 56 60 49 49 58 45 47
##  [745] 50 48 45 53 59 48 49 44 53 48 40 50 57 53 47 43 47 44 46 45 54 42 52 52
##  [769] 43 54 65 54 48 43 54 49 48 39 46 50 47 49 50 43 46 56 57 42 43 49 50 49
##  [793] 53 53 55 50 48 40 45 55 48 46 50 57 51 53 45 49 48 48 48 42 55 48 46 55
##  [817] 58 53 43 56 43 50 49 51 55 51 54 51 42 52 46 48 45 57 51 52 54 42 52 48
##  [841] 39 49 45 47 35 50 47 48 51 53 47 56 49 38 48 55 51 53 55 46 50 52 47 46
##  [865] 58 48 53 45 52 48 45 52 55 48 53 52 40 50 51 47 47 47 45 47 49 43 54 41
##  [889] 56 37 51 47 52 52 47 55 50 47 52 59 49 58 57 56 46 46 49 52 48 53 48 38
##  [913] 54 46 47 49 55 49 50 47 52 49 46 51 50 55 48 54 45 48 55 48 48 48 51 56
##  [937] 61 53 51 50 44 52 46 50 54 49 44 55 53 51 52 50 58 44 50 49 52 46 51 61
##  [961] 52 52 46 45 55 58 57 57 47 47 51 50 48 49 58 48 49 49 59 47 49 49 48 54
##  [985] 56 45 54 59 54 53 52 53 43 51 58 55 55 54 64 46
#Normal distribution in r
#parameter mean=mu, standard Deviation = sigma
mu=5
sigma=10
x=2.5
#dnorm(x,mu,sigma) gives the probability of 
  # a random variable x = 2.5 if the variable
  # x follows a normal distribution with 
  # mu=5 and sigma=10  
dnorm(x,mu,sigma)
## [1] 0.03866681
#pnorm(x,mu,sigma) gives the probability of 
  # a random variable x <= 2.5 if the variable
  # x follows a normal distribution with 
  # mu=5 and sigma=10 
pnorm(x,mu,sigma)
## [1] 0.4012937
#rnorm(n,mu,sigma) gives the normal(mu,sigma) 
  #sample of size n 
n=1000
rnorm(n,mu,sigma)
##    [1]   7.549695092   8.206632003   4.137025152  -0.922599406   4.246365818
##    [6]  -5.352792633   6.997409865  11.349844364  -0.724360283  -1.564100789
##   [11]  -2.893526116   5.639493430   9.190005739  14.197119145  15.839520660
##   [16]   5.717860069   0.396283526  -4.432868726 -18.351063420 -11.477737295
##   [21]  -8.172649033   3.568715175  -7.104971915  -9.151977052   9.897900274
##   [26]   9.649974582  12.900725554   3.804257559  -6.622192841   6.578694488
##   [31]  17.197079073  -0.212141590   4.706312282   7.565265763   6.969021908
##   [36]  -0.289420457   1.434769983  -8.974927340  11.380872811   1.388410558
##   [41]   0.101184787  16.132087128  -2.487985636  21.561286984  15.297718526
##   [46]   9.589425422  21.041708586  13.778406446  -0.601067626   2.256088171
##   [51]   1.077000224 -10.016782396   6.820480695  10.812173321  21.675927031
##   [56]   1.204887433  12.261454376  18.432189579  -1.258403745   4.451596628
##   [61] -12.947394356  -2.785042691  -0.115236688  -4.080064421  17.761790985
##   [66]   4.560059828   4.709344133   3.003224196  10.277738398  -5.234171228
##   [71]  12.192106751  -1.478456045  13.197493393   1.014342183  13.677051185
##   [76]   0.220520945  10.040488152   0.594390986  14.798781282  22.935016029
##   [81]  -6.030675883   4.955076784  13.418555363  13.247965722  10.571548789
##   [86]  14.959471874   8.536911899   0.939128139   2.332334380  10.529065051
##   [91]  20.911851893 -18.691370813   5.315170457   9.689324424 -12.919438258
##   [96]  20.522029335   6.480083359  13.008205544   8.729243142  -5.551168768
##  [101]   6.563663857   7.945986057  -0.512423195 -10.654270300  -3.519152441
##  [106]   3.338035896  13.128450317   7.153547402  23.317462847   0.701534251
##  [111]   0.553213180   0.828527703  -6.411873365   7.144363711 -10.526743597
##  [116]  -2.735481170  -4.447550119   2.112427669   6.118568201   7.818413796
##  [121]  12.858211925  11.266294032   3.201122302  -2.063106766  -4.581107098
##  [126]   8.318600038   4.404952350   6.671134036  32.379559448   3.106297677
##  [131]  11.144834570  16.646161205  -1.527263284  -2.095325662   2.470368732
##  [136]   6.097910645   9.827309682  14.756763843 -17.866932726   5.659329642
##  [141]  -5.430794135 -10.072555367  14.817580072  -1.833483700  -2.216754120
##  [146]  -7.655050323   9.635884592   6.092724843  -0.052999926 -14.054090497
##  [151]   1.302407454  -5.859335396   2.882466840   0.381373226   0.582636148
##  [156]   4.268096244   7.654257456  -1.986680638  13.752996649   3.076910949
##  [161]   9.984019970   2.211380504  -7.572017430  17.774407096  17.997856086
##  [166]   6.631459845   3.537995695  20.596226534  -9.140315834   3.029868790
##  [171]   1.492306975  -9.556147072  15.037223263  -7.648938000   5.536068361
##  [176]  -1.254594363  -4.250646294  27.454897334  -1.250147005   8.494124551
##  [181]   7.884792807  19.476518586  13.514367686   4.773023024  17.114519827
##  [186]  -1.722135293  -4.853079539 -13.074045558   1.114325379   3.847284765
##  [191]   4.076735046  22.025821567  20.589850852   0.538342919   3.655429314
##  [196]   1.454317815   8.046572933  -0.119967281   5.804811420  -0.532977814
##  [201]  16.291326526   9.325314431  13.501597986  -1.320843222  12.821549981
##  [206]  22.647592374  -0.868103986  16.243582128  -0.433225988   0.230100998
##  [211]   7.462344389  14.797455434  10.267398994  11.758052617  -4.936431508
##  [216]   4.475548372   4.580386180   4.127711867  -0.388787676 -19.038288975
##  [221]  18.067643181  -1.235737761  -4.383390927  -4.455898949   0.305652486
##  [226]   8.533926195   2.707452704   7.972417777   3.302765037  29.064502119
##  [231] -24.700517931 -12.863022898  -6.345992891  -3.542176015   9.597273535
##  [236] -18.385187801  -4.107992441  32.958091450   5.354628000   2.379166294
##  [241] -15.410415569   2.308485379   6.923309820  -2.342585565   7.324728123
##  [246]   0.953075222   0.900738843  16.809042705   5.565413631   1.499567740
##  [251]  15.822133617  -1.350408216   8.527654221  -0.802284163   0.186292295
##  [256]  12.627046781  -5.454462864   2.843185790  20.116622163  -3.631773680
##  [261]  12.451113990  12.626376490  15.447129226  -5.611881416   1.155625919
##  [266]   0.878972005   6.993780438   1.774318694   7.452338741  -5.231792481
##  [271]   8.387474350  12.276398955   6.286883148  11.293579176   9.448004391
##  [276]  -2.936975900   3.383202191   5.172055454  15.453026041   8.632799728
##  [281]   0.278390279   7.121036855  23.212257180   4.703134409   2.701974695
##  [286]  18.997398917   2.810507497   0.985713939 -18.444193419  -8.451768839
##  [291]   3.382176476   7.368107720   9.898325756  15.674364587  -5.203711174
##  [296]  11.203818006   9.585952436  -4.651092731  15.268853016   1.281223587
##  [301]   6.531623222  -7.392667114  -1.673259471  10.374727503   0.955446345
##  [306]   7.436794314  -1.648384110  20.498954354   2.476140791  19.068987168
##  [311]  -3.596412984  -7.560894888  -6.147568677   8.884965649  26.270729981
##  [316]   9.545557127  18.445727490   4.219470948  -3.051739015   6.665267816
##  [321]  10.652393069   1.146175239  -4.856870397  10.879900630  12.265020362
##  [326]  13.057902696  19.366923341  -0.039533124  -2.199837626  -1.081633126
##  [331]   0.228648384  25.810627549  22.879709739  -8.743446825  10.179435962
##  [336]   2.090449579  17.363081105  16.394445400   3.255877988   4.702040328
##  [341]   1.291832886   7.232834054  -1.939031128 -17.661580570  -1.914183472
##  [346]  14.792999323   8.642954506   0.339495221  -2.963811805  -8.846296402
##  [351]  11.862697414  -1.145413633  22.558383130   6.768184183   5.666678707
##  [356]  14.768833454   8.660546195   6.496489002   8.482698234   7.122640497
##  [361]  -0.460764405   2.916147453  13.212148549   8.234161544  -8.125483593
##  [366]   1.028544956  -3.644525633  21.436825153   9.904603230  33.701830793
##  [371]  10.420711436  17.494652703  -2.953312591   4.952146702  25.881528293
##  [376]  -2.479880751   1.417983285  -6.994067168   5.544022593   6.669804165
##  [381]   7.999178663  -5.524039766   3.290973002   3.674518871   9.857594829
##  [386]   6.214573841   4.715045580   4.508984544  -4.561217550  11.985046101
##  [391]   3.420036415  -1.088251988  19.845395994   5.414966982  10.950233761
##  [396]   3.709202926  16.286089505  -1.259888717   2.140169069   4.765377460
##  [401]   1.225191299  -1.849693245   2.531906966  14.544979433  -7.062993135
##  [406]   4.701240503   8.071903996  -3.071565663   7.888486824  -5.593519738
##  [411]   0.947166709  -2.481325585  17.799890425   7.762917160  11.577135520
##  [416]   0.394161318  11.141043600  -3.542353433   4.922232743  16.631903032
##  [421]  14.246321264  10.023666021  -0.351492829  24.520718398  18.656656363
##  [426]   5.777574354  17.038259773  15.236321919   3.678386855   3.803571127
##  [431]  12.376853265  14.336519739   0.998643474  -9.904338871  -6.033952863
##  [436]  10.279974741  17.550917258  -4.923556820  13.514333402  -6.639004539
##  [441]  20.650160327   0.952509412   9.687660464  10.860889961   5.072125167
##  [446]  -5.433421839  30.567921304 -22.947694809   8.199565766  -5.263160827
##  [451]   8.181408502  12.809407360  22.237595744  -2.664769362   5.427378766
##  [456]  12.528913395  -3.244345047  26.726328856   8.711718534  12.721111108
##  [461]   3.459169220  22.116101382  -5.969995310  16.088550968  -8.891379125
##  [466]   8.929995369  -1.375897047   4.743614648   5.205366816   0.898474722
##  [471]   5.787635415  -9.998322757  11.672862201  -3.316549316   4.483560301
##  [476]   3.016892457  -2.871469611   7.411827291  -5.735654424   5.463010088
##  [481]  19.938730832  -2.230094520  10.980368610   6.731168051 -10.696918852
##  [486]   1.636075216  -8.520685964  -3.749434255  17.182153734   4.345321002
##  [491]  -0.761650758  10.111998992  11.611244134  19.657859280  22.176703260
##  [496] -14.705426237   4.461296375   7.309170600   6.398220268  -9.562286568
##  [501]   4.470062260   9.058920272 -11.206449307  15.179360432  -2.684430194
##  [506]   6.753615920  -2.672171397   4.710026351  12.839512001   8.261220717
##  [511]  14.620654671  18.164776699   3.270819710  18.746836582  13.028106192
##  [516]   0.945849918  -9.753571123   0.209503597  11.286693351  11.210107079
##  [521]   9.172976420  25.450507874  -5.664536342 -12.680169055 -18.532948276
##  [526]  18.563127329   1.367545714 -19.275389722  13.562129312  10.067949041
##  [531]  26.036728663  14.689222203   2.651017583  11.887715270   2.001619885
##  [536] -13.658396756  12.342969130  -1.277426500  -2.938902938   2.336544478
##  [541]  10.338920948   0.599698931  13.344408397   5.845619959  11.281350985
##  [546]  -1.475462093  -2.375924341   9.851819674  21.437913648  12.128934913
##  [551] -11.272726210   1.726824896   6.762104204  -6.925383648   0.360899101
##  [556]  -1.623796942  12.705063685  10.391402646  12.346931103   1.932486722
##  [561]   7.184875467  27.668645583   9.712209477  -5.160699303  13.942057373
##  [566]  20.828950032 -11.484938934   2.634671331   0.264445800  -4.445922299
##  [571]   1.504726956   2.643254178  -0.743867628  14.100697360  11.943607016
##  [576]  18.513088259   7.332730063   6.716952627   9.851644294  -9.433802642
##  [581]   0.773708764   3.126725258  12.859147196  -7.202258199   5.648766045
##  [586]  13.353521087   9.869210398   8.326573517   7.033888677  -1.704760557
##  [591]  11.164923750 -17.500662061  14.113039920   5.675417005  11.562411193
##  [596]  23.489630224  13.962414867  17.375079919   6.419375387   0.655553415
##  [601]   3.467000484  -9.148061698  -7.702615271  21.153080682   3.991507140
##  [606]  -4.279266420   3.311287548   3.185345775   6.591311482  10.108710950
##  [611]  16.283256579  -7.309094600  13.563743263  -3.567927631  19.888129695
##  [616]  12.150064987   2.220154596   4.730996339  -0.995386225 -11.648203454
##  [621]  22.926173020  21.263948291  13.388462040   2.254702291   8.086421638
##  [626]  15.189106624   3.505791801  -7.243997375 -17.916210048   3.689781451
##  [631]   1.927683692  29.756373685  16.454790859  13.249476489   3.083137521
##  [636]  18.794753250  -4.565392753  -2.205646441   0.103921463  -4.593588295
##  [641]   3.608315493  -2.965348525  -8.641857114   1.368583432 -12.611704058
##  [646]  15.324630541   2.354788177   4.425820236  12.405213881   7.863799266
##  [651] -10.615821958   1.709573539  11.762134485   0.926785053  21.672286368
##  [656]  13.260657164   0.128608490  13.391669803   7.530881916   3.442008853
##  [661]  13.405832791   5.682263233  35.396726449  20.275734379   4.996891744
##  [666] -10.843788706  -0.833718098  13.821484535  12.193686311   0.877237893
##  [671]   1.817965304  17.531381352   6.727161011   5.981702265  15.040241386
##  [676]  19.625791674  -0.658055793  -0.969830069   4.432821272 -13.818703602
##  [681]   2.816102344   1.712577392   3.464915471  17.913590966  -9.578126574
##  [686] -19.601009137   0.397383517 -15.326767117   4.876877145  -8.177648545
##  [691]  -0.227225515  30.130452386   2.471019725  -9.828043501  14.181634006
##  [696]   3.083459052  -1.361240965   9.978122161 -11.050708237  -0.920640342
##  [701]  13.999382205   9.165662257  -0.001564392  16.285720463  -7.434367708
##  [706]  -0.261930191  10.192384464   5.781626141  15.643667454 -12.159193163
##  [711]   2.296722516 -10.287932635   7.201755787 -10.212545073   9.129675062
##  [716]  -3.312121842  -2.983710230   7.576386435   4.880502866   0.830102199
##  [721]  -2.812393502  22.443866321  15.862036265   4.575041213  -8.746766186
##  [726]  13.195138714  -2.851615765  14.520584455  32.724112812   8.789081192
##  [731]   5.716602933  12.583398310   6.982002343   5.299595568   8.677374294
##  [736]   4.525560016   4.978853047   7.538179413   1.749241723 -16.864800007
##  [741]  -4.673335223 -15.143838126   1.620420671   3.321806266  -2.887474274
##  [746]   1.006221236  -9.317991378   0.196535479   6.622992819   2.757612352
##  [751]  19.656187481   1.701700929  -9.015536021   1.839113113  19.276608637
##  [756] -10.886312377   0.344090388 -22.564564113   2.442330863  -5.783959564
##  [761]   3.126491698   8.587763116   5.863463092   0.613528668   6.538965406
##  [766]  26.686355704   7.349588505   6.817558194   2.721624578  16.599392841
##  [771]  -4.409982527   6.207999391 -28.418872759 -16.241075586  19.108647114
##  [776]  -2.337415908  -9.187218445  -3.261718703  -3.488826556  16.650718173
##  [781] -10.039928081   9.446099153  -5.597932502 -29.104537683   1.713579804
##  [786]  -7.705042520   1.700067658   9.646958803   1.324264592   5.282303101
##  [791]   6.994819158  -1.399080597  11.253947699  17.282165363  -3.007735864
##  [796]  23.053407815  -1.371999304   4.153100509  15.498124823  15.175603698
##  [801]   9.818114179  -1.734845148   1.182614350   2.511697297  -5.922745573
##  [806]  -1.505658493 -13.632774424   8.449485218  10.380336466  -5.123109198
##  [811]  14.154882028   5.035265798   9.738865230   5.500246229   4.024929051
##  [816]  15.455073014   6.429362204   4.355688543  -7.022579608 -16.615808474
##  [821]   1.212946049   1.530066746  21.041755867  -4.219429847  -0.278510597
##  [826]   0.223367165   6.034492588  11.615597736   9.060212928  13.128334046
##  [831]  -1.469937359  13.841146150   3.711947948   6.200172962  16.707479651
##  [836]  -8.185829937   5.229713291   1.452658990  17.607013413   8.806541384
##  [841]   2.440211225   3.458199435   2.262527138  32.975484547  -1.656538679
##  [846]   2.592616342   6.186487435   9.419495879 -15.711077483   4.050486954
##  [851]   8.774669595  -4.055852865  16.314047464  11.362532780  16.142509149
##  [856]  15.984026128   7.690355606   6.300507544  -2.761193492   3.353440746
##  [861]  -2.190896856  -1.595509010   5.273213762   2.592518717  22.870053300
##  [866]   1.975378642  -2.044548758   1.020933523  -8.114662498  -1.015209764
##  [871]  10.713195790  17.472776817   9.919114456  20.559025628   0.776567066
##  [876] -15.542263352  -9.661084375  11.895790162   1.615666963   6.746325451
##  [881]  16.373078252   0.328868539  24.678552316  12.141954045   4.923118255
##  [886]  -0.334531906  23.414929785  10.433774425   0.122654383  16.829368585
##  [891]   6.552748510  -0.449787917   1.349481333   8.415045427  10.825734216
##  [896]   6.430567092   0.802909737  15.415010623   0.990504656   0.150946099
##  [901]  23.463289432  17.077905222   7.007092580  -2.115418947  22.101310302
##  [906]  29.260852171  -3.679131792  -2.480801513  -6.149045825  -5.013582500
##  [911]  -7.505983312   7.670810962   1.770478552  17.408342638   5.880521482
##  [916]   9.467498311  21.000651849  -2.999451748 -10.956534328 -12.582525382
##  [921]   8.862678099  -1.413144161   2.831975044 -11.345043718   1.060741461
##  [926]  14.504713011  12.565042137  17.248556688  13.796330119  15.018793517
##  [931]  -3.134552259 -12.164311874  15.385688789  11.499611491 -13.093876808
##  [936]   3.573359587  15.787266211   4.096747770  -6.044824096  -1.069980240
##  [941]   1.128190160  21.622713533  13.190031606  12.525759885   2.400098096
##  [946]  -6.560691728  -0.151980214  -0.186173149  14.046829949 -15.564275298
##  [951] -10.904716962  16.234018035  -4.590276005  24.395351215  -3.421508085
##  [956]   5.331276667  22.250834481  25.982216617  -4.431028327  -4.899261805
##  [961]  -4.765326934  11.852868537  10.990004442  10.880726819  -6.519787836
##  [966]  10.124626732 -29.992374499   9.491077144  -2.906419225  -5.533397194
##  [971]  13.951336063   4.107373906  -1.976416047  -1.878715447  22.629809571
##  [976]  11.960959765  13.937014847  -3.439328194  -4.536267959  -0.045095078
##  [981]  -2.882397054   7.589761790  13.635447914  -2.502114036   5.878410406
##  [986]  15.367381718  21.301610153  17.565533575  13.483165801  -4.628240207
##  [991]   0.454936947  15.636641836   6.431610526  12.126949121   0.648996498
##  [996]  -4.680952220  -0.699993326   4.085625736   7.596503420   4.892732251
#Create a graph for normal distribution.

x=seq(-5,5,.05) #x contains a seq (-5,-4.95,-4.9,....,0,......4.9,4.95,5)
mu=0
sigma=1
prob=dnorm(x,mu,sigma) # calculate probability of random variable x assuming x follows normal distribution.

df=data.frame(x,prob) # create the data frame
names(df)=c("x","Prob")
#Draw the normal distribution curve
ggplot(df)+
  geom_line(aes(x=x,y=Prob))+
  geom_point(aes(x=x,y=Prob))

#Build the normal population N(mean=10,sd=3)
 #with 100000 points

mu=10
sigma=3
npop=100000
pop=rnorm(npop,mu,sigma)
dfp=data.frame(pop)
names(dfp)
## [1] "pop"
plot1=ggplot(dfp)+
  geom_histogram(aes(x=pop))
#create sampling distribution for sample size=10 
meanv=c() #this vector stores the mean of each sampling distribution
sdv=c() #this vector stores the standard deviation of each sampling distribution
sizev=c() #this vector stores the sample size of each sampling distribution
sampsize=10 # 
sampmean=c()
nsamp=2000 # Total no of samples in the sampling distribution
for (i in 1:nsamp) {
  x=sample(pop,sampsize,replace = TRUE) # Create sample from normal distribution with replacement
  sampmean=c(sampmean,mean(x))
}
meanv=c(meanv,mean(sampmean))
meanv
## [1] 9.983936
sdv=c(sdv,sd(sampmean))
sdv
## [1] 0.9675198
sizev=c(sizev,sampsize)
sizev
## [1] 10
dfsg=data.frame(sampmean)
plots1=ggplot(dfsg)+
  geom_histogram(aes(x=sampmean))
#create sampling distribution for sample size=100 
sampsize=100 # 
sampmean=c()
nsamp=2000 # Total no of samples in the sampling distribution
for (i in 1:nsamp) {
  x=sample(pop,sampsize,replace = TRUE) # Create sample from normal distribution with replacement
  sampmean=c(sampmean,mean(x))
}
meanv=c(meanv,mean(sampmean))
meanv
## [1] 9.983936 9.988787
sdv=c(sdv,sd(sampmean))
sdv
## [1] 0.9675198 0.2977383
sizev=c(sizev,sampsize)
sizev
## [1]  10 100
dfsg=data.frame(sampmean)
plots2=ggplot(dfsg)+
  geom_histogram(aes(x=sampmean))
#create sampling distribution for sample size=1000 

sampsize=1000 # 
sampmean=c()
nsamp=2000 # Total no of samples in the sampling distribution
for (i in 1:nsamp) {
  x=sample(pop,sampsize,replace = TRUE) # Create sample from normal distribution with replacement
  sampmean=c(sampmean,mean(x))
}
meanv=c(meanv,mean(sampmean))
meanv
## [1] 9.983936 9.988787 9.987371
sdv=c(sdv,sd(sampmean))
sdv
## [1] 0.96751985 0.29773834 0.09474086
sizev=c(sizev,sampsize)
sizev
## [1]   10  100 1000
dfsg=data.frame(sampmean)
plots3=ggplot(dfsg)+
  geom_histogram(aes(x=sampmean))
grid.arrange(plot1,plots1,plots2,plots3,ncol=1)
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

#Create a dataframe with sample size, mean,sd,sigma/sqrt(n)
dfclt=data.frame(sizev,meanv,sdv,sigma/sqrt(n))
names(dfclt)=c("Sample Size","Mean","SdErr","sigma_by_sqrt(n)")
dfclt
##   Sample Size     Mean      SdErr sigma_by_sqrt(n)
## 1          10 9.983936 0.96751985       0.09486833
## 2         100 9.988787 0.29773834       0.09486833
## 3        1000 9.987371 0.09474086       0.09486833
#Notice that sampling distribution is becoming a normal distribution with mu =10 and the standard error is sigma/root(n). The central limit theorem.