Packages and Data Preparation

Below are the packages necessary for the analysis.

# Load all the necessary packages 
library(estimatr)
library(huxtable)
library(jtools)
library(car)
library(broom.mixed)
library(modelsummary)
library(ggplot2)
library(gridExtra)
library(dplyr)
library(grid)
library(stargazer)
# Load the dataset
load('all_data_may24.rda')
# Subset by country
US_data <- all_data[all_data$country == "US",]
GB_data <- all_data[all_data$country == "GB",]
FR_data <- all_data[all_data$country == "FR",]
PL_data <- all_data[all_data$country == "PL",]

Specify Models

Populism Models

PopUS_Main = lm(populism_rw_std~ethnocentrism_std
                        +rwa_std
                        +sdo_std
                        +church_attendance_std
                        +ideology_std
                        +age_std
                        +education_collapse
                        +Q1_interest_in_politics_std
                        +income_num_std
                        +marital_status,  
                              data=US_data)
PopPL_Main = lm(populism_rw_std~ethnocentrism_std
                        +rwa_std
                        +sdo_std
                        +church_attendance_std
                        +ideology_std
                        +age_std
                        +education_collapse
                        +Q1_interest_in_politics_std
                        +income_num_std
                        +marital_status,  
                              data=PL_data)
PopFR_Main = lm(populism_rw_std~ethnocentrism_std
                        +rwa_std
                        +sdo_std
                        +church_attendance_std
                        +ideology_std
                        +age_std
                        +education_collapse
                        +Q1_interest_in_politics_std
                        +income_num_std
                        +marital_status,  
                              data=FR_data)
PopGB_Main = lm(populism_rw_std~ethnocentrism_std
                        +rwa_std
                        +sdo_std
                        +church_attendance_std
                        +ideology_std
                        +age_std
                        +education_collapse
                        +Q1_interest_in_politics_std
                        +income_num_std
                        +marital_status,  
                              data=GB_data)
PopUS_full = lm(populism_rw_std~devalued_std+ethnocentrism_std
                        +rwa_std
                        +sdo_std 
                        +church_attendance_std
                        +ideology_std
                        +age_std
                        +education_collapse
                        +Q1_interest_in_politics_std
                        +income_num_std
                        +marital_status,  
                              data=US_data)
PopPL_full = lm(populism_rw_std~devalued_std+ethnocentrism_std
                        +rwa_std
                        +sdo_std 
                        +church_attendance_std
                        +ideology_std
                        +age_std
                        +education_collapse
                        +Q1_interest_in_politics_std
                        +income_num_std
                        +marital_status,  
                              data=PL_data)
PopFR_full = lm(populism_rw_std~devalued_std+ethnocentrism_std
                        +rwa_std
                        +sdo_std
                        +church_attendance_std
                        +ideology_std
                        +age_std
                        +education_collapse
                        +Q1_interest_in_politics_std
                        +income_num_std
                        +marital_status,  
                              data=FR_data)
PopGB_full = lm(populism_rw_std~devalued_std+ethnocentrism_std
                        +rwa_std
                        +sdo_std
                        +church_attendance_std
                        +ideology_std
                        +age_std
                        +education_collapse
                        +Q1_interest_in_politics_std
                        +income_num_std
                        +marital_status,  
                              data=GB_data)

Conspiracy Models

ConspUS_Main = lm(conspiratorial_orientation_std~ethnocentrism_std
                        +rwa_std
                        +sdo_std
                        +church_attendance_std
                        +ideology_std
                        +age_std
                        +education_collapse
                        +Q1_interest_in_politics_std
                        +income_num_std
                        +marital_status,  
                              data=US_data)
ConspPL_Main = lm(conspiratorial_orientation_std~ethnocentrism_std
                        +rwa_std
                        +sdo_std
                        +church_attendance_std
                        +ideology_std
                        +age_std
                        +education_collapse
                        +Q1_interest_in_politics_std
                        +income_num_std
                        +marital_status,  
                              data=PL_data)
ConspFR_Main = lm(conspiratorial_orientation_std~ethnocentrism_std
                        +rwa_std
                        +sdo_std
                        +church_attendance_std
                        +ideology_std
                        +age_std
                        +education_collapse
                        +Q1_interest_in_politics_std
                        +income_num_std
                        +marital_status,  
                              data=FR_data)
ConspGB_Main = lm(conspiratorial_orientation_std~ethnocentrism_std
                        +rwa_std
                        +sdo_std
                        +church_attendance_std
                        +ideology_std
                        +age_std
                        +education_collapse
                        +Q1_interest_in_politics_std
                        +income_num_std
                        +marital_status,  
                              data=GB_data)
ConspUS_full = lm(conspiratorial_orientation_std~devalued_std+ethnocentrism_std
                        +rwa_std
                        +sdo_std 
                        +church_attendance_std
                        +ideology_std
                        +age_std
                        +education_collapse
                        +Q1_interest_in_politics_std
                        +income_num_std
                        +marital_status,  
                              data=US_data)
ConspPL_full = lm(conspiratorial_orientation_std~devalued_std+ethnocentrism_std
                        +rwa_std
                        +sdo_std 
                        +church_attendance_std
                        +ideology_std
                        +age_std
                        +education_collapse
                        +Q1_interest_in_politics_std
                        +income_num_std
                        +marital_status,  
                              data=PL_data)
ConspFR_full = lm(conspiratorial_orientation_std~devalued_std+ethnocentrism_std
                        +rwa_std
                        +sdo_std
                        +church_attendance_std
                        +ideology_std
                        +age_std
                        +education_collapse
                        +Q1_interest_in_politics_std
                        +income_num_std
                        +marital_status,  
                              data=FR_data)
ConspGB_full = lm(conspiratorial_orientation_std~devalued_std+ethnocentrism_std
                        +rwa_std
                        +sdo_std
                        +church_attendance_std
                        +ideology_std
                        +age_std
                        +education_collapse
                        +Q1_interest_in_politics_std
                        +income_num_std
                        +marital_status,  
                              data=GB_data)

Correlation Matrices

#install.packages("corrplot")
library(corrplot)
## corrplot 0.92 loaded

All Countries

all_data_numeric_only = subset(all_data, select = c(devalued_std, populism_rw_std, populism_main_std, conspiratorial_orientation_std, big5_openness_std, big5_conscientiousness_std, big5_extraversion_std, big5_agreeableness_std, big5_stability_std, rwa_std, sdo_std, ethnic_majority, income_num_std, gender, age_std, ideology_std))

correlation_matrix_allcountries= cor(all_data_numeric_only, method="pearson", use="pairwise.complete.obs")

corrplot(correlation_matrix_allcountries, method="color", order="alphabet", tl.col = 'steelblue4', tl.pos="lt", tl.cex=0.7, tl.srt=45, number.cex=0.7, addgrid.col = 'white', addCoef.col = 'black')

US only

US_data_numeric_only = subset(US_data, select = c(devalued_std, populism_rw_std, populism_main_std, conspiratorial_orientation_std, big5_openness_std, big5_conscientiousness_std, big5_extraversion_std, big5_agreeableness_std, big5_stability_std, rwa_std, sdo_std, ethnic_majority, income_num_std, gender, age_std, ideology_std))

correlation_matrix_US= cor(US_data_numeric_only, method="pearson", use="pairwise.complete.obs")

corrplot(correlation_matrix_US, method="color", order="alphabet", tl.col = 'steelblue4', tl.pos="lt", tl.cex=0.7, tl.srt=45, number.cex=0.7, addgrid.col = 'white', addCoef.col = 'black')

Poland only

PL_data_numeric_only = subset(PL_data, select = c(devalued_std, populism_rw_std, populism_main_std, conspiratorial_orientation_std, big5_openness_std, big5_conscientiousness_std, big5_extraversion_std, big5_agreeableness_std, big5_stability_std, rwa_std, sdo_std, ethnic_majority, income_num_std, gender, age_std, ideology_std))

correlation_matrix_PL= cor(PL_data_numeric_only, method="pearson", use="pairwise.complete.obs")

corrplot(correlation_matrix_PL, method="color", order="alphabet", tl.col = 'steelblue4', tl.pos="lt", tl.cex=0.7, tl.srt=45, number.cex=0.7, addgrid.col = 'white', addCoef.col = 'black')

France only

FR_data_numeric_only = subset(FR_data, select = c(devalued_std, populism_rw_std, populism_main_std, conspiratorial_orientation_std, big5_openness_std, big5_conscientiousness_std, big5_extraversion_std, big5_agreeableness_std, big5_stability_std, rwa_std, sdo_std, ethnic_majority, income_num_std, gender, age_std, ideology_std))

correlation_matrix_FR= cor(FR_data_numeric_only, method="pearson", use="pairwise.complete.obs")

corrplot(correlation_matrix_FR, method="color", order="alphabet", tl.col = 'steelblue4', tl.pos="lt", tl.cex=0.7, tl.srt=45, number.cex=0.7, addgrid.col = 'white', addCoef.col = 'black')

United Kingdom only

GB_data_numeric_only = subset(GB_data, select = c(devalued_std, populism_rw_std, populism_main_std, conspiratorial_orientation_std, big5_openness_std, big5_conscientiousness_std, big5_extraversion_std, big5_agreeableness_std, big5_stability_std, rwa_std, sdo_std, ethnic_majority, income_num_std, gender, age_std, ideology_std))

correlation_matrix_GB= cor(GB_data_numeric_only, method="pearson", use="pairwise.complete.obs")

corrplot(correlation_matrix_GB, method="color", order="alphabet", tl.col = 'steelblue4', tl.pos="lt", tl.cex=0.7, tl.srt=45, number.cex=0.7, addgrid.col = 'white', addCoef.col = 'black')

Paper plots

All respondents

# Load the dataset
load('all_data_dum_may24.rda')
All_Pop_Main = lm(populism_rw_std~ethnocentrism_std
                        +rwa_std
                        +sdo_std
                        +church_attendance_std
                        +ideology_std
                        +age_std
                        +education_collapse
                        +Q1_interest_in_politics_std
                        +income_num_std
                        +marital_status
                        +country.GB
                        +country.PL
                        +country.US,  
                              data=all_data_dum)


All_Pop_full = lm(populism_rw_std~devalued_std+ethnocentrism_std
                        +rwa_std
                        +sdo_std
                        +church_attendance_std
                        +ideology_std
                        +age_std
                        +education_collapse
                        +Q1_interest_in_politics_std
                        +income_num_std
                        +marital_status
                        +country.GB
                        +country.PL
                        +country.US,  
                              data=all_data_dum)

All_Cons_Main = lm(conspiratorial_orientation_std~ethnocentrism_std
                        +rwa_std
                        +sdo_std
                        +church_attendance_std
                        +ideology_std
                        +age_std
                        +education_collapse
                        +Q1_interest_in_politics_std
                        +income_num_std
                        +marital_status
                        +country.GB
                        +country.PL
                        +country.US,  
                              data=all_data_dum)


All_Cons_full = lm(conspiratorial_orientation_std~devalued_std+ethnocentrism_std
                        +rwa_std
                        +sdo_std
                        +church_attendance_std
                        +ideology_std
                        +age_std
                        +education_collapse
                        +Q1_interest_in_politics_std
                        +income_num_std
                        +marital_status
                        +country.GB
                        +country.PL
                        +country.US,  
                              data=all_data_dum)

# Extracting coefficients and creating a tidy data frame with confidence intervals
df1 <- tidy(All_Pop_full, conf.int = TRUE) %>% mutate(Model = "Full Model")
df3 <- tidy(All_Pop_Main, conf.int = TRUE) %>% mutate(Model = "Main Effects")



# Extracting 99% confidence intervals
ci99_df1 <- confint(All_Pop_full, level = 0.99) %>% as.data.frame() %>% mutate(term = rownames(.), Model = "Full Model")
ci99_df3 <- confint(All_Pop_Main, level = 0.99) %>% as.data.frame() %>% mutate(term = rownames(.), Model = "Main Effects")


# Renaming columns to match
colnames(ci99_df1)[1:2] <- c("conf.low2", "conf.high2")
colnames(ci99_df3)[1:2] <- c("conf.low2", "conf.high2")

# Combining the 99% CIs into one data frame
ci99_df <- bind_rows(ci99_df1, ci99_df3)


# Preparing the combined dataframe
coefficients_df <- bind_rows(df1, df3)
coefficients_df <- coefficients_df %>%
  left_join(ci99_df, by = c("term", "Model"))

# Filter out the intercept, country variables, and other unwanted coefficients
coefficients_df <- coefficients_df %>%
  filter(term != "(Intercept)" & 
         term != "country.US" & 
         term != "country.PL" & 
         term != "country.GB")

# Rename terms for readability
coefficients_df <- coefficients_df %>%
  mutate(term = case_when(
    term == "rwa_std" ~ "Right-Wing Authoritarianism",
    term == "sdo_std" ~ "Social Dominance Orientation",
    term == "devalued_std" ~ "Feelings of Being Devalued",
    term == "ethnocentrism_std" ~ "Ethnocentrism",
    term == "ideology_std" ~ "Ideology",
    term == "age_std" ~ "Age",
    term == "church_attendance_std" ~ "Religiosity",
    term == "income_num_std" ~ "Income",
    term == "Q1_interest_in_politics_std" ~ "Political Interest",
    term == "marital_status" ~ "Marital Status",
    term == "education_collapse" ~ "Education",
    term == "country.PL" ~ "Country: Poland",
    term == "country.US" ~ "Country: United States",
    term == "country.GB" ~ "Country: United Kingdom",
    TRUE ~ term
  ))

# Define the desired order for facets
facet_order <- c("Age", "Income", "Marital Status", "Education", "Political Interest", "Religiosity", "Ethnocentrism", "Ideology",
                 "Right-Wing Authoritarianism", "Social Dominance Orientation","Feelings of Being Devalued")

# Relevel the 'term' factor according to the desired facet order
coefficients_df <- coefficients_df %>%
  mutate(term = factor(term, levels = facet_order))

# Now redefine the Model factor to specify the order of the models
coefficients_df <- coefficients_df %>%
  mutate(Model = factor(Model, levels = c("Full Model", "Main Effects")))

# Creating the plot with multi-level confidence intervals
plotall1 <- ggplot(coefficients_df, aes(x = estimate, y = Model, color = Model)) +
    facet_wrap(~ term, scales = "free_y", ncol = 1) +
    geom_point(size = 2, shape = 16) +
    geom_linerange(aes(xmin = conf.low2, xmax = conf.high2), height = 0.2, color = "gray70", size = 0.25) + # Wider CI in lighter gray
    geom_linerange(aes(xmin = conf.low, xmax = conf.high), height = 0.2, color = "gray20", size = 0.25) + # Narrower CI in darker gray
    geom_vline(xintercept = 0, color = "black", size = .5, linetype = "solid") +  # Add vertical line for intercept
    scale_color_manual(values = c("Full Model" = "black", "Main Effects" = "black")) +
    labs(x = "Point estimates", y = NULL, title = "DV: Populist Attitudes") +
    theme_minimal() +
    theme(
        legend.position = "none",
        axis.text.y = element_text(size = 12),
        axis.title.x = element_text(size = 12),
        plot.title = element_text(hjust = 0.5, size = 14),
        strip.text = element_text(size = 12),
        panel.grid.major.y = element_blank(),
        panel.grid.minor.y = element_blank(),
        panel.grid.major.x = element_line(size = .5, color = "gray", linetype = "dotted")
    )

# Extracting coefficients and creating a tidy data frame with confidence intervals
df1 <- tidy(All_Cons_full, conf.int = TRUE) %>% mutate(Model = "Full Model")
df3 <- tidy(All_Cons_Main, conf.int = TRUE) %>% mutate(Model = "Main Effects")



# Extracting 99% confidence intervals
ci99_df1 <- confint(All_Cons_full, level = 0.99) %>% as.data.frame() %>% mutate(term = rownames(.), Model = "Full Model")
ci99_df3 <- confint(All_Cons_Main, level = 0.99) %>% as.data.frame() %>% mutate(term = rownames(.), Model = "Main Effects")


# Renaming columns to match
colnames(ci99_df1)[1:2] <- c("conf.low2", "conf.high2")
colnames(ci99_df3)[1:2] <- c("conf.low2", "conf.high2")

# Combining the 99% CIs into one data frame
ci99_df <- bind_rows(ci99_df1, ci99_df3)


# Preparing the combined dataframe
coefficients_df <- bind_rows(df1, df3)
coefficients_df <- coefficients_df %>%
  left_join(ci99_df, by = c("term", "Model"))

# Filter out the intercept, country variables, and other unwanted coefficients
coefficients_df <- coefficients_df %>%
  filter(term != "(Intercept)" & 
         term != "country.US" & 
         term != "country.PL" & 
         term != "country.GB")

# Rename terms for readability
coefficients_df <- coefficients_df %>%
  mutate(term = case_when(
    term == "rwa_std" ~ "Right-Wing Authoritarianism",
    term == "sdo_std" ~ "Social Dominance Orientation",
    term == "devalued_std" ~ "Feelings of Being Devalued",
    term == "ethnocentrism_std" ~ "Ethnocentrism",
    term == "ideology_std" ~ "Ideology",
    term == "age_std" ~ "Age",
    term == "church_attendance_std" ~ "Religiosity",
    term == "income_num_std" ~ "Income",
    term == "Q1_interest_in_politics_std" ~ "Political Interest",
    term == "marital_status" ~ "Marital Status",
    term == "education_collapse" ~ "Education",
    term == "country.PL" ~ "Country: Poland",
    term == "country.US" ~ "Country: United States",
    term == "country.GB" ~ "Country: United Kingdom",
    TRUE ~ term
  ))

# Define the desired order for facets
facet_order <- c("Age", "Income", "Marital Status", "Education", "Political Interest", "Religiosity", "Ethnocentrism", "Ideology", 
                 "Right-Wing Authoritarianism", "Social Dominance Orientation", "Feelings of Being Devalued")

# Relevel the 'term' factor according to the desired facet order
coefficients_df <- coefficients_df %>%
  mutate(term = factor(term, levels = facet_order))

# Now redefine the Model factor to specify the order of the models
coefficients_df <- coefficients_df %>%
  mutate(Model = factor(Model, levels = c("Full Model", "Main Effects")))

# Creating the plot with multi-level confidence intervals
plotall2 <- ggplot(coefficients_df, aes(x = estimate, y = Model, color = Model)) +
    facet_wrap(~ term, scales = "free_y", ncol = 1) +
    geom_point(size = 2, shape = 16) +
    geom_linerange(aes(xmin = conf.low2, xmax = conf.high2), height = 0.2, color = "gray50", size = 0.25) + # Wider CI in gray
    geom_linerange(aes(xmin = conf.low, xmax = conf.high), height = 0.2, color = "black", size = 0.25) + # Narrower CI in black
    geom_vline(xintercept = 0, color = "black", size = .5, linetype = "solid") +  # Add vertical line for intercept
    scale_color_manual(values = c("Full Model" = "black", "Main Effects" = "black")) +
    labs(x = "Point estimates", y = NULL, title = "DV: Conspiratorial Attitudes") +
    theme_minimal() +
    theme(
        legend.position = "none",
        axis.text.y = element_text(size = 12),
        axis.title.x = element_text(size = 12),
        plot.title = element_text(hjust = 0.5, size = 14),
        strip.text = element_text(size = 12),
        panel.grid.major.y = element_blank(),
        panel.grid.minor.y = element_blank(),
        panel.grid.major.x = element_line(size = .5, color = "gray", linetype = "dotted")
    )

# Create the first line of the bottom annotation
bottom_annotation_line1 <- textGrob(
  bquote(
    "\nAdjusted R"^2 ~ " is 0.064 for " ~ bold("Populism Main Effects") ~ " vs. 0.225 for " ~ bold("Populism Full Model,") ~
    " and 0.123 for " ~ bold("Conspiracy Main Effects") ~ " vs. 0.245 for " ~ bold("Conspiracy Full Model.")
  ),
  gp = gpar(fontsize = 12),
  just = "center" # Centering the text in the grob
)

# Create the second line of the bottom annotation
bottom_annotation_line2 <- textGrob(
  "Reference category is France. None of the country variables are significant.",
  gp = gpar(fontsize = 12),
  just = "center" # Centering the text in the grob
)

# Combine both lines into one grob with adjusted padding
bottom_annotation <- arrangeGrob(
  bottom_annotation_line1,
  bottom_annotation_line2,
  ncol = 1, # Stack vertically
  padding = unit(4) # Adjust the spacing between lines (smaller value reduces space)
)

# Create the combined plot object with the annotations
combined_plot <- arrangeGrob(
  plotall1, plotall2,
  padding = unit(2.3, "lines"),
  ncol = 2, # Specify the number of columns for the plots
  top = textGrob(
    "Figure 2: Effect of Including FBD by Independent Variable\n", 
    gp = gpar(fontface = "bold", fontsize = 20), 
    vjust = 1
  ),
  bottom = bottom_annotation
)

# Printing the combined plot with annotations
grid.draw(combined_plot)

Country specific

# Extracting coefficients and creating a tidy data frame with confidence intervals
df1 <- tidy(ConspUS_full, conf.int = TRUE) %>% mutate(Country = "United States")
df2 <- tidy(ConspFR_full, conf.int = TRUE) %>% mutate(Country = "France")
df3 <- tidy(ConspPL_full, conf.int = TRUE) %>% mutate(Country = "Poland")
df4 <- tidy(ConspGB_full, conf.int = TRUE) %>% mutate(Country = "United Kingdom")


# Extracting 99% confidence intervals
ci99_df1 <- confint(ConspUS_full, level = 0.99) %>% as.data.frame() %>% mutate(term = rownames(.), Country = "United States")
ci99_df2 <- confint(ConspFR_full, level = 0.99) %>% as.data.frame() %>% mutate(term = rownames(.), Country = "France")
ci99_df3 <- confint(ConspPL_full, level = 0.99) %>% as.data.frame() %>% mutate(term = rownames(.), Country = "Poland")
ci99_df4 <- confint(ConspGB_full, level = 0.99) %>% as.data.frame() %>% mutate(term = rownames(.), Country = "United Kingdom")

# Renaming columns to match
colnames(ci99_df1)[1:2] <- c("conf.low2", "conf.high2")
colnames(ci99_df2)[1:2] <- c("conf.low2", "conf.high2")
colnames(ci99_df3)[1:2] <- c("conf.low2", "conf.high2")
colnames(ci99_df4)[1:2] <- c("conf.low2", "conf.high2")

# Combining the 99% CIs into one data frame
ci99_df <- bind_rows(ci99_df1, ci99_df2, ci99_df3, ci99_df4)


# Preparing the combined dataframe
coefficients_df <- bind_rows(df1, df2, df3, df4)
coefficients_df <- coefficients_df %>%
  left_join(ci99_df, by = c("term", "Country"))

# Filter out the intercept and other unwanted coefficients
coefficients_df <- coefficients_df %>%
  filter(term != "(Intercept)")

# Rename terms for readability
coefficients_df <- coefficients_df %>%
  mutate(term = case_when(
    term == "rwa_std" ~ "Right-Wing Authoritarianism",
    term == "sdo_std" ~ "Social Dominance Orientation",
    term == "devalued_std" ~ "Feelings of Being Devalued",
    term == "ethnocentrism_std" ~ "Ethnocentrism",
    term == "ideology_std" ~ "Ideology",
    term == "age_std" ~ "Age",
    term == "church_attendance_std" ~ "Religiosity",
    term == "income_num_std" ~ "Income",
    term == "Q1_interest_in_politics_std" ~ "Political Interest",
    term == "marital_status" ~ "Marital Status",
    term == "education_collapse" ~ "Education",
    TRUE ~ term
  ))

# Define the desired order for facets
facet_order <- c("Age", "Income", "Marital Status", "Education", "Political Interest", "Religiosity", "Ethnocentrism", "Ideology", 
                 "Right-Wing Authoritarianism", "Social Dominance Orientation", "Feelings of Being Devalued")


# Relevel the 'term' factor according to the desired facet order
coefficients_df <- coefficients_df %>%
  mutate(term = factor(term, levels = facet_order))

# Creating the plot with multi-level confidence intervals
plot1 <- ggplot(coefficients_df, aes(x = estimate, y = Country, color = Country)) +
    facet_wrap(~ term, scales = "free_y", ncol = 1) +
    geom_point(size = 2, shape = 16) +
    geom_linerange(aes(xmin = conf.low2, xmax = conf.high2), height = 0.2, color = "gray70", size = 0.25) + # Wider CI in lighter gray
    geom_linerange(aes(xmin = conf.low, xmax = conf.high), height = 0.2, color = "gray20", size = 0.25) + # Narrower CI in darker gray
    geom_vline(xintercept = 0, color = "black", size = .5, linetype = "solid") +  # Add vertical line for intercept
    scale_color_manual(values = c("United States" = "black", "France" = "black", "Poland" = "black", "United Kingdom" = "black")) +
    labs(x = "Point estimates", y = NULL, title = "DV: Conspiratorial Orientation") +
    theme_minimal() +
    theme(
        legend.position = "none",
        axis.text.y = element_text(size = 12),
        axis.title.x = element_text(size = 12),
        plot.title = element_text(hjust = 0.5, size = 14),
        strip.text = element_text(size = 12),
        panel.grid.major.y = element_blank(),
        panel.grid.minor.y = element_blank(),
        panel.grid.major.x = element_line(size = .5, color = "gray", linetype = "dotted")
    )
# Extracting coefficients and creating a tidy data frame with confidence intervals
df1 <- tidy(PopUS_full, conf.int = TRUE) %>% mutate(Country = "United States")
df2 <- tidy(PopFR_full, conf.int = TRUE) %>% mutate(Country = "France")
df3 <- tidy(PopPL_full, conf.int = TRUE) %>% mutate(Country = "Poland")
df4 <- tidy(PopGB_full, conf.int = TRUE) %>% mutate(Country = "United Kingdom")


# Extracting 99% confidence intervals
ci99_df1 <- confint(PopUS_full, level = 0.99) %>% as.data.frame() %>% mutate(term = rownames(.), Country = "United States")
ci99_df2 <- confint(PopFR_full, level = 0.99) %>% as.data.frame() %>% mutate(term = rownames(.), Country = "France")
ci99_df3 <- confint(PopPL_full, level = 0.99) %>% as.data.frame() %>% mutate(term = rownames(.), Country = "Poland")
ci99_df4 <- confint(PopGB_full, level = 0.99) %>% as.data.frame() %>% mutate(term = rownames(.), Country = "United Kingdom")

# Renaming columns to match
colnames(ci99_df1)[1:2] <- c("conf.low2", "conf.high2")
colnames(ci99_df2)[1:2] <- c("conf.low2", "conf.high2")
colnames(ci99_df3)[1:2] <- c("conf.low2", "conf.high2")
colnames(ci99_df4)[1:2] <- c("conf.low2", "conf.high2")

# Combining the 99% CIs into one data frame
ci99_df <- bind_rows(ci99_df1, ci99_df2, ci99_df3, ci99_df4)

# Preparing the combined dataframe
coefficients_df <- bind_rows(df1, df2, df3, df4)
coefficients_df <- coefficients_df %>%
  left_join(ci99_df, by = c("term", "Country"))

# Filter out the intercept and other unwanted coefficients
coefficients_df <- coefficients_df %>%
  filter(term != "(Intercept)")

# Rename terms for readability
coefficients_df <- coefficients_df %>%
  mutate(term = case_when(
    term == "rwa_std" ~ "Right-Wing Authoritarianism",
    term == "sdo_std" ~ "Social Dominance Orientation",
    term == "devalued_std" ~ "Feelings of Being Devalued",
    term == "ethnocentrism_std" ~ "Ethnocentrism",
    term == "ideology_std" ~ "Ideology",
    term == "age_std" ~ "Age",
    term == "church_attendance_std" ~ "Religiosity",
    term == "income_num_std" ~ "Income",
    term == "Q1_interest_in_politics_std" ~ "Political Interest",
    term == "marital_status" ~ "Marital Status",
    term == "education_collapse" ~ "Education",
    TRUE ~ term
  ))

# Define the desired order for facets
facet_order <- c("Age", "Income", "Marital Status", "Education", "Political Interest", "Religiosity", "Ethnocentrism", "Ideology", 
                 "Right-Wing Authoritarianism", "Social Dominance Orientation", "Feelings of Being Devalued")


# Relevel the 'term' factor according to the desired facet order
coefficients_df <- coefficients_df %>%
  mutate(term = factor(term, levels = facet_order))


# Creating the plot with multi-level confidence intervals
plot2 <- ggplot(coefficients_df, aes(x = estimate, y = Country, color = Country)) +
    facet_wrap(~ term, scales = "free_y", ncol = 1) +
    geom_point(size = 2, shape = 16) +
    geom_linerange(aes(xmin = conf.low2, xmax = conf.high2), height = 0.2, color = "gray70", size = 0.25) + # Wider CI in lighter gray
    geom_linerange(aes(xmin = conf.low, xmax = conf.high), height = 0.2, color = "gray20", size = 0.25) + # Narrower CI in darker gray
    geom_vline(xintercept = 0, color = "black", size = .5, linetype = "solid") +  # Add vertical line for intercept
    scale_color_manual(values = c("United States" = "black", "France" = "black", "Poland" = "black", "United Kingdom" = "black")) +
    labs(x = "Point estimates", y = NULL, title = "DV: Populist Attitudes") +
    theme_minimal() +
    theme(
        legend.position = "none",
        axis.text.y = element_text(size = 12),
        axis.title.x = element_text(size = 12),
        plot.title = element_text(hjust = 0.5, size = 14),
        strip.text = element_text(size = 12),
        panel.grid.major.y = element_blank(),
        panel.grid.minor.y = element_blank(),
        panel.grid.major.x = element_line(size = .5, color = "gray", linetype = "dotted")
    )

if (!require(grid)) install.packages("grid")
library(grid)
# Creating the combined plot object with arrangeGrob
combined_plot <- arrangeGrob(
  plot2, plot1,
  ncol = 2,
  top = textGrob("Figure 3: By-Country Models\n", 
                 gp = gpar(fontface = "bold", fontsize = 20), vjust = 1)
)
# Printing the combined plot with annotations
grid.draw(combined_plot)

Table 1: Descriptives Populist Attitudes & Conspiratorial Orientation

# Load necessary libraries
library(knitr)
library(kableExtra)
## 
## Attaching package: 'kableExtra'
## The following object is masked from 'package:dplyr':
## 
##     group_rows
## The following object is masked from 'package:huxtable':
## 
##     add_footnote
# Manually create the data frame
descriptives_manual <- data.frame(
  Country = c("France", "UK", "Poland", "US", "F-Statistic", "Combined"),
  `Populist Attitudes mean (sd)` = c("4.46 (1.03)", "4.57 (0.85)", "4.83 (0.95)", "4.73 (1.01)", "F=57.6, p<.001", "4.65 (0.99)"),
  `Conspiracy Orientation mean (sd)` = c("3.96 (1.52)", "4.03 (1.40)", "4.51 (1.39)", "4.27 (1.58)", "F=57.0 (p<.001)", "4.19 (1.49)"),
  `Populism : Conspiracy Correlation Pearson R (p)` = c(".58 (<.0001)", ".56 (<.0001)", ".52 (<.0001)", ".60 (<.0001)", "", ".58 (<.0001)")
)

# Formatting the table using kable
kable(descriptives_manual, align = 'c', booktabs = TRUE, col.names = c("Country", "Populist Attitudes mean (sd)", "Conspiracy Orientation mean (sd)", "Populism : Conspiracy correlation Pearson R (šœŒ)")) %>%
  add_header_above(c("Table 1: Descriptives for Populist Attitudes and Conspiratorial Orientation" = 4), bold = TRUE) %>%
  kable_styling(full_width = FALSE, position = "center", font_size = 13) %>%
  column_spec(2, width = "9em") %>%  # Adjust the width of the second column
  column_spec(3, width = "11em") %>%  # Adjust the width of the third column
  column_spec(4, width = "12em") %>% # Adjust the width of the fourth column
  column_spec(1, width = "11em", bold = TRUE) %>%
  row_spec(0, extra_css = "border-bottom: 2px solid black;") %>%  # Black line after the header
  row_spec(5, extra_css = "border-bottom: 2px solid black;") %>%  # Black line after the F-Statistic row
  footnote(general = "Populist Attitudes and Conspiracy Orientation values have a range of 1-7.\nFrance, N=2004; UK N=2000; Poland N=2001; US N=2000.",
           general_title = "Notes:",
           footnote_as_chunk = TRUE, escape = FALSE)
Table 1: Descriptives for Populist Attitudes and Conspiratorial Orientation
Country Populist Attitudes mean (sd) Conspiracy Orientation mean (sd) Populism : Conspiracy correlation Pearson R (šœŒ)
France 4.46 (1.03) 3.96 (1.52) .58 (<.0001)
UK 4.57 (0.85) 4.03 (1.40) .56 (<.0001)
Poland 4.83 (0.95) 4.51 (1.39) .52 (<.0001)
US 4.73 (1.01) 4.27 (1.58) .60 (<.0001)
F-Statistic F=57.6, p<.001 F=57.0 (p<.001)
Combined 4.65 (0.99) 4.19 (1.49) .58 (<.0001)
Notes: Populist Attitudes and Conspiracy Orientation values have a range of 1-7. France, N=2004; UK N=2000; Poland N=2001; US N=2000.

Regression Tables

Table 2: Predicting Populist Attitudes and Conspiratorial Orientation (All Respondents)

# Format Regression Table
stargazer(All_Pop_Main, All_Pop_full, All_Cons_Main, All_Cons_full, report = "vc*", type = "html", star.char = c(".", "*", "**", "***"), star.cutoffs = c(0.1, 0.05, 0.01, 0.001), notes = c(". p<0.1; * p<0.05; ** p<0.01; *** p<0.001"), notes.append = FALSE, title = "Table 2: Predicting Populist Attitudes and Conspiratorial Orientation (All Respondents)", dep.var.labels = c("Populist Attitudes", "Conspiratorial Attitudes"), covariate.labels = c("Feelings of Being Devalued", "Ethnocentrism", "Right-Wing Authoritarianism", "Social Dominance Orientation", "Religiosity", "Ideology", "Age", "Education", "Political Interest", "Income", "Marital Status", "Country: United Kingdom", "Country: Poland", "Country: United States", "Constant"))
Table 2: Predicting Populist Attitudes and Conspiratorial Orientation (All Respondents)
Dependent variable:
Populist Attitudes Conspiratorial Attitudes
(1) (2) (3) (4)
Feelings of Being Devalued 0.417*** 0.362***
Ethnocentrism 0.152*** 0.093*** 0.148*** 0.097***
Right-Wing Authoritarianism -0.062*** -0.038** -0.009 0.012
Social Dominance Orientation -0.063*** -0.067*** 0.048*** 0.044***
Religiosity -0.102*** -0.075*** -0.095*** -0.071***
Ideology 0.105*** 0.099*** 0.123*** 0.118***
Age -0.059*** 0.013 -0.145*** -0.082***
Education -0.055*** -0.039*** -0.073*** -0.059***
Political Interest 0.100*** 0.094*** -0.015 -0.020.
Income -0.029* 0.007 -0.042*** -0.011
Marital Status 0.109*** 0.092*** 0.107*** 0.092***
Country: United Kingdom 0.021 0.017 0.024 0.020
Country: Poland -0.023 -0.016 -0.031 -0.025
Country: United States 0.027 0.020 0.031 0.026
Constant 0.093* 0.056 0.147*** 0.115**
Observations 8,005 8,005 8,005 8,005
R2 0.065 0.226 0.123 0.244
Adjusted R2 0.063 0.225 0.122 0.243
Residual Std. Error 0.968 (df = 7991) 0.880 (df = 7990) 0.937 (df = 7991) 0.870 (df = 7990)
F Statistic 42.499*** (df = 13; 7991) 166.800*** (df = 14; 7990) 86.326*** (df = 13; 7991) 184.579*** (df = 14; 7990)
Note: . p<0.1; * p<0.05; ** p<0.01; *** p<0.001
# Format Regression Table
stargazer(PopFR_full, PopUS_full, PopGB_full, PopPL_full, report = "vc*", type = "html", star.char = c(".", "*", "**", "***"), star.cutoffs = c(0.1, 0.05, 0.01, 0.001), notes = c(". p<0.1; * p<0.05; ** p<0.01; *** p<0.001"), dep.var.labels = c("Populist Attitudes"), column.labels = c("France", "United States", "United Kingdom", "Poland"), notes.append = FALSE, title = "Populist Attitudes By Country (Full Models)", covariate.labels = c("Feelings of Being Devalued", "Ethnocentrism", "Right-Wing Authoritarianism", "Social Dominance Orientation", "Religiosity", "Ideology", "Age", "Education", "Political Interest", "Income", "Marital Status", "Constant"))
Populist Attitudes By Country (Full Models)
Dependent variable:
Populist Attitudes
France United States United Kingdom Poland
(1) (2) (3) (4)
Feelings of Being Devalued 0.419*** 0.412*** 0.449*** 0.355***
Ethnocentrism 0.178*** 0.016 0.136*** 0.084***
Right-Wing Authoritarianism -0.060** 0.052* 0.014 -0.135***
Social Dominance Orientation -0.069** -0.018 -0.078** -0.117***
Religiosity -0.093*** -0.050* -0.092*** -0.048*
Ideology 0.041. 0.249*** 0.050* 0.030
Age -0.056** 0.026 -0.047* 0.094***
Education -0.074*** -0.050** -0.014 -0.044*
Political Interest 0.043* 0.135*** 0.100*** 0.064**
Income 0.002 0.040* -0.007 0.009
Marital Status 0.047 0.073. 0.080. 0.135**
Constant 0.189** 0.121. -0.002 0.024
Observations 2,004 2,000 2,000 2,001
R2 0.262 0.321 0.278 0.169
Adjusted R2 0.258 0.317 0.274 0.164
Residual Std. Error 0.862 (df = 1992) 0.826 (df = 1988) 0.852 (df = 1988) 0.914 (df = 1989)
F Statistic 64.208*** (df = 11; 1992) 85.474*** (df = 11; 1988) 69.598*** (df = 11; 1988) 36.690*** (df = 11; 1989)
Note: . p<0.1; * p<0.05; ** p<0.01; *** p<0.001
# Format Regression Table
stargazer(ConspFR_full, ConspUS_full, ConspGB_full, ConspPL_full, report = "vc*", type = "html", star.char = c(".", "*", "**", "***"), star.cutoffs = c(0.1, 0.05, 0.01, 0.001), notes = c(". p<0.1; * p<0.05; ** p<0.01; *** p<0.001"), dep.var.labels = c("Conspiratorial Attitudes"), column.labels = c("France", "United States", "United Kingdom", "Poland"), notes.append = FALSE, title = "Cosnpiratorial Attitudes By Country (Full Models)", covariate.labels = c("Feelings of Being Devalued", "Ethnocentrism", "Right-Wing Authoritarianism", "Social Dominance Orientation", "Religiosity", "Ideology", "Age", "Education", "Political Interest", "Income", "Marital Status", "Constant"))
Cosnpiratorial Attitudes By Country (Full Models)
Dependent variable:
Conspiratorial Attitudes
France United States United Kingdom Poland
(1) (2) (3) (4)
Feelings of Being Devalued 0.334*** 0.363*** 0.388*** 0.322***
Ethnocentrism 0.143*** 0.022 0.090*** 0.121***
Right-Wing Authoritarianism -0.022 0.071*** 0.007 0.020
Social Dominance Orientation 0.028 0.105*** 0.081** -0.014
Religiosity -0.077*** -0.029 -0.095*** -0.052*
Ideology 0.113*** 0.271*** 0.032 0.034
Age -0.114*** -0.129*** -0.099*** 0.008
Education -0.083*** -0.077*** -0.060*** -0.026
Political Interest -0.067** 0.012 -0.0001 -0.055*
Income -0.051* 0.013 0.008 -0.005
Marital Status 0.059 0.090* 0.125** 0.074
Constant 0.208** 0.199** 0.118. 0.017
Observations 2,004 2,000 2,000 2,001
R2 0.258 0.391 0.259 0.154
Adjusted R2 0.254 0.388 0.255 0.150
Residual Std. Error 0.864 (df = 1992) 0.783 (df = 1988) 0.863 (df = 1988) 0.922 (df = 1989)
F Statistic 63.040*** (df = 11; 1992) 116.045*** (df = 11; 1988) 63.171*** (df = 11; 1988) 33.009*** (df = 11; 1989)
Note: . p<0.1; * p<0.05; ** p<0.01; *** p<0.001
# Format Regression Table
stargazer(PopFR_Main, PopUS_Main, PopGB_Main, PopPL_Main, report = "vc*", type = "html", star.char = c(".", "*", "**", "***"), star.cutoffs = c(0.1, 0.05, 0.01, 0.001), notes = c(". p<0.1; * p<0.05; ** p<0.01; *** p<0.001"), dep.var.labels = c("Populist Attitudes"), column.labels = c("France", "United States", "United Kingdom", "Poland"), notes.append = FALSE, title = "Populist Attitudes By Country (Main Effects Models)", covariate.labels = c("Ethnocentrism", "Right-Wing Authoritarianism", "Social Dominance Orientation", "Religiosity", "Ideology", "Age", "Education", "Political Interest", "Income", "Marital Status", "Constant"))
Populist Attitudes By Country (Main Effects Models)
Dependent variable:
Populist Attitudes
France United States United Kingdom Poland
(1) (2) (3) (4)
Ethnocentrism 0.247*** 0.054* 0.210*** 0.128***
Right-Wing Authoritarianism -0.098*** 0.027 0.002 -0.135***
Social Dominance Orientation -0.061* 0.004 -0.105*** -0.107***
Religiosity -0.129*** -0.067** -0.122*** -0.055*
Ideology 0.055* 0.286*** 0.040 0.021
Age -0.097*** -0.083*** -0.161*** 0.058*
Education -0.106*** -0.052* -0.022 -0.050*
Political Interest 0.020 0.159*** 0.116*** 0.065**
Income -0.041 0.015 -0.067** -0.015
Marital Status 0.079 0.075. 0.113* 0.142**
Constant 0.262*** 0.126. 0.006 0.034
Observations 2,004 2,000 2,000 2,001
R2 0.099 0.172 0.098 0.047
Adjusted R2 0.095 0.168 0.093 0.043
Residual Std. Error 0.951 (df = 1993) 0.912 (df = 1989) 0.952 (df = 1989) 0.978 (df = 1990)
F Statistic 22.013*** (df = 10; 1993) 41.320*** (df = 10; 1989) 21.611*** (df = 10; 1989) 9.896*** (df = 10; 1990)
Note: . p<0.1; * p<0.05; ** p<0.01; *** p<0.001
# Format Regression Table
stargazer(ConspFR_Main, ConspUS_Main, ConspGB_Main, ConspPL_Main, report = "vc*", type = "html", star.char = c(".", "*", "**", "***"), star.cutoffs = c(0.1, 0.05, 0.01, 0.001), notes = c(". p<0.1; * p<0.05; ** p<0.01; *** p<0.001"), dep.var.labels = c("Conspiratorial Attitudes"), column.labels = c("France", "United States", "United Kingdom", "Poland"), notes.append = FALSE, title = "Cosnpiratorial Attitudes By Country (Main Effects Models)", covariate.labels = c("Ethnocentrism", "Right-Wing Authoritarianism", "Social Dominance Orientation", "Religiosity", "Ideology", "Age", "Education", "Political Interest", "Income", "Marital Status", "Constant"))
Cosnpiratorial Attitudes By Country (Main Effects Models)
Dependent variable:
Conspiratorial Attitudes
France United States United Kingdom Poland
(1) (2) (3) (4)
Ethnocentrism 0.197*** 0.055* 0.154*** 0.161***
Right-Wing Authoritarianism -0.053* 0.049* -0.003 0.020
Social Dominance Orientation 0.034 0.124*** 0.058* -0.005
Religiosity -0.106*** -0.045* -0.121*** -0.059*
Ideology 0.124*** 0.303*** 0.023 0.026
Age -0.147*** -0.225*** -0.198*** -0.025
Education -0.108*** -0.078*** -0.067*** -0.031
Political Interest -0.085*** 0.033 0.014 -0.054*
Income -0.085*** -0.009 -0.044. -0.027
Marital Status 0.085. 0.091* 0.153*** 0.081.
Constant 0.266*** 0.203** 0.126. 0.026
Observations 2,004 2,000 2,000 2,001
R2 0.155 0.276 0.125 0.055
Adjusted R2 0.151 0.272 0.120 0.050
Residual Std. Error 0.922 (df = 1993) 0.853 (df = 1989) 0.938 (df = 1989) 0.975 (df = 1990)
F Statistic 36.573*** (df = 10; 1993) 75.671*** (df = 10; 1989) 28.289*** (df = 10; 1989) 11.477*** (df = 10; 1990)
Note: . p<0.1; * p<0.05; ** p<0.01; *** p<0.001

Big Five and FBD

All_Pop_Main = lm(populism_rw_std~ethnocentrism_std
                        +rwa_std
                        +sdo_std
                        +church_attendance_std
                        +ideology_std
                        +age_std
                        +education_collapse
                        +Q1_interest_in_politics_std
                        +income_num_std
                        +marital_status
                  +big5_conscientiousness_std
                        +big5_agreeableness_std
                        +big5_extraversion_std
                        +big5_openness_std
                        +big5_stability_std 
                        +country.GB
                        +country.PL
                        +country.US,  
                              data=all_data_dum)


All_Pop_full = lm(populism_rw_std~devalued_std+ethnocentrism_std
                        +rwa_std
                        +sdo_std
                        +church_attendance_std
                        +ideology_std
                        +age_std
                        +education_collapse
                        +Q1_interest_in_politics_std
                        +income_num_std
                        +marital_status
                  +big5_conscientiousness_std
                        +big5_agreeableness_std
                        +big5_extraversion_std
                        +big5_openness_std
                        +big5_stability_std 
                        +country.GB
                        +country.PL
                        +country.US,  
                              data=all_data_dum)

All_Cons_Main = lm(conspiratorial_orientation_std~ethnocentrism_std
                        +rwa_std
                        +sdo_std
                        +church_attendance_std
                        +ideology_std
                        +age_std
                        +education_collapse
                        +Q1_interest_in_politics_std
                        +income_num_std
                        +marital_status
                   +big5_conscientiousness_std
                        +big5_agreeableness_std
                        +big5_extraversion_std
                        +big5_openness_std
                        +big5_stability_std 
                        +country.GB
                        +country.PL
                        +country.US,  
                              data=all_data_dum)


All_Cons_full = lm(conspiratorial_orientation_std~devalued_std+ethnocentrism_std
                        +rwa_std
                        +sdo_std
                        +church_attendance_std
                        +ideology_std
                        +age_std
                        +education_collapse
                        +Q1_interest_in_politics_std
                        +income_num_std
                        +marital_status
                   +big5_conscientiousness_std
                        +big5_agreeableness_std
                        +big5_extraversion_std
                        +big5_openness_std
                        +big5_stability_std 
                        +country.GB
                        +country.PL
                        +country.US,  
                              data=all_data_dum)

# Extracting coefficients and creating a tidy data frame with confidence intervals
df1 <- tidy(All_Pop_full, conf.int = TRUE) %>% mutate(Model = "With FBD")
df3 <- tidy(All_Pop_Main, conf.int = TRUE) %>% mutate(Model = "Without FBD")



# Extracting 99% confidence intervals
ci99_df1 <- confint(All_Pop_full, level = 0.99) %>% as.data.frame() %>% mutate(term = rownames(.), Model = "With FBD")
ci99_df3 <- confint(All_Pop_Main, level = 0.99) %>% as.data.frame() %>% mutate(term = rownames(.), Model = "Without FBD")


# Renaming columns to match
colnames(ci99_df1)[1:2] <- c("conf.low2", "conf.high2")
colnames(ci99_df3)[1:2] <- c("conf.low2", "conf.high2")

# Combining the 99% CIs into one data frame
ci99_df <- bind_rows(ci99_df1, ci99_df3)


# Preparing the combined dataframe
coefficients_df <- bind_rows(df1, df3)
coefficients_df <- coefficients_df %>%
  left_join(ci99_df, by = c("term", "Model"))

# Filter out the intercept and other unwanted coefficients
coefficients_df <- coefficients_df %>%
  filter(term != "(Intercept)"  & term != "rwa_std"  & term != "sdo_std"  & term != "ethnocentrism_std" & term != "age_std"  & term != "ideology_std"  & term != "income_num_std"  & term != "country.PL"  & term != "country.US"  & term != "country.GB" & term != "education_collapse" & term != "church_attendance_std" & term != "Q1_interest_in_politics_std" & term != "marital_status" & term != "devalued_std")

# Rename terms for readability
coefficients_df <- coefficients_df %>%
  mutate(term = case_when(
        term == "big5_openness_std" ~ "Openness to Experience",
    term == "big5_agreeableness_std" ~ "Agreeableness",
    term == "big5_stability_std" ~ "Emotional Stability",
    term == "big5_conscientiousness_std" ~ "Conscientiousness",
    term == "big5_extraversion_std" ~ "Extraversion",
    TRUE ~ term
  ))

# Define the desired order for facets
facet_order <- c("Openness to Experience", "Conscientiousness", "Extraversion",
                 "Agreeableness", "Emotional Stability")

# Relevel the 'term' factor according to the desired facet order
coefficients_df <- coefficients_df %>%
  mutate(term = factor(term, levels = facet_order))

# Now redefine the Model factor to specify the order of the models
coefficients_df <- coefficients_df %>%
  mutate(Model = factor(Model, levels = c("With FBD", "Without FBD")))

# Creating the plot with multi-level confidence intervals
plotall1 <- ggplot(coefficients_df, aes(x = estimate, y = Model, color = Model)) +
    facet_wrap(~ term, scales = "free_y", ncol = 1) +
    geom_point(size = 2, shape = 16) +
    geom_linerange(aes(xmin = conf.low2, xmax = conf.high2), height = 0.2, color = "gray70", size = 0.25) + # Wider CI in lighter gray
    geom_linerange(aes(xmin = conf.low, xmax = conf.high), height = 0.2, color = "gray20", size = 0.25) + # Narrower CI in darker gray
    geom_vline(xintercept = 0, color = "black", size = .5, linetype = "solid") +  # Add vertical line for intercept
    scale_color_manual(values = c("With FBD" = "black", "Without FBD" = "black")) +
    labs(x = "Point estimates", y = NULL, title = "DV: Populist Attitudes") +
    theme_minimal() +
    theme(
        legend.position = "none",
        axis.text.y = element_text(size = 10),
        axis.title.x = element_text(size = 12),
        plot.title = element_text(hjust = 0.5, size = 14),
        strip.text = element_text(size = 12),
        panel.grid.major.y = element_blank(),
        panel.grid.minor.y = element_blank(),
        panel.grid.major.x = element_line(size = .5, color = "gray", linetype = "dotted")
    )

# Extracting coefficients and creating a tidy data frame with confidence intervals
df1 <- tidy(All_Cons_full, conf.int = TRUE) %>% mutate(Model = "With FBD")
df3 <- tidy(All_Cons_Main, conf.int = TRUE) %>% mutate(Model = "Without FBD")



# Extracting 99% confidence intervals
ci99_df1 <- confint(All_Cons_full, level = 0.99) %>% as.data.frame() %>% mutate(term = rownames(.), Model = "With FBD")
ci99_df3 <- confint(All_Cons_Main, level = 0.99) %>% as.data.frame() %>% mutate(term = rownames(.), Model = "Without FBD")


# Renaming columns to match
colnames(ci99_df1)[1:2] <- c("conf.low2", "conf.high2")
colnames(ci99_df3)[1:2] <- c("conf.low2", "conf.high2")

# Combining the 99% CIs into one data frame
ci99_df <- bind_rows(ci99_df1, ci99_df3)


# Preparing the combined dataframe
coefficients_df <- bind_rows(df1, df3)
coefficients_df <- coefficients_df %>%
  left_join(ci99_df, by = c("term", "Model"))

# Filter out the intercept and other unwanted coefficients
coefficients_df <- coefficients_df %>%
  filter(term != "(Intercept)"  & term != "rwa_std"  & term != "sdo_std"  & term != "ethnocentrism_std" & term != "age_std"  & term != "ideology_std" & term != "income_num_std"  & term != "country.PL"  & term != "country.US"  & term != "country.GB" & term != "education_collapse" & term != "church_attendance_std" & term != "Q1_interest_in_politics_std" & term != "marital_status" & term != "devalued_std")

# Rename terms for readability
coefficients_df <- coefficients_df %>%
  mutate(term = case_when(
        term == "big5_openness_std" ~ "Openness to Experience",
    term == "big5_agreeableness_std" ~ "Agreeableness",
    term == "big5_stability_std" ~ "Emotional Stability",
    term == "big5_conscientiousness_std" ~ "Conscientiousness",
    term == "big5_extraversion_std" ~ "Extraversion",
    TRUE ~ term
  ))

# Define the desired order for facets
facet_order <- c("Openness to Experience", "Conscientiousness", "Extraversion",
                 "Agreeableness", "Emotional Stability")

# Relevel the 'term' factor according to the desired facet order
coefficients_df <- coefficients_df %>%
  mutate(term = factor(term, levels = facet_order))

# Now redefine the Model factor to specify the order of the models
coefficients_df <- coefficients_df %>%
  mutate(Model = factor(Model, levels = c("With FBD", "Without FBD")))

# Creating the plot with multi-level confidence intervals
plotall2 <- ggplot(coefficients_df, aes(x = estimate, y = Model, color = Model)) +
    facet_wrap(~ term, scales = "free_y", ncol = 1) +
    geom_point(size = 2, shape = 16) +
    geom_linerange(aes(xmin = conf.low2, xmax = conf.high2), height = 0.2, color = "gray50", size = 0.25) + # Wider CI in gray
    geom_linerange(aes(xmin = conf.low, xmax = conf.high), height = 0.2, color = "black", size = 0.25) + # Narrower CI in black
    geom_vline(xintercept = 0, color = "black", size = .5, linetype = "solid") +  # Add vertical line for intercept
    scale_color_manual(values = c("With FBD" = "black", "Without FBD" = "black")) +
    labs(x = "Point estimates", y = NULL, title = "DV: Conspiratorial Attitudes") +
    theme_minimal() +
    theme(
        legend.position = "none",
        axis.text.y = element_text(size = 10),
        axis.title.x = element_text(size = 12),
        plot.title = element_text(hjust = 0.5, size = 14),
        strip.text = element_text(size = 12),
        panel.grid.major.y = element_blank(),
        panel.grid.minor.y = element_blank(),
        panel.grid.major.x = element_line(size = .5, color = "gray", linetype = "dotted")
    )

# Creating the combined plot object with arrangeGrob
combined_plot <- arrangeGrob(
  plotall1, plotall2,
  padding = unit(4, "lines"),
  ncol = 2, # Specify the number of columns for the plots
  top = textGrob(
    "FBD and the Relationship of DVs With Big Five (All Respondents)\n", 
    gp = gpar(fontface = "bold", fontsize = 20), 
    vjust = 1
  ),
  bottom = textGrob(bquote(~ bold("Not displayed:") ~ "FBD, age, income, marital status, education, political interest, religiosity, ethnocentrism, ideology, RWA, SDO, and country."),
    gp = gpar(fontsize = 10),
    just = "center" # Centering the text in the grob
  )
)
# Printing the combined plot with annotations
grid.draw(combined_plot)

RWP vote

Models

RWPUS_full = lm(vote_trump~devalued_std+ethnocentrism_std
                        +rwa_std
                        +sdo_std 
                        +church_attendance_std
                        +ideology_std
                        +age_std
                        +education_collapse
                        +Q1_interest_in_politics_std
                        +income_num_std
                        +marital_status,  
                              data=US_data)
RWPPL_full = lm(vote_prawo~devalued_std+ethnocentrism_std
                        +rwa_std
                        +sdo_std 
                        +church_attendance_std
                        +ideology_std
                        +age_std
                        +education_collapse
                        +Q1_interest_in_politics_std
                        +income_num_std
                        +marital_status,  
                              data=PL_data)
RWPFR_full = lm(vote_lepen~devalued_std+ethnocentrism_std
                        +rwa_std
                        +sdo_std
                        +church_attendance_std
                        +ideology_std
                        +age_std
                        +education_collapse
                        +Q1_interest_in_politics_std
                        +income_num_std
                        +marital_status,  
                              data=FR_data)
# Extracting coefficients and creating a tidy data frame with confidence intervals
df1 <- tidy(RWPUS_full, conf.int = TRUE) %>% mutate(Country = "United States")
df2 <- tidy(RWPFR_full, conf.int = TRUE) %>% mutate(Country = "France")
df3 <- tidy(RWPPL_full, conf.int = TRUE) %>% mutate(Country = "Poland")


# Extracting 99% confidence intervals
ci99_df1 <- confint(RWPUS_full, level = 0.99) %>% as.data.frame() %>% mutate(term = rownames(.), Country = "United States")
ci99_df2 <- confint(RWPFR_full, level = 0.99) %>% as.data.frame() %>% mutate(term = rownames(.), Country = "France")
ci99_df3 <- confint(RWPPL_full, level = 0.99) %>% as.data.frame() %>% mutate(term = rownames(.), Country = "Poland")

# Renaming columns to match
colnames(ci99_df1)[1:2] <- c("conf.low2", "conf.high2")
colnames(ci99_df2)[1:2] <- c("conf.low2", "conf.high2")
colnames(ci99_df3)[1:2] <- c("conf.low2", "conf.high2")

# Combining the 99% CIs into one data frame
ci99_df <- bind_rows(ci99_df1, ci99_df2, ci99_df3)


# Preparing the combined dataframe
coefficients_df <- bind_rows(df1, df2, df3)
coefficients_df <- coefficients_df %>%
  left_join(ci99_df, by = c("term", "Country"))

# Filter out the intercept and other unwanted coefficients
coefficients_df <- coefficients_df %>%
  filter(term != "(Intercept)")

# Rename terms for readability
coefficients_df <- coefficients_df %>%
  mutate(term = case_when(
    term == "rwa_std" ~ "Right-Wing Authoritarianism",
    term == "sdo_std" ~ "Social Dominance Orientation",
    term == "devalued_std" ~ "Feelings of Being Devalued",
    term == "ethnocentrism_std" ~ "Ethnocentrism",
    term == "ideology_std" ~ "Ideology",
    term == "age_std" ~ "Age",
    term == "church_attendance_std" ~ "Religiosity",
    term == "income_num_std" ~ "Income",
    term == "Q1_interest_in_politics_std" ~ "Political Interest",
    term == "marital_status" ~ "Marital Status",
    term == "education_collapse" ~ "Education",
    TRUE ~ term
  ))

# Define the desired order for facets
facet_order <- c("Age", "Income", "Marital Status", "Education", "Political Interest", "Religiosity", "Ethnocentrism", "Ideology", 
                 "Right-Wing Authoritarianism", "Social Dominance Orientation", "Feelings of Being Devalued")


# Relevel the 'term' factor according to the desired facet order
coefficients_df <- coefficients_df %>%
  mutate(term = factor(term, levels = facet_order))

# Creating the plot with multi-level confidence intervals
plot1 <- ggplot(coefficients_df, aes(x = estimate, y = Country, color = Country)) +
    facet_wrap(~ term, scales = "free_y", ncol = 2) +  # Set ncol = 2 for two columns
    geom_point(size = 2, shape = 16) +
    geom_linerange(aes(xmin = conf.low2, xmax = conf.high2), height = 0.2, color = "gray70", size = 0.25) + # Wider CI in lighter gray
    geom_linerange(aes(xmin = conf.low, xmax = conf.high), height = 0.2, color = "gray20", size = 0.25) + # Narrower CI in darker gray
    geom_vline(xintercept = 0, color = "black", size = .5, linetype = "solid") +  # Add vertical line for intercept
    scale_color_manual(values = c("United States" = "black", "France" = "black", "Poland" = "black")) +
    labs(x = "Point estimates", y = NULL, title = "DV: Conspiratorial Orientation") +
    theme_minimal() +
    theme(
        legend.position = "none",
        axis.text.y = element_text(size = 11),
        axis.title.x = element_text(size = 12),
        plot.title = element_text(hjust = 0.5, size = 14),
        strip.text = element_text(size = 12),
        panel.grid.major.y = element_blank(),
        panel.grid.minor.y = element_blank(),
        panel.grid.major.x = element_line(size = .5, color = "gray", linetype = "dotted")
    )

plot1 + labs(title="Figure 4: Predicting Right-Wing Populist Vote in France, the US, and Poland") + 
    theme(plot.title = element_text(family = "sans", face = "bold"))

Big Five Per Country

Big Five and FBD

All_PopBig5PL_Main = lm(populism_rw_std~ethnocentrism_std
                        +rwa_std
                        +sdo_std
                        +church_attendance_std
                        +ideology_std
                        +age_std
                        +education_collapse
                        +Q1_interest_in_politics_std
                        +income_num_std
                        +marital_status
                  +big5_conscientiousness_std
                        +big5_agreeableness_std
                        +big5_extraversion_std
                        +big5_openness_std
                        +big5_stability_std,  
                              data=PL_data)


All_PopBig5PL_full = lm(populism_rw_std~devalued_std+ethnocentrism_std
                        +rwa_std
                        +sdo_std
                        +church_attendance_std
                        +ideology_std
                        +age_std
                        +education_collapse
                        +Q1_interest_in_politics_std
                        +income_num_std
                        +marital_status
                  +big5_conscientiousness_std
                        +big5_agreeableness_std
                        +big5_extraversion_std
                        +big5_openness_std
                        +big5_stability_std,  
                              data=PL_data)

All_ConsBig5PL_Main = lm(conspiratorial_orientation_std~ethnocentrism_std
                        +rwa_std
                        +sdo_std
                        +church_attendance_std
                        +ideology_std
                        +age_std
                        +education_collapse
                        +Q1_interest_in_politics_std
                        +income_num_std
                        +marital_status
                   +big5_conscientiousness_std
                        +big5_agreeableness_std
                        +big5_extraversion_std
                        +big5_openness_std
                        +big5_stability_std,
                              data=PL_data)


All_ConsBig5PL_full = lm(conspiratorial_orientation_std~devalued_std+ethnocentrism_std
                        +rwa_std
                        +sdo_std
                        +church_attendance_std
                        +ideology_std
                        +age_std
                        +education_collapse
                        +Q1_interest_in_politics_std
                        +income_num_std
                        +marital_status
                   +big5_conscientiousness_std
                        +big5_agreeableness_std
                        +big5_extraversion_std
                        +big5_openness_std
                        +big5_stability_std, 
                              data=PL_data)

All_PopBig5US_Main = lm(populism_rw_std~ethnocentrism_std
                        +rwa_std
                        +sdo_std
                        +church_attendance_std
                        +ideology_std
                        +age_std
                        +education_collapse
                        +Q1_interest_in_politics_std
                        +income_num_std
                        +marital_status
                  +big5_conscientiousness_std
                        +big5_agreeableness_std
                        +big5_extraversion_std
                        +big5_openness_std
                        +big5_stability_std,  
                              data=US_data)


All_PopBig5US_full = lm(populism_rw_std~devalued_std+ethnocentrism_std
                        +rwa_std
                        +sdo_std
                        +church_attendance_std
                        +ideology_std
                        +age_std
                        +education_collapse
                        +Q1_interest_in_politics_std
                        +income_num_std
                        +marital_status
                  +big5_conscientiousness_std
                        +big5_agreeableness_std
                        +big5_extraversion_std
                        +big5_openness_std
                        +big5_stability_std,  
                              data=US_data)

All_ConsBig5US_Main = lm(conspiratorial_orientation_std~ethnocentrism_std
                        +rwa_std
                        +sdo_std
                        +church_attendance_std
                        +ideology_std
                        +age_std
                        +education_collapse
                        +Q1_interest_in_politics_std
                        +income_num_std
                        +marital_status
                   +big5_conscientiousness_std
                        +big5_agreeableness_std
                        +big5_extraversion_std
                        +big5_openness_std
                        +big5_stability_std,
                              data=US_data)


All_ConsBig5US_full = lm(conspiratorial_orientation_std~devalued_std+ethnocentrism_std
                        +rwa_std
                        +sdo_std
                        +church_attendance_std
                        +ideology_std
                        +age_std
                        +education_collapse
                        +Q1_interest_in_politics_std
                        +income_num_std
                        +marital_status
                   +big5_conscientiousness_std
                        +big5_agreeableness_std
                        +big5_extraversion_std
                        +big5_openness_std
                        +big5_stability_std, 
                              data=US_data)

All_PopBig5FR_Main = lm(populism_rw_std~ethnocentrism_std
                        +rwa_std
                        +sdo_std
                        +church_attendance_std
                        +ideology_std
                        +age_std
                        +education_collapse
                        +Q1_interest_in_politics_std
                        +income_num_std
                        +marital_status
                  +big5_conscientiousness_std
                        +big5_agreeableness_std
                        +big5_extraversion_std
                        +big5_openness_std
                        +big5_stability_std,  
                              data=FR_data)


All_PopBig5FR_full = lm(populism_rw_std~devalued_std+ethnocentrism_std
                        +rwa_std
                        +sdo_std
                        +church_attendance_std
                        +ideology_std
                        +age_std
                        +education_collapse
                        +Q1_interest_in_politics_std
                        +income_num_std
                        +marital_status
                  +big5_conscientiousness_std
                        +big5_agreeableness_std
                        +big5_extraversion_std
                        +big5_openness_std
                        +big5_stability_std,  
                              data=FR_data)

All_ConsBig5FR_Main = lm(conspiratorial_orientation_std~ethnocentrism_std
                        +rwa_std
                        +sdo_std
                        +church_attendance_std
                        +ideology_std
                        +age_std
                        +education_collapse
                        +Q1_interest_in_politics_std
                        +income_num_std
                        +marital_status
                   +big5_conscientiousness_std
                        +big5_agreeableness_std
                        +big5_extraversion_std
                        +big5_openness_std
                        +big5_stability_std,
                              data=FR_data)


All_ConsBig5FR_full = lm(conspiratorial_orientation_std~devalued_std+ethnocentrism_std
                        +rwa_std
                        +sdo_std
                        +church_attendance_std
                        +ideology_std
                        +age_std
                        +education_collapse
                        +Q1_interest_in_politics_std
                        +income_num_std
                        +marital_status
                   +big5_conscientiousness_std
                        +big5_agreeableness_std
                        +big5_extraversion_std
                        +big5_openness_std
                        +big5_stability_std, 
                              data=FR_data)

All_PopBig5GB_Main = lm(populism_rw_std~ethnocentrism_std
                        +rwa_std
                        +sdo_std
                        +church_attendance_std
                        +ideology_std
                        +age_std
                        +education_collapse
                        +Q1_interest_in_politics_std
                        +income_num_std
                        +marital_status
                  +big5_conscientiousness_std
                        +big5_agreeableness_std
                        +big5_extraversion_std
                        +big5_openness_std
                        +big5_stability_std,  
                              data=GB_data)


All_PopBig5GB_full = lm(populism_rw_std~devalued_std+ethnocentrism_std
                        +rwa_std
                        +sdo_std
                        +church_attendance_std
                        +ideology_std
                        +age_std
                        +education_collapse
                        +Q1_interest_in_politics_std
                        +income_num_std
                        +marital_status
                  +big5_conscientiousness_std
                        +big5_agreeableness_std
                        +big5_extraversion_std
                        +big5_openness_std
                        +big5_stability_std,  
                              data=GB_data)

All_ConsBig5GB_Main = lm(conspiratorial_orientation_std~ethnocentrism_std
                        +rwa_std
                        +sdo_std
                        +church_attendance_std
                        +ideology_std
                        +age_std
                        +education_collapse
                        +Q1_interest_in_politics_std
                        +income_num_std
                        +marital_status
                   +big5_conscientiousness_std
                        +big5_agreeableness_std
                        +big5_extraversion_std
                        +big5_openness_std
                        +big5_stability_std,
                              data=GB_data)


All_ConsBig5GB_full = lm(conspiratorial_orientation_std~devalued_std+ethnocentrism_std
                        +rwa_std
                        +sdo_std
                        +church_attendance_std
                        +ideology_std
                        +age_std
                        +education_collapse
                        +Q1_interest_in_politics_std
                        +income_num_std
                        +marital_status
                   +big5_conscientiousness_std
                        +big5_agreeableness_std
                        +big5_extraversion_std
                        +big5_openness_std
                        +big5_stability_std, 
                              data=GB_data)

summary(All_PopBig5GB_Main)
## 
## Call:
## lm(formula = populism_rw_std ~ ethnocentrism_std + rwa_std + 
##     sdo_std + church_attendance_std + ideology_std + age_std + 
##     education_collapse + Q1_interest_in_politics_std + income_num_std + 
##     marital_status + big5_conscientiousness_std + big5_agreeableness_std + 
##     big5_extraversion_std + big5_openness_std + big5_stability_std, 
##     data = GB_data)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -3.7419 -0.6044 -0.0207  0.5893  3.0817 
## 
## Coefficients:
##                               Estimate Std. Error t value Pr(>|t|)    
## (Intercept)                  1.132e-02  6.978e-02   0.162  0.87113    
## ethnocentrism_std            2.150e-01  2.869e-02   7.493 1.00e-13 ***
## rwa_std                     -4.975e-05  2.598e-02  -0.002  0.99847    
## sdo_std                     -9.217e-02  2.941e-02  -3.134  0.00175 ** 
## church_attendance_std       -1.247e-01  2.342e-02  -5.325 1.12e-07 ***
## ideology_std                 4.939e-02  2.487e-02   1.986  0.04715 *  
## age_std                     -1.211e-01  2.452e-02  -4.940 8.47e-07 ***
## education_collapse          -2.361e-02  1.887e-02  -1.251  0.21106    
## Q1_interest_in_politics_std  1.122e-01  2.321e-02   4.835 1.44e-06 ***
## income_num_std              -5.880e-02  2.440e-02  -2.410  0.01606 *  
## marital_status               1.126e-01  4.649e-02   2.422  0.01554 *  
## big5_conscientiousness_std   2.991e-02  2.549e-02   1.173  0.24082    
## big5_agreeableness_std      -9.373e-03  2.498e-02  -0.375  0.70753    
## big5_extraversion_std        1.992e-02  2.317e-02   0.860  0.39014    
## big5_openness_std            7.656e-02  2.396e-02   3.195  0.00142 ** 
## big5_stability_std          -1.210e-01  2.503e-02  -4.833 1.45e-06 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.9455 on 1984 degrees of freedom
## Multiple R-squared:  0.1127, Adjusted R-squared:  0.106 
## F-statistic:  16.8 on 15 and 1984 DF,  p-value: < 2.2e-16
summary(All_PopBig5GB_full)
## 
## Call:
## lm(formula = populism_rw_std ~ devalued_std + ethnocentrism_std + 
##     rwa_std + sdo_std + church_attendance_std + ideology_std + 
##     age_std + education_collapse + Q1_interest_in_politics_std + 
##     income_num_std + marital_status + big5_conscientiousness_std + 
##     big5_agreeableness_std + big5_extraversion_std + big5_openness_std + 
##     big5_stability_std, data = GB_data)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -4.0533 -0.4998 -0.0095  0.5242  3.1571 
## 
## Coefficients:
##                              Estimate Std. Error t value Pr(>|t|)    
## (Intercept)                  0.011759   0.062524   0.188  0.85083    
## devalued_std                 0.462143   0.020919  22.092  < 2e-16 ***
## ethnocentrism_std            0.150758   0.025869   5.828 6.54e-09 ***
## rwa_std                      0.006580   0.023279   0.283  0.77746    
## sdo_std                     -0.069331   0.026375  -2.629  0.00864 ** 
## church_attendance_std       -0.091781   0.021039  -4.362 1.35e-05 ***
## ideology_std                 0.051605   0.022284   2.316  0.02067 *  
## age_std                     -0.046225   0.022234  -2.079  0.03774 *  
## education_collapse          -0.016713   0.016910  -0.988  0.32309    
## Q1_interest_in_politics_std  0.088029   0.020823   4.228 2.47e-05 ***
## income_num_std              -0.012479   0.021965  -0.568  0.57000    
## marital_status               0.073060   0.041697   1.752  0.07990 .  
## big5_conscientiousness_std   0.064185   0.022896   2.803  0.00511 ** 
## big5_agreeableness_std      -0.008459   0.022381  -0.378  0.70551    
## big5_extraversion_std        0.045195   0.020796   2.173  0.02988 *  
## big5_openness_std            0.058645   0.021487   2.729  0.00640 ** 
## big5_stability_std          -0.007829   0.023006  -0.340  0.73366    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.8472 on 1983 degrees of freedom
## Multiple R-squared:  0.288,  Adjusted R-squared:  0.2822 
## F-statistic: 50.12 on 16 and 1983 DF,  p-value: < 2.2e-16
summary(All_ConsBig5GB_Main)
## 
## Call:
## lm(formula = conspiratorial_orientation_std ~ ethnocentrism_std + 
##     rwa_std + sdo_std + church_attendance_std + ideology_std + 
##     age_std + education_collapse + Q1_interest_in_politics_std + 
##     income_num_std + marital_status + big5_conscientiousness_std + 
##     big5_agreeableness_std + big5_extraversion_std + big5_openness_std + 
##     big5_stability_std, data = GB_data)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -2.81504 -0.58685 -0.04091  0.61154  2.87706 
## 
## Coefficients:
##                              Estimate Std. Error t value Pr(>|t|)    
## (Intercept)                  0.140045   0.068742   2.037 0.041756 *  
## ethnocentrism_std            0.155061   0.028262   5.487 4.62e-08 ***
## rwa_std                      0.007741   0.025592   0.302 0.762316    
## sdo_std                      0.051760   0.028976   1.786 0.074201 .  
## church_attendance_std       -0.115780   0.023073  -5.018 5.69e-07 ***
## ideology_std                 0.030241   0.024500   1.234 0.217213    
## age_std                     -0.146475   0.024159  -6.063 1.59e-09 ***
## education_collapse          -0.071179   0.018588  -3.829 0.000133 ***
## Q1_interest_in_politics_std  0.007046   0.022862   0.308 0.757954    
## income_num_std              -0.037512   0.024039  -1.560 0.118809    
## marital_status               0.151218   0.045802   3.302 0.000979 ***
## big5_conscientiousness_std  -0.031288   0.025116  -1.246 0.213007    
## big5_agreeableness_std      -0.045807   0.024607  -1.862 0.062814 .  
## big5_extraversion_std        0.024937   0.022830   1.092 0.274829    
## big5_openness_std            0.087821   0.023608   3.720 0.000205 ***
## big5_stability_std          -0.068587   0.024659  -2.781 0.005464 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.9315 on 1984 degrees of freedom
## Multiple R-squared:  0.1388, Adjusted R-squared:  0.1323 
## F-statistic: 21.33 on 15 and 1984 DF,  p-value: < 2.2e-16
summary(All_ConsBig5GB_full)
## 
## Call:
## lm(formula = conspiratorial_orientation_std ~ devalued_std + 
##     ethnocentrism_std + rwa_std + sdo_std + church_attendance_std + 
##     ideology_std + age_std + education_collapse + Q1_interest_in_politics_std + 
##     income_num_std + marital_status + big5_conscientiousness_std + 
##     big5_agreeableness_std + big5_extraversion_std + big5_openness_std + 
##     big5_stability_std, data = GB_data)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -3.4566 -0.5172 -0.0031  0.5213  3.1660 
## 
## Coefficients:
##                              Estimate Std. Error t value Pr(>|t|)    
## (Intercept)                  0.140424   0.063313   2.218 0.026672 *  
## devalued_std                 0.399585   0.021183  18.864  < 2e-16 ***
## ethnocentrism_std            0.099542   0.026196   3.800 0.000149 ***
## rwa_std                      0.013473   0.023572   0.572 0.567673    
## sdo_std                      0.071511   0.026708   2.678 0.007478 ** 
## church_attendance_std       -0.087305   0.021304  -4.098 4.34e-05 ***
## ideology_std                 0.032152   0.022565   1.425 0.154349    
## age_std                     -0.081702   0.022514  -3.629 0.000292 ***
## education_collapse          -0.065220   0.017123  -3.809 0.000144 ***
## Q1_interest_in_politics_std -0.013849   0.021086  -0.657 0.511387    
## income_num_std               0.002539   0.022242   0.114 0.909140    
## marital_status               0.117037   0.042224   2.772 0.005626 ** 
## big5_conscientiousness_std  -0.001654   0.023185  -0.071 0.943123    
## big5_agreeableness_std      -0.045017   0.022664  -1.986 0.047136 *  
## big5_extraversion_std        0.046791   0.021059   2.222 0.026399 *  
## big5_openness_std            0.072333   0.021759   3.324 0.000902 ***
## big5_stability_std           0.029240   0.023296   1.255 0.209578    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.8579 on 1983 degrees of freedom
## Multiple R-squared:  0.2699, Adjusted R-squared:  0.264 
## F-statistic: 45.81 on 16 and 1983 DF,  p-value: < 2.2e-16
summary(All_PopBig5FR_Main)
## 
## Call:
## lm(formula = populism_rw_std ~ ethnocentrism_std + rwa_std + 
##     sdo_std + church_attendance_std + ideology_std + age_std + 
##     education_collapse + Q1_interest_in_politics_std + income_num_std + 
##     marital_status + big5_conscientiousness_std + big5_agreeableness_std + 
##     big5_extraversion_std + big5_openness_std + big5_stability_std, 
##     data = FR_data)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -3.7898 -0.5833  0.0181  0.6411  2.7966 
## 
## Coefficients:
##                              Estimate Std. Error t value Pr(>|t|)    
## (Intercept)                  0.263791   0.071929   3.667 0.000251 ***
## ethnocentrism_std            0.250251   0.026031   9.613  < 2e-16 ***
## rwa_std                     -0.096984   0.024957  -3.886 0.000105 ***
## sdo_std                     -0.055007   0.025280  -2.176 0.029682 *  
## church_attendance_std       -0.128366   0.022112  -5.805 7.46e-09 ***
## ideology_std                 0.055132   0.024228   2.276 0.022976 *  
## age_std                     -0.094845   0.022915  -4.139 3.63e-05 ***
## education_collapse          -0.106423   0.018525  -5.745 1.06e-08 ***
## Q1_interest_in_politics_std  0.017869   0.022566   0.792 0.428537    
## income_num_std              -0.039872   0.025850  -1.542 0.123133    
## marital_status               0.079753   0.051750   1.541 0.123444    
## big5_conscientiousness_std   0.002454   0.024797   0.099 0.921192    
## big5_agreeableness_std       0.007715   0.024463   0.315 0.752507    
## big5_extraversion_std       -0.005150   0.022395  -0.230 0.818128    
## big5_openness_std            0.036141   0.023709   1.524 0.127567    
## big5_stability_std          -0.028241   0.023198  -1.217 0.223599    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.9517 on 1988 degrees of freedom
## Multiple R-squared:  0.101,  Adjusted R-squared:  0.09425 
## F-statistic:  14.9 on 15 and 1988 DF,  p-value: < 2.2e-16
summary(All_PopBig5FR_full)
## 
## Call:
## lm(formula = populism_rw_std ~ devalued_std + ethnocentrism_std + 
##     rwa_std + sdo_std + church_attendance_std + ideology_std + 
##     age_std + education_collapse + Q1_interest_in_politics_std + 
##     income_num_std + marital_status + big5_conscientiousness_std + 
##     big5_agreeableness_std + big5_extraversion_std + big5_openness_std + 
##     big5_stability_std, data = FR_data)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -4.0577 -0.5201  0.0177  0.5591  3.9816 
## 
## Coefficients:
##                              Estimate Std. Error t value Pr(>|t|)    
## (Intercept)                  0.197823   0.064944   3.046  0.00235 ** 
## devalued_std                 0.436340   0.020408  21.380  < 2e-16 ***
## ethnocentrism_std            0.183615   0.023683   7.753 1.42e-14 ***
## rwa_std                     -0.064672   0.022559  -2.867  0.00419 ** 
## sdo_std                     -0.048615   0.022802  -2.132  0.03312 *  
## church_attendance_std       -0.094141   0.020006  -4.706 2.71e-06 ***
## ideology_std                 0.034762   0.021871   1.589  0.11213    
## age_std                     -0.067564   0.020706  -3.263  0.00112 ** 
## education_collapse          -0.075784   0.016769  -4.519 6.57e-06 ***
## Q1_interest_in_politics_std  0.037537   0.020372   1.843  0.06554 .  
## income_num_std              -0.004264   0.023373  -0.182  0.85525    
## marital_status               0.041758   0.046706   0.894  0.37139    
## big5_conscientiousness_std   0.032097   0.022407   1.432  0.15218    
## big5_agreeableness_std       0.028169   0.022084   1.276  0.20226    
## big5_extraversion_std        0.027539   0.020255   1.360  0.17411    
## big5_openness_std            0.035861   0.021382   1.677  0.09367 .  
## big5_stability_std           0.033683   0.021121   1.595  0.11093    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.8583 on 1987 degrees of freedom
## Multiple R-squared:  0.2692, Adjusted R-squared:  0.2633 
## F-statistic: 45.74 on 16 and 1987 DF,  p-value: < 2.2e-16
summary(All_ConsBig5FR_Main)
## 
## Call:
## lm(formula = conspiratorial_orientation_std ~ ethnocentrism_std + 
##     rwa_std + sdo_std + church_attendance_std + ideology_std + 
##     age_std + education_collapse + Q1_interest_in_politics_std + 
##     income_num_std + marital_status + big5_conscientiousness_std + 
##     big5_agreeableness_std + big5_extraversion_std + big5_openness_std + 
##     big5_stability_std, data = FR_data)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -2.70850 -0.57892  0.01503  0.58540  2.80644 
## 
## Coefficients:
##                             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)                  0.27763    0.06923   4.010 6.29e-05 ***
## ethnocentrism_std            0.20235    0.02505   8.076 1.14e-15 ***
## rwa_std                     -0.03661    0.02402  -1.524 0.127674    
## sdo_std                      0.02426    0.02433   0.997 0.318898    
## church_attendance_std       -0.10021    0.02128  -4.709 2.67e-06 ***
## ideology_std                 0.12549    0.02332   5.381 8.26e-08 ***
## age_std                     -0.13068    0.02206  -5.925 3.67e-09 ***
## education_collapse          -0.11213    0.01783  -6.289 3.92e-10 ***
## Q1_interest_in_politics_std -0.09563    0.02172  -4.403 1.12e-05 ***
## income_num_std              -0.08387    0.02488  -3.371 0.000764 ***
## marital_status               0.08450    0.04981   1.696 0.089960 .  
## big5_conscientiousness_std  -0.02790    0.02387  -1.169 0.242583    
## big5_agreeableness_std      -0.03958    0.02355  -1.681 0.092952 .  
## big5_extraversion_std        0.01951    0.02155   0.905 0.365490    
## big5_openness_std            0.08858    0.02282   3.882 0.000107 ***
## big5_stability_std          -0.06129    0.02233  -2.745 0.006101 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.916 on 1988 degrees of freedom
## Multiple R-squared:  0.1672, Adjusted R-squared:  0.1609 
## F-statistic: 26.61 on 15 and 1988 DF,  p-value: < 2.2e-16
summary(All_ConsBig5FR_full)
## 
## Call:
## lm(formula = conspiratorial_orientation_std ~ devalued_std + 
##     ethnocentrism_std + rwa_std + sdo_std + church_attendance_std + 
##     ideology_std + age_std + education_collapse + Q1_interest_in_politics_std + 
##     income_num_std + marital_status + big5_conscientiousness_std + 
##     big5_agreeableness_std + big5_extraversion_std + big5_openness_std + 
##     big5_stability_std, data = FR_data)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -2.89842 -0.54491  0.01375  0.54688  2.86804 
## 
## Coefficients:
##                              Estimate Std. Error t value Pr(>|t|)    
## (Intercept)                  0.226399   0.064969   3.485 0.000503 ***
## devalued_std                 0.338846   0.020416  16.597  < 2e-16 ***
## ethnocentrism_std            0.150606   0.023692   6.357 2.55e-10 ***
## rwa_std                     -0.011515   0.022567  -0.510 0.609928    
## sdo_std                      0.029222   0.022810   1.281 0.200317    
## church_attendance_std       -0.073633   0.020014  -3.679 0.000240 ***
## ideology_std                 0.109669   0.021880   5.012 5.85e-07 ***
## age_std                     -0.109492   0.020714  -5.286 1.39e-07 ***
## education_collapse          -0.088337   0.016775  -5.266 1.55e-07 ***
## Q1_interest_in_politics_std -0.080357   0.020380  -3.943 8.33e-05 ***
## income_num_std              -0.056217   0.023382  -2.404 0.016295 *  
## marital_status               0.054991   0.046724   1.177 0.239357    
## big5_conscientiousness_std  -0.004879   0.022416  -0.218 0.827728    
## big5_agreeableness_std      -0.023693   0.022092  -1.072 0.283648    
## big5_extraversion_std        0.044896   0.020263   2.216 0.026827 *  
## big5_openness_std            0.088365   0.021390   4.131 3.76e-05 ***
## big5_stability_std          -0.013207   0.021129  -0.625 0.532011    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.8587 on 1987 degrees of freedom
## Multiple R-squared:  0.2686, Adjusted R-squared:  0.2627 
## F-statistic: 45.61 on 16 and 1987 DF,  p-value: < 2.2e-16
summary(All_PopBig5US_Main)
## 
## Call:
## lm(formula = populism_rw_std ~ ethnocentrism_std + rwa_std + 
##     sdo_std + church_attendance_std + ideology_std + age_std + 
##     education_collapse + Q1_interest_in_politics_std + income_num_std + 
##     marital_status + big5_conscientiousness_std + big5_agreeableness_std + 
##     big5_extraversion_std + big5_openness_std + big5_stability_std, 
##     data = US_data)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -3.9654 -0.5847 -0.0067  0.6028  3.1052 
## 
## Coefficients:
##                              Estimate Std. Error t value Pr(>|t|)    
## (Intercept)                  0.122450   0.074607   1.641 0.100900    
## ethnocentrism_std            0.046920   0.025928   1.810 0.070503 .  
## rwa_std                      0.034955   0.024842   1.407 0.159557    
## sdo_std                     -0.009456   0.027689  -0.341 0.732763    
## church_attendance_std       -0.075835   0.022890  -3.313 0.000939 ***
## ideology_std                 0.281369   0.024096  11.677  < 2e-16 ***
## age_std                     -0.076037   0.024436  -3.112 0.001886 ** 
## education_collapse          -0.051015   0.021284  -2.397 0.016627 *  
## Q1_interest_in_politics_std  0.165773   0.022148   7.485 1.07e-13 ***
## income_num_std               0.017564   0.022438   0.783 0.433834    
## marital_status               0.077592   0.043929   1.766 0.077495 .  
## big5_conscientiousness_std   0.036610   0.025518   1.435 0.151533    
## big5_agreeableness_std      -0.061473   0.026039  -2.361 0.018332 *  
## big5_extraversion_std       -0.027773   0.021938  -1.266 0.205674    
## big5_openness_std           -0.012565   0.023932  -0.525 0.599625    
## big5_stability_std          -0.026998   0.024728  -1.092 0.275066    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.9106 on 1984 degrees of freedom
## Multiple R-squared:  0.1771, Adjusted R-squared:  0.1709 
## F-statistic: 28.47 on 15 and 1984 DF,  p-value: < 2.2e-16
summary(All_PopBig5US_full)
## 
## Call:
## lm(formula = populism_rw_std ~ devalued_std + ethnocentrism_std + 
##     rwa_std + sdo_std + church_attendance_std + ideology_std + 
##     age_std + education_collapse + Q1_interest_in_politics_std + 
##     income_num_std + marital_status + big5_conscientiousness_std + 
##     big5_agreeableness_std + big5_extraversion_std + big5_openness_std + 
##     big5_stability_std, data = US_data)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -3.7113 -0.5013  0.0169  0.5364  3.4179 
## 
## Coefficients:
##                              Estimate Std. Error t value Pr(>|t|)    
## (Intercept)                  0.144329   0.067220   2.147 0.031905 *  
## devalued_std                 0.445616   0.020742  21.484  < 2e-16 ***
## ethnocentrism_std            0.020197   0.023391   0.863 0.388005    
## rwa_std                      0.039871   0.022381   1.782 0.074984 .  
## sdo_std                     -0.011707   0.024945  -0.469 0.638908    
## church_attendance_std       -0.056458   0.020641  -2.735 0.006289 ** 
## ideology_std                 0.236792   0.021807  10.858  < 2e-16 ***
## age_std                      0.006634   0.022347   0.297 0.766597    
## education_collapse          -0.057312   0.019176  -2.989 0.002836 ** 
## Q1_interest_in_politics_std  0.125753   0.020040   6.275 4.28e-10 ***
## income_num_std               0.032179   0.020225   1.591 0.111757    
## marital_status               0.075048   0.039575   1.896 0.058058 .  
## big5_conscientiousness_std   0.086439   0.023105   3.741 0.000188 ***
## big5_agreeableness_std      -0.037389   0.023485  -1.592 0.111541    
## big5_extraversion_std        0.008396   0.019835   0.423 0.672116    
## big5_openness_std           -0.007143   0.021561  -0.331 0.740474    
## big5_stability_std           0.072148   0.022750   3.171 0.001541 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.8203 on 1983 degrees of freedom
## Multiple R-squared:  0.3325, Adjusted R-squared:  0.3271 
## F-statistic: 61.73 on 16 and 1983 DF,  p-value: < 2.2e-16
summary(All_ConsBig5US_Main)
## 
## Call:
## lm(formula = conspiratorial_orientation_std ~ ethnocentrism_std + 
##     rwa_std + sdo_std + church_attendance_std + ideology_std + 
##     age_std + education_collapse + Q1_interest_in_politics_std + 
##     income_num_std + marital_status + big5_conscientiousness_std + 
##     big5_agreeableness_std + big5_extraversion_std + big5_openness_std + 
##     big5_stability_std, data = US_data)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -2.85269 -0.52697 -0.01242  0.56504  2.65465 
## 
## Coefficients:
##                              Estimate Std. Error t value Pr(>|t|)    
## (Intercept)                  0.190274   0.069511   2.737 0.006250 ** 
## ethnocentrism_std            0.045025   0.024157   1.864 0.062489 .  
## rwa_std                      0.070199   0.023145   3.033 0.002453 ** 
## sdo_std                      0.113377   0.025798   4.395 1.17e-05 ***
## church_attendance_std       -0.045999   0.021326  -2.157 0.031132 *  
## ideology_std                 0.308298   0.022451  13.732  < 2e-16 ***
## age_std                     -0.188009   0.022766  -8.258 2.67e-16 ***
## education_collapse          -0.074801   0.019830  -3.772 0.000167 ***
## Q1_interest_in_politics_std  0.040594   0.020635   1.967 0.049298 *  
## income_num_std               0.000187   0.020905   0.009 0.992865    
## marital_status               0.094544   0.040928   2.310 0.020990 *  
## big5_conscientiousness_std  -0.031695   0.023775  -1.333 0.182643    
## big5_agreeableness_std      -0.049807   0.024261  -2.053 0.040202 *  
## big5_extraversion_std       -0.038056   0.020440  -1.862 0.062768 .  
## big5_openness_std            0.049330   0.022297   2.212 0.027051 *  
## big5_stability_std          -0.061531   0.023039  -2.671 0.007631 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.8484 on 1984 degrees of freedom
## Multiple R-squared:  0.2857, Adjusted R-squared:  0.2803 
## F-statistic:  52.9 on 15 and 1984 DF,  p-value: < 2.2e-16
summary(All_ConsBig5US_full)
## 
## Call:
## lm(formula = conspiratorial_orientation_std ~ devalued_std + 
##     ethnocentrism_std + rwa_std + sdo_std + church_attendance_std + 
##     ideology_std + age_std + education_collapse + Q1_interest_in_politics_std + 
##     income_num_std + marital_status + big5_conscientiousness_std + 
##     big5_agreeableness_std + big5_extraversion_std + big5_openness_std + 
##     big5_stability_std, data = US_data)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -2.91199 -0.47960  0.01676  0.48726  2.57157 
## 
## Coefficients:
##                              Estimate Std. Error t value Pr(>|t|)    
## (Intercept)                  0.208548   0.064044   3.256 0.001148 ** 
## devalued_std                 0.372197   0.019762  18.834  < 2e-16 ***
## ethnocentrism_std            0.022705   0.022286   1.019 0.308427    
## rwa_std                      0.074306   0.021323   3.485 0.000503 ***
## sdo_std                      0.111497   0.023766   4.691 2.90e-06 ***
## church_attendance_std       -0.029815   0.019666  -1.516 0.129657    
## ideology_std                 0.271065   0.020777  13.047  < 2e-16 ***
## age_std                     -0.118959   0.021291  -5.587 2.63e-08 ***
## education_collapse          -0.080061   0.018270  -4.382 1.24e-05 ***
## Q1_interest_in_politics_std  0.007168   0.019093   0.375 0.707395    
## income_num_std               0.012394   0.019270   0.643 0.520173    
## marital_status               0.092419   0.037705   2.451 0.014327 *  
## big5_conscientiousness_std   0.009925   0.022013   0.451 0.652148    
## big5_agreeableness_std      -0.029691   0.022375  -1.327 0.184677    
## big5_extraversion_std       -0.007846   0.018898  -0.415 0.678056    
## big5_openness_std            0.053859   0.020542   2.622 0.008812 ** 
## big5_stability_std           0.021279   0.021675   0.982 0.326361    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.7815 on 1983 degrees of freedom
## Multiple R-squared:  0.3941, Adjusted R-squared:  0.3892 
## F-statistic:  80.6 on 16 and 1983 DF,  p-value: < 2.2e-16
summary(All_PopBig5PL_Main)
## 
## Call:
## lm(formula = populism_rw_std ~ ethnocentrism_std + rwa_std + 
##     sdo_std + church_attendance_std + ideology_std + age_std + 
##     education_collapse + Q1_interest_in_politics_std + income_num_std + 
##     marital_status + big5_conscientiousness_std + big5_agreeableness_std + 
##     big5_extraversion_std + big5_openness_std + big5_stability_std, 
##     data = PL_data)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -4.0001 -0.6126 -0.0151  0.6261  2.9177 
## 
## Coefficients:
##                             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)                  0.04335    0.06303   0.688 0.491714    
## ethnocentrism_std            0.11728    0.02593   4.522 6.48e-06 ***
## rwa_std                     -0.13504    0.02927  -4.613 4.22e-06 ***
## sdo_std                     -0.07768    0.02536  -3.063 0.002222 ** 
## church_attendance_std       -0.04109    0.02479  -1.658 0.097534 .  
## ideology_std                 0.01554    0.02454   0.633 0.526502    
## age_std                      0.03169    0.02384   1.329 0.183917    
## education_collapse          -0.04835    0.02070  -2.336 0.019604 *  
## Q1_interest_in_politics_std  0.06313    0.02337   2.701 0.006970 ** 
## income_num_std              -0.02027    0.02355  -0.861 0.389596    
## marital_status               0.12227    0.04795   2.550 0.010853 *  
## big5_conscientiousness_std   0.09311    0.02691   3.460 0.000551 ***
## big5_agreeableness_std       0.04306    0.02742   1.570 0.116560    
## big5_extraversion_std        0.02771    0.02745   1.009 0.312987    
## big5_openness_std           -0.06637    0.02461  -2.697 0.007056 ** 
## big5_stability_std          -0.02555    0.02509  -1.018 0.308591    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.972 on 1985 degrees of freedom
## Multiple R-squared:  0.06234,    Adjusted R-squared:  0.05525 
## F-statistic: 8.798 on 15 and 1985 DF,  p-value: < 2.2e-16
summary(All_PopBig5PL_full)
## 
## Call:
## lm(formula = populism_rw_std ~ devalued_std + ethnocentrism_std + 
##     rwa_std + sdo_std + church_attendance_std + ideology_std + 
##     age_std + education_collapse + Q1_interest_in_politics_std + 
##     income_num_std + marital_status + big5_conscientiousness_std + 
##     big5_agreeableness_std + big5_extraversion_std + big5_openness_std + 
##     big5_stability_std, data = PL_data)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -4.4382 -0.5559 -0.0037  0.5526  3.3044 
## 
## Coefficients:
##                              Estimate Std. Error t value Pr(>|t|)    
## (Intercept)                  0.034836   0.058634   0.594 0.552495    
## devalued_std                 0.371912   0.021122  17.608  < 2e-16 ***
## ethnocentrism_std            0.069707   0.024275   2.872 0.004127 ** 
## rwa_std                     -0.127222   0.027233  -4.672 3.19e-06 ***
## sdo_std                     -0.085272   0.023597  -3.614 0.000309 ***
## church_attendance_std       -0.032558   0.023064  -1.412 0.158220    
## ideology_std                 0.018410   0.022827   0.807 0.420042    
## age_std                      0.056462   0.022224   2.541 0.011142 *  
## education_collapse          -0.042930   0.019259  -2.229 0.025917 *  
## Q1_interest_in_politics_std  0.053373   0.021748   2.454 0.014207 *  
## income_num_std              -0.005222   0.021923  -0.238 0.811772    
## marital_status               0.114211   0.044608   2.560 0.010530 *  
## big5_conscientiousness_std   0.091352   0.025030   3.650 0.000269 ***
## big5_agreeableness_std       0.038860   0.025510   1.523 0.127843    
## big5_extraversion_std        0.040487   0.025548   1.585 0.113184    
## big5_openness_std           -0.055204   0.022899  -2.411 0.016008 *  
## big5_stability_std           0.049591   0.023724   2.090 0.036712 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.9041 on 1984 degrees of freedom
## Multiple R-squared:  0.1891, Adjusted R-squared:  0.1825 
## F-statistic: 28.91 on 16 and 1984 DF,  p-value: < 2.2e-16
summary(All_ConsBig5PL_Main)
## 
## Call:
## lm(formula = conspiratorial_orientation_std ~ ethnocentrism_std + 
##     rwa_std + sdo_std + church_attendance_std + ideology_std + 
##     age_std + education_collapse + Q1_interest_in_politics_std + 
##     income_num_std + marital_status + big5_conscientiousness_std + 
##     big5_agreeableness_std + big5_extraversion_std + big5_openness_std + 
##     big5_stability_std, data = PL_data)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -3.2480 -0.5853 -0.0088  0.6684  2.5271 
## 
## Coefficients:
##                             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)                  0.03313    0.06298   0.526  0.59886    
## ethnocentrism_std            0.15589    0.02591   6.016 2.12e-09 ***
## rwa_std                      0.01902    0.02925   0.650  0.51552    
## sdo_std                      0.01422    0.02534   0.561  0.57466    
## church_attendance_std       -0.04951    0.02477  -1.999  0.04576 *  
## ideology_std                 0.02558    0.02452   1.043  0.29686    
## age_std                     -0.03477    0.02382  -1.459  0.14460    
## education_collapse          -0.03013    0.02068  -1.457  0.14530    
## Q1_interest_in_politics_std -0.05286    0.02335  -2.264  0.02370 *  
## income_num_std              -0.02599    0.02353  -1.104  0.26955    
## marital_status               0.06672    0.04791   1.393  0.16389    
## big5_conscientiousness_std   0.07609    0.02689   2.830  0.00470 ** 
## big5_agreeableness_std       0.01735    0.02740   0.633  0.52678    
## big5_extraversion_std        0.02287    0.02743   0.834  0.40444    
## big5_openness_std           -0.03449    0.02459  -1.403  0.16079    
## big5_stability_std          -0.06796    0.02507  -2.711  0.00676 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.9712 on 1985 degrees of freedom
## Multiple R-squared:  0.06388,    Adjusted R-squared:  0.05681 
## F-statistic: 9.031 on 15 and 1985 DF,  p-value: < 2.2e-16
summary(All_ConsBig5PL_full)
## 
## Call:
## lm(formula = conspiratorial_orientation_std ~ devalued_std + 
##     ethnocentrism_std + rwa_std + sdo_std + church_attendance_std + 
##     ideology_std + age_std + education_collapse + Q1_interest_in_politics_std + 
##     income_num_std + marital_status + big5_conscientiousness_std + 
##     big5_agreeableness_std + big5_extraversion_std + big5_openness_std + 
##     big5_stability_std, data = PL_data)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -3.3373 -0.5406  0.0195  0.6065  2.7156 
## 
## Coefficients:
##                              Estimate Std. Error t value Pr(>|t|)    
## (Intercept)                  0.025635   0.059594   0.430  0.66713    
## devalued_std                 0.327730   0.021468  15.266  < 2e-16 ***
## ethnocentrism_std            0.113969   0.024672   4.619  4.1e-06 ***
## rwa_std                      0.025911   0.027679   0.936  0.34931    
## sdo_std                      0.007536   0.023983   0.314  0.75339    
## church_attendance_std       -0.041987   0.023442  -1.791  0.07343 .  
## ideology_std                 0.028110   0.023201   1.212  0.22582    
## age_std                     -0.012945   0.022588  -0.573  0.56665    
## education_collapse          -0.025357   0.019574  -1.295  0.19532    
## Q1_interest_in_politics_std -0.061463   0.022104  -2.781  0.00548 ** 
## income_num_std              -0.012730   0.022282  -0.571  0.56784    
## marital_status               0.059625   0.045338   1.315  0.18862    
## big5_conscientiousness_std   0.074546   0.025440   2.930  0.00343 ** 
## big5_agreeableness_std       0.013648   0.025928   0.526  0.59869    
## big5_extraversion_std        0.034136   0.025966   1.315  0.18879    
## big5_openness_std           -0.024658   0.023274  -1.059  0.28951    
## big5_stability_std          -0.001747   0.024112  -0.072  0.94225    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.9189 on 1984 degrees of freedom
## Multiple R-squared:  0.1623, Adjusted R-squared:  0.1555 
## F-statistic: 24.02 on 16 and 1984 DF,  p-value: < 2.2e-16

Country specific without FBD

Country specific

# Extracting coefficients and creating a tidy data frame with confidence intervals
df1 <- tidy(ConspUS_Main, conf.int = TRUE) %>% mutate(Country = "United States")
df2 <- tidy(ConspFR_Main, conf.int = TRUE) %>% mutate(Country = "France")
df3 <- tidy(ConspPL_Main, conf.int = TRUE) %>% mutate(Country = "Poland")
df4 <- tidy(ConspGB_Main, conf.int = TRUE) %>% mutate(Country = "United Kingdom")


# Extracting 99% confidence intervals
ci99_df1 <- confint(ConspUS_Main, level = 0.99) %>% as.data.frame() %>% mutate(term = rownames(.), Country = "United States")
ci99_df2 <- confint(ConspFR_Main, level = 0.99) %>% as.data.frame() %>% mutate(term = rownames(.), Country = "France")
ci99_df3 <- confint(ConspPL_Main, level = 0.99) %>% as.data.frame() %>% mutate(term = rownames(.), Country = "Poland")
ci99_df4 <- confint(ConspGB_Main, level = 0.99) %>% as.data.frame() %>% mutate(term = rownames(.), Country = "United Kingdom")

# Renaming columns to match
colnames(ci99_df1)[1:2] <- c("conf.low2", "conf.high2")
colnames(ci99_df2)[1:2] <- c("conf.low2", "conf.high2")
colnames(ci99_df3)[1:2] <- c("conf.low2", "conf.high2")
colnames(ci99_df4)[1:2] <- c("conf.low2", "conf.high2")

# Combining the 99% CIs into one data frame
ci99_df <- bind_rows(ci99_df1, ci99_df2, ci99_df3, ci99_df4)


# Preparing the combined dataframe
coefficients_df <- bind_rows(df1, df2, df3, df4)
coefficients_df <- coefficients_df %>%
  left_join(ci99_df, by = c("term", "Country"))

# Filter out the intercept and other unwanted coefficients
coefficients_df <- coefficients_df %>%
  filter(term != "(Intercept)")

# Rename terms for readability
coefficients_df <- coefficients_df %>%
  mutate(term = case_when(
    term == "rwa_std" ~ "Right-Wing Authoritarianism",
    term == "sdo_std" ~ "Social Dominance Orientation",
    term == "ethnocentrism_std" ~ "Ethnocentrism",
    term == "ideology_std" ~ "Ideology",
    term == "age_std" ~ "Age",
    term == "church_attendance_std" ~ "Religiosity",
    term == "income_num_std" ~ "Income",
    term == "Q1_interest_in_politics_std" ~ "Political Interest",
    term == "marital_status" ~ "Marital Status",
    term == "education_collapse" ~ "Education",
    TRUE ~ term
  ))

# Define the desired order for facets
facet_order <- c("Age", "Income", "Marital Status", "Education", "Political Interest", "Religiosity", "Ethnocentrism", "Ideology", 
                 "Right-Wing Authoritarianism", "Social Dominance Orientation")


# Relevel the 'term' factor according to the desired facet order
coefficients_df <- coefficients_df %>%
  mutate(term = factor(term, levels = facet_order))

# Creating the plot with multi-level confidence intervals
plot1 <- ggplot(coefficients_df, aes(x = estimate, y = Country, color = Country)) +
    facet_wrap(~ term, scales = "free_y", ncol = 1) +
    geom_point(size = 2, shape = 16) +
    geom_linerange(aes(xmin = conf.low2, xmax = conf.high2), height = 0.2, color = "gray70", size = 0.25) + # Wider CI in lighter gray
    geom_linerange(aes(xmin = conf.low, xmax = conf.high), height = 0.2, color = "gray20", size = 0.25) + # Narrower CI in darker gray
    geom_vline(xintercept = 0, color = "black", size = .5, linetype = "solid") +  # Add vertical line for intercept
    scale_color_manual(values = c("United States" = "black", "France" = "black", "Poland" = "black", "United Kingdom" = "black")) +
    labs(x = "Point estimates", y = NULL, title = "DV: Conspiratorial Orientation") +
    theme_minimal() +
    theme(
        legend.position = "none",
        axis.text.y = element_text(size = 10),
        axis.title.x = element_text(size = 12),
        plot.title = element_text(hjust = 0.5, size = 14),
        strip.text = element_text(size = 12),
        panel.grid.major.y = element_blank(),
        panel.grid.minor.y = element_blank(),
        panel.grid.major.x = element_line(size = .5, color = "gray", linetype = "dotted")
    )
# Extracting coefficients and creating a tidy data frame with confidence intervals
df1 <- tidy(PopUS_Main, conf.int = TRUE) %>% mutate(Country = "United States")
df2 <- tidy(PopFR_Main, conf.int = TRUE) %>% mutate(Country = "France")
df3 <- tidy(PopPL_Main, conf.int = TRUE) %>% mutate(Country = "Poland")
df4 <- tidy(PopGB_Main, conf.int = TRUE) %>% mutate(Country = "United Kingdom")


# Extracting 99% confidence intervals
ci99_df1 <- confint(PopUS_Main, level = 0.99) %>% as.data.frame() %>% mutate(term = rownames(.), Country = "United States")
ci99_df2 <- confint(PopFR_Main, level = 0.99) %>% as.data.frame() %>% mutate(term = rownames(.), Country = "France")
ci99_df3 <- confint(PopPL_Main, level = 0.99) %>% as.data.frame() %>% mutate(term = rownames(.), Country = "Poland")
ci99_df4 <- confint(PopGB_Main, level = 0.99) %>% as.data.frame() %>% mutate(term = rownames(.), Country = "United Kingdom")

# Renaming columns to match
colnames(ci99_df1)[1:2] <- c("conf.low2", "conf.high2")
colnames(ci99_df2)[1:2] <- c("conf.low2", "conf.high2")
colnames(ci99_df3)[1:2] <- c("conf.low2", "conf.high2")
colnames(ci99_df4)[1:2] <- c("conf.low2", "conf.high2")

# Combining the 99% CIs into one data frame
ci99_df <- bind_rows(ci99_df1, ci99_df2, ci99_df3, ci99_df4)

# Preparing the combined dataframe
coefficients_df <- bind_rows(df1, df2, df3, df4)
coefficients_df <- coefficients_df %>%
  left_join(ci99_df, by = c("term", "Country"))

# Filter out the intercept and other unwanted coefficients
coefficients_df <- coefficients_df %>%
  filter(term != "(Intercept)")

# Rename terms for readability
coefficients_df <- coefficients_df %>%
  mutate(term = case_when(
    term == "rwa_std" ~ "Right-Wing Authoritarianism",
    term == "sdo_std" ~ "Social Dominance Orientation",
    term == "ethnocentrism_std" ~ "Ethnocentrism",
    term == "ideology_std" ~ "Ideology",
    term == "age_std" ~ "Age",
    term == "church_attendance_std" ~ "Religiosity",
    term == "income_num_std" ~ "Income",
    term == "Q1_interest_in_politics_std" ~ "Political Interest",
    term == "marital_status" ~ "Marital Status",
    term == "education_collapse" ~ "Education",
    TRUE ~ term
  ))

# Define the desired order for facets
facet_order <- c("Age", "Income", "Marital Status", "Education", "Political Interest", "Religiosity", "Ethnocentrism", "Ideology",
                 "Right-Wing Authoritarianism", "Social Dominance Orientation")


# Relevel the 'term' factor according to the desired facet order
coefficients_df <- coefficients_df %>%
  mutate(term = factor(term, levels = facet_order))


# Creating the plot with multi-level confidence intervals
plot2 <- ggplot(coefficients_df, aes(x = estimate, y = Country, color = Country)) +
    facet_wrap(~ term, scales = "free_y", ncol = 1) +
    geom_point(size = 2, shape = 16) +
    geom_linerange(aes(xmin = conf.low2, xmax = conf.high2), height = 0.2, color = "gray70", size = 0.25) + # Wider CI in lighter gray
    geom_linerange(aes(xmin = conf.low, xmax = conf.high), height = 0.2, color = "gray20", size = 0.25) + # Narrower CI in darker gray
    geom_vline(xintercept = 0, color = "black", size = .5, linetype = "solid") +  # Add vertical line for intercept
    scale_color_manual(values = c("United States" = "black", "France" = "black", "Poland" = "black", "United Kingdom" = "black")) +
    labs(x = "Point estimates", y = NULL, title = "DV: Populist Attitudes") +
    theme_minimal() +
    theme(
        legend.position = "none",
        axis.text.y = element_text(size = 10),
        axis.title.x = element_text(size = 12),
        plot.title = element_text(hjust = 0.5, size = 14),
        strip.text = element_text(size = 12),
        panel.grid.major.y = element_blank(),
        panel.grid.minor.y = element_blank(),
        panel.grid.major.x = element_line(size = .5, color = "gray", linetype = "dotted")
    )

if (!require(grid)) install.packages("grid")
library(grid)
# Creating the combined plot object with arrangeGrob
combined_plot <- arrangeGrob(
  plot2, plot1,
  ncol = 2,
  top = textGrob("Populist & Conspiratorial Attitudes Per Country (Main Models)\n", 
                 gp = gpar(fontface = "bold", fontsize = 20), vjust = 1)
)
# Printing the combined plot with annotations
grid.draw(combined_plot)

Correlations populist vote x attitudes

PL

# Spearman correlation
correlation_spearmanPL <- cor(PL_data$vote_prawo, PL_data$populism_rw_std, method = "spearman")

# Kendall correlation
correlation_kendallPL <- cor(PL_data$vote_prawo, PL_data$populism_rw_std, method = "kendall")

# Print the results
print(correlation_spearmanPL)
## [1] -0.01558146
print(correlation_kendallPL)
## [1] -0.01294549

US

# Spearman correlation
correlation_spearmanUS <- cor(US_data$vote_trump, US_data$populism_rw_std, method = "spearman")

# Kendall correlation
correlation_kendallUS <- cor(US_data$vote_trump, US_data$populism_rw_std, method = "kendall")

# Print the results
print(correlation_spearmanUS)
## [1] 0.2728396
print(correlation_kendallUS)
## [1] 0.2265467

FR

# Spearman correlation
correlation_spearmanFR <- cor(FR_data$vote_lepen, FR_data$populism_rw_std, method = "spearman")

# Kendall correlation
correlation_kendallFR <- cor(FR_data$vote_lepen, FR_data$populism_rw_std, method = "kendall")

# Print the results
print(correlation_spearmanFR)
## [1] 0.2827311
print(correlation_kendallFR)
## [1] 0.23457

Summary RWP

summary(RWPUS_full)
## 
## Call:
## lm(formula = vote_trump ~ devalued_std + ethnocentrism_std + 
##     rwa_std + sdo_std + church_attendance_std + ideology_std + 
##     age_std + education_collapse + Q1_interest_in_politics_std + 
##     income_num_std + marital_status, data = US_data)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -0.7902 -0.3069 -0.1260  0.3241  1.2238 
## 
## Coefficients:
##                              Estimate Std. Error t value Pr(>|t|)    
## (Intercept)                  0.384381   0.032912  11.679  < 2e-16 ***
## devalued_std                 0.022474   0.009610   2.339  0.01946 *  
## ethnocentrism_std           -0.062621   0.011402  -5.492 4.48e-08 ***
## rwa_std                      0.050611   0.010790   4.691 2.91e-06 ***
## sdo_std                      0.061084   0.011614   5.260 1.60e-07 ***
## church_attendance_std        0.005266   0.009996   0.527  0.59837    
## ideology_std                 0.163601   0.010625  15.398  < 2e-16 ***
## age_std                      0.080185   0.010402   7.709 1.99e-14 ***
## education_collapse          -0.028898   0.009383  -3.080  0.00210 ** 
## Q1_interest_in_politics_std  0.025618   0.009704   2.640  0.00836 ** 
## income_num_std               0.017799   0.009893   1.799  0.07215 .  
## marital_status               0.039444   0.019392   2.034  0.04208 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.4025 on 1988 degrees of freedom
## Multiple R-squared:  0.2506, Adjusted R-squared:  0.2464 
## F-statistic: 60.43 on 11 and 1988 DF,  p-value: < 2.2e-16
summary(RWPFR_full)
## 
## Call:
## lm(formula = vote_lepen ~ devalued_std + ethnocentrism_std + 
##     rwa_std + sdo_std + church_attendance_std + ideology_std + 
##     age_std + education_collapse + Q1_interest_in_politics_std + 
##     income_num_std + marital_status, data = FR_data)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -0.7836 -0.2480 -0.1236  0.1047  1.3489 
## 
## Coefficients:
##                               Estimate Std. Error t value Pr(>|t|)    
## (Intercept)                  0.2998465  0.0283375  10.581  < 2e-16 ***
## devalued_std                 0.0451692  0.0087409   5.168 2.61e-07 ***
## ethnocentrism_std            0.0916837  0.0103043   8.898  < 2e-16 ***
## rwa_std                     -0.0193142  0.0097169  -1.988  0.04698 *  
## sdo_std                     -0.0256909  0.0095530  -2.689  0.00722 ** 
## church_attendance_std        0.0204150  0.0086996   2.347  0.01904 *  
## ideology_std                 0.1287809  0.0095222  13.524  < 2e-16 ***
## age_std                     -0.0202638  0.0088813  -2.282  0.02262 *  
## education_collapse          -0.0309425  0.0073024  -4.237 2.37e-05 ***
## Q1_interest_in_politics_std  0.0047846  0.0088276   0.542  0.58788    
## income_num_std              -0.0002376  0.0101706  -0.023  0.98136    
## marital_status               0.0290589  0.0204336   1.422  0.15515    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.3758 on 1992 degrees of freedom
## Multiple R-squared:    0.2,  Adjusted R-squared:  0.1956 
## F-statistic: 45.28 on 11 and 1992 DF,  p-value: < 2.2e-16
summary(RWPPL_full)
## 
## Call:
## lm(formula = vote_prawo ~ devalued_std + ethnocentrism_std + 
##     rwa_std + sdo_std + church_attendance_std + ideology_std + 
##     age_std + education_collapse + Q1_interest_in_politics_std + 
##     income_num_std + marital_status, data = PL_data)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -0.84460 -0.23685 -0.09932  0.22092  1.10771 
## 
## Coefficients:
##                              Estimate Std. Error t value Pr(>|t|)    
## (Intercept)                  0.288512   0.023343  12.360  < 2e-16 ***
## devalued_std                -0.001266   0.008212  -0.154  0.87751    
## ethnocentrism_std            0.017882   0.009523   1.878  0.06055 .  
## rwa_std                      0.082556   0.010759   7.673 2.61e-14 ***
## sdo_std                     -0.053105   0.009096  -5.838 6.16e-09 ***
## church_attendance_std       -0.042142   0.009132  -4.615 4.19e-06 ***
## ideology_std                 0.159888   0.009056  17.656  < 2e-16 ***
## age_std                      0.028083   0.008584   3.272  0.00109 ** 
## education_collapse          -0.020471   0.007658  -2.673  0.00758 ** 
## Q1_interest_in_politics_std  0.041777   0.008555   4.883 1.13e-06 ***
## income_num_std               0.001146   0.008664   0.132  0.89481    
## marital_status               0.014156   0.017631   0.803  0.42211    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.3603 on 1989 degrees of freedom
## Multiple R-squared:  0.3042, Adjusted R-squared:  0.3004 
## F-statistic: 79.07 on 11 and 1989 DF,  p-value: < 2.2e-16