# Load packages
# Core
library(tidyverse)
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ dplyr 1.1.4 ✔ readr 2.1.5
## ✔ forcats 1.0.0 ✔ stringr 1.5.1
## ✔ ggplot2 3.5.1 ✔ tibble 3.2.1
## ✔ lubridate 1.9.3 ✔ tidyr 1.3.1
## ✔ purrr 1.0.2
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag() masks stats::lag()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
library(tidyquant)
## Registered S3 method overwritten by 'quantmod':
## method from
## as.zoo.data.frame zoo
## ── Attaching core tidyquant packages ──────────────────────── tidyquant 1.0.9 ──
## ✔ PerformanceAnalytics 2.0.4 ✔ TTR 0.24.4
## ✔ quantmod 0.4.26 ✔ xts 0.14.0── Conflicts ────────────────────────────────────────── tidyquant_conflicts() ──
## ✖ zoo::as.Date() masks base::as.Date()
## ✖ zoo::as.Date.numeric() masks base::as.Date.numeric()
## ✖ dplyr::filter() masks stats::filter()
## ✖ xts::first() masks dplyr::first()
## ✖ dplyr::lag() masks stats::lag()
## ✖ xts::last() masks dplyr::last()
## ✖ PerformanceAnalytics::legend() masks graphics::legend()
## ✖ quantmod::summary() masks base::summary()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
library(dplR)
## This is dplR version 1.7.7.
## dplR is part of openDendro https://opendendro.org.
## New users can visit https://opendendro.github.io/dplR-workshop/ to get started.
##
## Attaching package: 'dplR'
##
## The following object is masked from 'package:zoo':
##
## time<-
Take raw prices of five individual stocks and transform them into monthly returns five stocks: “SPY”, “EFA”, “IJS”, “EEM”, “AGG”
# Choose stocks
symbols <- c("SPY", "EFA", "IJS", "EEM", "AGG")
prices <- tq_get(x = symbols,
get = "stock.prices",
from = "2012-01-01",
to = "2017-01-01")
asset_returns_tbl <- prices %>%
group_by(symbol) %>%
tq_transmute(select = adjusted,
mutate_fun = periodReturn,
period = "monthly",
type = "log") %>%
set_names(c("asset", "date", "returns"))
asset_returns_tbl %>%
ggplot(aes(x = returns)) +
geom_density(aes(color = asset), alpha = 1) +
geom_histogram(aes(fill = asset), show.legend = FALSE, alpha = 0.3, binwidth = 0.01) +
facet_wrap(~asset, ncol = 1)
# labeling
labs(title = "Distribution of Monthly Returns, 2021-2016",
y = "Frequency",
x = "Rate of Returns",
caption = "A typic monthly return is higher for SPY and IJS than for AGG, EEM, and EFA.")
## $y
## [1] "Frequency"
##
## $x
## [1] "Rate of Returns"
##
## $title
## [1] "Distribution of Monthly Returns, 2021-2016"
##
## $caption
## [1] "A typic monthly return is higher for SPY and IJS than for AGG, EEM, and EFA."
##
## attr(,"class")
## [1] "labels"