Tomados de Essentials of probability & statistics for engineers & scientists Walpole Myers Myers Ye. Pag 257.
\(t_{p}=\dfrac{\bar{x}-\mu_{0}}{\frac{S}{\sqrt{n}}}\)
Tiene distribución \(t\) con \(\nu=n-1\) grados de libertad.
x<-c(7.07,7.00,7.10,6.97,7.00,7.03,7.01,7.01,6.98,7.08)
n<-length(x);n
## [1] 10
m=mean(x);m
## [1] 7.025
media<-7
de<-sd(x);de
## [1] 0.04403282
tp<-(m-media)/(de/sqrt(n));tp
## [1] 1.79541
\(H_{0}: \mu = \mu_{0}\)
\(H_{1}: \mu \neq \mu_{0}\)
prueba<-t.test(x,mu=media,alternative="two.sided")
prueba
##
## One Sample t-test
##
## data: x
## t = 1.7954, df = 9, p-value = 0.1062
## alternative hypothesis: true mean is not equal to 7
## 95 percent confidence interval:
## 6.993501 7.056499
## sample estimates:
## mean of x
## 7.025
\(H_{0}: \mu = \mu_{0}\)
\(H_{1}: \mu > \mu_{0}\)
prueba1<-t.test(x,mu=media,alternative="greater")
prueba1
##
## One Sample t-test
##
## data: x
## t = 1.7954, df = 9, p-value = 0.05308
## alternative hypothesis: true mean is greater than 7
## 95 percent confidence interval:
## 6.999475 Inf
## sample estimates:
## mean of x
## 7.025
\(H_{0}: \mu = \mu_{0}\)
\(H_{1}: \mu < \mu_{0}\)
prueba2<-t.test(x,mu=media,alternative="less")
prueba2
##
## One Sample t-test
##
## data: x
## t = 1.7954, df = 9, p-value = 0.9469
## alternative hypothesis: true mean is less than 7
## 95 percent confidence interval:
## -Inf 7.050525
## sample estimates:
## mean of x
## 7.025
Tomados de Essentials of probability & statistics for engineers & scientists Walpole Myers Myers Ye. Pag 270.
\(t_{p}=\dfrac{(\bar{x}_{1}-\bar{x}_{2})-d_{0}}{S_{p}\sqrt{\dfrac{1}{n_{1}}+\dfrac{1}{n_{2}}}}\)
Con
\(S_{p}^{2}=\dfrac{(n_{1}-1)S_{1}^{2}+(n_{2}-1)S_{2}^{2}}{n_{1}+n_{2}-2}\)
Tiene distribución \(t\) con \(\nu=n_{1}+n_{2}-2\) grados de libertad.
x1<-c(5030,13700,10730,11400,860,2200,4250,15040,4980,11910,8130,26850,17660,
22800,1130,1690)
x2<-c(2800,4670,6890,7720,7030,7330,2810,1330,3320,1230,2130,2190)
n1<-length(x1);n1
## [1] 16
n2<-length(x2);n2
## [1] 12
m1=mean(x1);m1
## [1] 9897.5
m2=mean(x2);m2
## [1] 4120.833
v1=var(x1);v1
## [1] 62005060
v2=var(x2);v2
## [1] 6147936
sp2=((n1-1)*v1+(n2-1)*v2)/(n1+n2-2);sp2
## [1] 38373200
tp2=(m1-m2)/(sqrt(sp2)*sqrt(1/n1+1/n2));tp2
## [1] 2.441939
\(H_{0}: \mu_{1} - \mu_{2}=d_{0}\)
\(H_{1}: \mu_{1} - \mu_{2} \neq d_{0}\)
prueba3<-t.test(x1,x2,mu=0,alternative="two.sided",paired=FALSE,var.equal = TRUE)
prueba3
##
## Two Sample t-test
##
## data: x1 and x2
## t = 2.4419, df = 26, p-value = 0.02172
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## 914.0939 10639.2394
## sample estimates:
## mean of x mean of y
## 9897.500 4120.833
\(H_{0}: \mu_{1} - \mu_{2}=d_{0}\)
\(H_{1}: \mu_{1} - \mu_{2}< d_{0}\)
prueba4<-t.test(x1,x2,mu=0,alternative="less",paired=FALSE,var.equal = TRUE)
prueba4
##
## Two Sample t-test
##
## data: x1 and x2
## t = 2.4419, df = 26, p-value = 0.9891
## alternative hypothesis: true difference in means is less than 0
## 95 percent confidence interval:
## -Inf 9811.487
## sample estimates:
## mean of x mean of y
## 9897.500 4120.833
\(H_{0}: \mu_{1} - \mu_{2}=d_{0}\)
\(H_{1}: \mu_{1} - \mu_{2} > d_{0}\)
prueba5<-t.test(x1,x2,mu=0,alternative="greater",paired=FALSE,var.equal = TRUE)
prueba5
##
## Two Sample t-test
##
## data: x1 and x2
## t = 2.4419, df = 26, p-value = 0.01086
## alternative hypothesis: true difference in means is greater than 0
## 95 percent confidence interval:
## 1741.847 Inf
## sample estimates:
## mean of x mean of y
## 9897.500 4120.833
Se utilizan los datos anteriores.
\(t_{p}=\dfrac{(\bar{x}_{1}-\bar{x}_{2})-d_{0}}{\sqrt{\frac{S_{1}^{2}}{n_{1}}+\frac{S_{2}^{2}}{n_{2}}}}\)
Que tiene aproximadamente una distribución \(t\) con
\(\nu= \dfrac{(\frac{S_{1}^{2}}{n_{1}}+\frac{S_{2}^{2}}{n_{2}})^{2}}{\frac{(S_{1}^{2}/n_{1})^{2}}{n_{1}-1}+\frac{(S_{2}^{2}/n_{2})^{2}}{n_{2}-1}}\)
grados de libertad.
x1<-c(5030,13700,10730,11400,860,2200,4250,15040,4980,11910,8130,26850,17660,
22800,1130,1690)
x2<-c(2800,4670,6890,7720,7030,7330,2810,1330,3320,1230,2130,2190)
n1<-length(x1);n1
## [1] 16
n2<-length(x2);n2
## [1] 12
m1=mean(x1);m1
## [1] 9897.5
m2=mean(x2);m2
## [1] 4120.833
v1=var(x1);v1
## [1] 62005060
v2=var(x2);v2
## [1] 6147936
tp3=(m1-m2)/(sqrt(v1/n1+v2/n2));tp3
## [1] 2.757793
v=(v1/n1+v2/n2)^{2}/((v1/n1)^{2}/(n1-1)+((v2/n2)^{2}/(n2-1)));v
## [1] 18.78065
prueba10<-t.test(x1,x2,mu=0,alternative="two.sided",paired=FALSE,var.equal = FALSE)
prueba10
##
## Welch Two Sample t-test
##
## data: x1 and x2
## t = 2.7578, df = 18.781, p-value = 0.01261
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## 1389.003 10164.331
## sample estimates:
## mean of x mean of y
## 9897.500 4120.833
prueba11<-t.test(x1,x2,mu=0,alternative="less",paired=FALSE,var.equal =FALSE)
prueba11
##
## Welch Two Sample t-test
##
## data: x1 and x2
## t = 2.7578, df = 18.781, p-value = 0.9937
## alternative hypothesis: true difference in means is less than 0
## 95 percent confidence interval:
## -Inf 9400.797
## sample estimates:
## mean of x mean of y
## 9897.500 4120.833
prueba12<-t.test(x1,x2,mu=0,alternative="greater",paired=FALSE,var.equal = FALSE)
prueba12
##
## Welch Two Sample t-test
##
## data: x1 and x2
## t = 2.7578, df = 18.781, p-value = 0.006306
## alternative hypothesis: true difference in means is greater than 0
## 95 percent confidence interval:
## 2152.537 Inf
## sample estimates:
## mean of x mean of y
## 9897.500 4120.833
Tomados de Essentials of probability & statistics for engineers & scientists Walpole Myers Myers Ye. Pag 270.
\(t_{p}= \dfrac{\bar{d}-d_{do}}{\frac{S_{d}}{\sqrt{n}}}\)
Tiene \(n-1\) grados de libertad.
x5<-c(158,92,65,98,33,89,148,58,142,117,74,66,109,57,85)
x6<-c(91,59,215,226,223,91,92,177,134,116,153,219,143,164,100)
d=x5-x6;d
## [1] 67 33 -150 -128 -190 -2 56 -119 8 1 -79 -153 -34 -107 -15
n=length(d);n
## [1] 15
dm=mean(d);dm
## [1] -54.13333
ddm=sd(d);ddm
## [1] 83.00247
tp=(dm-0)/(ddm/sqrt(n));tp
## [1] -2.525919
\(H_{0}: \mu_{D}=d0\)
\(H_{1}: \mu_{D} \neq d_{0}\)
prueba7<-t.test(x5,x6,mu=0,alternative="two.sided",paired=TRUE)
prueba7
##
## Paired t-test
##
## data: x5 and x6
## t = -2.5259, df = 14, p-value = 0.02422
## alternative hypothesis: true mean difference is not equal to 0
## 95 percent confidence interval:
## -100.098567 -8.168099
## sample estimates:
## mean difference
## -54.13333
\(H_{0}: \mu_{D}=d0\)
\(H_{1}: \mu_{D}< d_{0}\)
prueba8<-t.test(x5,x6,mu=0,alternative="less",paired=TRUE)
prueba8
##
## Paired t-test
##
## data: x5 and x6
## t = -2.5259, df = 14, p-value = 0.01211
## alternative hypothesis: true mean difference is less than 0
## 95 percent confidence interval:
## -Inf -16.38644
## sample estimates:
## mean difference
## -54.13333
\(H_{0}: \mu_{D}=d0\)
\(H_{1}: \mu_{D} > d_{0}\)
prueba9<-t.test(x5,x6,mu=0,alternative="greater",paired=TRUE)
prueba9
##
## Paired t-test
##
## data: x5 and x6
## t = -2.5259, df = 14, p-value = 0.9879
## alternative hypothesis: true mean difference is greater than 0
## 95 percent confidence interval:
## -91.88023 Inf
## sample estimates:
## mean difference
## -54.13333